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ABSTRACT

The purpose of this note is to show how Harris' TREAD value can bhe

computed without approximation.
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In this note we are concerned with a pricing tactic due to Harris (2) which
is used in a linear programming system to decrease computational cost. We

begin with a description of the basic idea.

At the beginning of a major iteration a #r-vector is computed with a BTRAN
algorithm such that the reduced cost of activity j is the iInner product,

(7, Aj)’ where Aj is the j-th (original) column. An activity is rejected

if the sign of its reduced cost does not show a rate of improvement (depending
upon whether the monbasic activity level is at lower bound or upper bound).

If it is not rejected, then it competes with other candidates which have also
not been rejected. One criteria upon which this competition is based is the

magnitude of the reduced cost.

Denote the reduced cost of activity j by 'D.' (so D, = (27 , A )). Harris

J 3 j
noted that D. depends upon column scale. That is, if E; = g A , where s >0
13 N

is a scale factor, then

%u_ _ A ( : D
3= (ﬁ’Aj)_Sj W’Aj)“sjj.

Therefore, using magnitude of reduced cost as the criterion for competing

activities to enter the basis may be misleading. TIndeed, experience confirms

this.

As an alternative one may consider the dynamic scaling
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A, . Note that D does not depend upon scaling the j-th
d i
column since -
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A less superficial rationale for using Dj is as follows. Let t be the change
in activity level of nonbasic activity j; let}?tmathe current basic activity

levels; and let Z(t) be the basie activity levels satisfying
7 (L) =p.~ t ],

Then, the total distance moved by the basic variables is
pe) = flzw) - Z(o)]l = tfed) .

Let ZO(t) be the objective row aetivity, and define

GRADIENTS= dz(t)
dp t=0

That is, the GRADIENT is the initial rate of change in the objective value

with respect to change in total distance. Then,

GRADIENT= dZO dp

de T t=g
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Thus, Harris' criterion is measuring a different rate than the reduced cost not
only to account for scale dependance but more importantly the geometry associated

with the basis reflected by ©€, She calls ﬁc{jﬁ-the TREAD and ,IGI the RISE,

Harris' algorithm has some extra complication by maintaining a set of "reference

variableg" but the essence of her method is to use the CRADIENT. Another variation

we have taken liberty to use is the use of an "auxiliary %-vector. Harris keeps

e only BTRANs one vector to approximate TREAD,
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have assumed 1t may be owerall better to perfeorm multiple BTRAN.



Given we want to use a GRADIENT measure the issue now is how to compute the
TREAD without first computingigﬂj for each candidate since that would be

. Je
prohibitively costly. Let us work with the square, Tj = ﬂhxrlf s

to avoid square root computation.

, , \ . -1
For any basic variable we know its «{ -vector is a unit vector (i.e., B Bi = ei),
>
. . o)
S0 Ti = 1 for basic activity i. For an all-logical basis we have & = Aj, so

Tj = figﬁflz initially (if we begin with an all-logical basis). This can
be computed at setup time once and for all, and the remaining issue is how

to update ?j when the basis changes.

Let & and Q’be the of-vectors for the old and new bases, respectivvely, when
Aq enters, replacing the p~th basic variable. (Note j-superscripts suppressed).
Further, let & be the ¥-vector of Aq from the old basis, where 2(" was computed

at pilvot row selection timex

Then, we have the pivot equations,

g%; = Mf /%
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Defining

03 o5 /&
we can write the above in vector form as

where ep is the p~th column of the identity matrix.

Therefore N 2
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Harris now considers this last equation. We have the saved values, Tj and 21,

o~
for activities j and q, respectively. We do not know @ and (=, %), However,

. . , . i -1
at the major iteration we can BTRAN eP to obtain ¥ = ep B 7, and we note
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Therefore, by using an auxiliary #H~vector, denoted 7?1 we can obtain a% during
Ea ' d

o~
priecing. Since & was computed, we can save aﬁp and thereby compute

o~
8 (= %/ Xp) during pricing.

At this point Harris drops the remaining term and uses the approximation

update,

o2 4 (T o+ 1),
3 i q

If 8 =0 or#&is orthogonal to @2 then her update is exact; otherwise, it is

not. Let us examine the dropped term more closely.

Consider the value of (mgéf) for the activity (j) that just became nonbasic
upon the exchange, (p, q). We know Tj = 1 since its old &« ~-vector was €p -
Therefore, we have

T =1+ 6 (T +1) -2 6 (e,%)

j q ep’ ]
and

e — Y
28 (e, &) =2 (I/F) (#)) = 2.
We see that the dropped term is -2, not an insignificant number!

One immediate modification to Harris' scheme is to use this exact value of Tj
for the variable just becoming nonbasic. However, we can go further and show

how to obtain ( & & ) by using another auxiliary % -vector.

We have

I

(% %)
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Now ( & , aiﬁ') is the only remaining unknown, but by using the auxiliary

" st

& (871, we nave

% -vector, W
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