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On the convergence of a class of
derivarive~free minimization algovithny
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Abstract

A convergence analysis is presented for a general class of derivative-free
algorithms for minimizing a function f(x) whose analytic form of the gradient
and the Hessian is impractical to obtain. The class of algorithms accepts
finite difference approximation to the gradient with step-sizes chosen according
to the following rule: if x, ¥ are two successive iterate points and h, h are tbe
corresponding step-size, then the following two conditions are required: - -

(1) l!ﬁl H x - x |2_ £|h|]) for some 0 < C, < @
(2) h 3 C Elﬁ - XT for some 0 < € < o

The algorithms also maintain an approximation to the second derivative matrix
and require the change in x made by each iteration is subject to a bound that

is. also revised automatically., The convergence thecrems have the features that
the starting point xl needs not be close to the true solution and f(x) needs

not be convex. TFurthermore, despite of the fact that the second derivative
approximation may not converge to the true Hessian at the solution, the rate

of convergence is still Q-superlinear. . The theory is also shown to be applicable
to a modification of Powell's dog-leg algorithm.
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I. Introduction

Recently, Pﬁwell [4] has proved some global and superlinear convergence
properties on a class of algorithms for unconstrained minimization. The
methods are iterative. Given a starting point Xls they generate a sequence

of points {xk} » which is intended to converge to the mininum

k=1,2,...
point x* of the objective function f:Rn+R. The class of algorithms main—
tain an approximation to the second derivative matrix but they do require
the first derivatives of f£(x) to be calculated at every iteration. Very
often the firsﬁ derivatives are either not available or else extremely
expensive to evaluate. 1In such cases, the applicahility of these methods
will need to be reappraised.

In this paper, we construct a general class of defiﬁétive—free
algorithms by modifying Powell's class of méthods. The first derivatives
are replaced by finife differeﬁce approximations. We éle show that by pro-.
perly choosing the;approximation to the gradient, the class of derivative~

free algorithms retains all the global and superlinearly convergence pro—

perties. The convergence theorems are proved to be applicable to a modifi-
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cation of Powell;s.dog—leg algorithm [31].

Section 2 has a complete description of the class of derivative-froe
algorithms considered in this paper. Then in section 3 we prove that
global convergence properties held by each algorithm in the class and
we prove that if the iterative point xk tend to a limit ét which the second
derivative matrix_G(x) of f(x) 1s positive—definite and G(x) is continuous
in its neighborhood,'ﬁhen this point is a local minimum and the matrices

. . k -
{Bk}k=l,2,.. > the ‘approximation to {G(x )}k= » are uniformly

1, 2...
bound;d even though the conditions on Bk are not very restrictive. Séctiﬁn
4 includes a superligearly convergence theorem under the assumption that
Bk may not converge to G(x) at the solution x*. Section 5 applies all
the tﬁeorems to a.modified dog-leg algorithm.
2. The class of derivative-free algorithms

Let f: R'=R be the function we want ;o minimize. Supposg f is twice
differgntiable, and'let g{x) be its gradient vector and G(x)_be its second

derivative matrix. In the algorithms, we use g(x,h), the finite-difference

defined by [1]. (For convenience, sometimes we use gk to denote'g(xk,hk)v)

gradient
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f{xth e, )~f(x) T
] prel 1f hey#0
(g(x,h))i=
) if hle =0 (2.1)
K4 i

in place of g(x), where heR™ 1is the step-size which will satisfy two

conditions givén'later. Given a starting point xl, the algorithms will
iteratively generate a sequence of points xk(k=2,3,4,...) which is intended
to converge to the minimum of f(x), x*.

At the beginning of each iteration, a point xk is available with a

: - k ., .k ,
nxn symmetric matrix Bk’ a step bound A” and a step~size h . Bk is an
. , k k., : k"

approximation to G(x ) and A~ is an upper bound for the change of x at

this iteration.. Both are generated from the prévious iteration except Bl
is any symmetric matrix and Al is any positive constan£‘ _3oth will be .
revised at each iteration with some rules given later. fhe step—~size h

" for the finite—difference gfadient é(xk,hk) is chosen according to tﬁe

following two conditions:

T R

(1) l’hkllsmin(clllx - o%gl<& (2.2)

k k-=-l”2

) [ ] s, | xR 0<g,<e (2.3)

where hk—l is the Step*éize of xk-l, if xk¥kal. Otherwise, let hkéhknl.



The step-size hl, cofresponding to xl, is chosen arbitrary. Algorithms will
terminate when g(xk) 1s zero, and hecause we want to study the convergence
properties as k.inéreases, we can assume that g(xk) is never identically zero.
It is proved in [iJ that\é(xk)%o implies that there exists hk such that
g(xk,hk)%o. Hence in our algorithms, we further restrict the step-size

hk such that é(xk,hk)#o, for all k. Now, we can deseribe the procedures

at the kth iteration of our algorithms step by step.in the following way:

Step 1: Let the increment vector sk be defined by

1~ ' -1
B, 5,05 1£] 15,185 | <a® 2.4
Sk: & g is POsitive—
. . deéfinite '
any vector 8 which satisfies _ (2.5)
d(x+s)<f(x) otherwise -
k T . . . k
where ¢(x+s8) is the quadratic approximation to f(x +s):
b (Frs) =1 () + sTgke %S.Tsks i ' (2.6)
_Eurthermore, thé.inCrement sk must satisfy the inequaliﬁyr
s . _k,i .”
fcxk)-¢(xk+sk>zc3* 2| mtaf]]s¥| I’H%H] | L@
, _ % .
. o kAL
where C3 1s a positive constant. Then we define x by
ke ._“_ L if f(xk+sk)<f(xk) ' ' (2«_8(a))
a k

X otherwise I "' . {2.8())
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Step 2: Check the convergence criterion:

l

- k

5G| | <e . (2.9)
for some tolerance £>0. If (2.9) is true, the algorithm stops. Otherwise
go to Step 3.

Step 3: Prepare for the next iteration. Generate Bk+l from Bk by any

rule which satisfies

k+1 5
HBk_!,leC&"}‘CS °Z ||S !l . (2910)

where C&’ C5 are positive constants.
Tf f(xk)uf(xk+sk)2c6(f(xk)—¢(xk+ék)) (2.11)
with 0<C <1,

let Ak+l be any constant which satisfies _
k| s hea, 1 | S @
where C_z1.

7
If (2.11) fails, Ak+l will satisfy

ol s s I (2.13)

< < <1 -
where 0 88<09<1

Moreover, we impose a fixed upper bound A for Ak. Let hk+l be any

constant which satisfies (2.2}, (2.3) and é(xk+1g hk+l}%0. Then go to

the Step 1 of the (k+l)th iteration.
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By our assuﬁéfidn that é(xk,hk)#o, we know there exists sk such
"""" fhat (2.5) is true. Condition (2.7) is stronger than either (2.4) or (2.5). There
is no problem when Bk is not positive-definite, since t’ne'sk which
minimize (2.6) wiilrsatisfy (2.7). However, it is proved in Section 5
thgt equations (2.4) and (2.7} are consistent too. The consistency of

conditions (2.2)(2.3) is proved in [1]. Also, it is proved in [1] that

theré exists hk+lERn which satisfies both (2.2)(2.3) and é(xk+l,hk+l)¥0,

Hence, every step of the kth iteration is well-defined. And all the
derivative~free algorithms analyzed in the paper will proceed iteratively accord-
ing | to the abové description. From Section 2 through Section 4,

whenever we mention a seguence {xk}, we mean the iteratiﬁé séquence

{x* } generated by_any alporithm considered here. Without losing gengrality,

we assume here and tﬁroughout this paper the vector norms are Fuclidean,

the matrix norms are subordinate to the wvector norms. In an attempt to

increase the readbilify of the material we have used notatioﬁs allowing
intermediate results occurring in one proof to be used in subsequent

proofs. For example;.if kﬁ is chosen greater than or equal to k5 in a

proof, k5 may have been chosen in a previous proof.
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3. Global Convergence of the Algorithms
First we want to prove under reasonable condition on f(x), each
algorithm of the. class provides the limit
1im inf | )ES,R5) [ (=0 (3.1)

no matter where starting point Xl is.

Theorem 3.1: Suppose f(x) is bounded below and differentiable, g(x) is
uniformly continuous on a convex hull of the level set L(Xl) of the

. .1 -k _k _ . _
starting point x~. Then the vectors g(x ,h )} (k =1, 2, 3,. . .) are not

bounded away from zero.

Proof: Although most of the proof follows the proof of Theorem 1 in [ ],

for the sake of comp;eteness we will not omit any part of it.

Let I denoté the sum over the iterations for which.condition (2.11)
is.satisfied. éuppose (2.11) holds for k ; p and fails fof k=p+1, ...,
q then expressions (2.12), (2.13) and the fact that |,$F|J%Ak imply the
.bouna

2

2 lls I.IS]]spll[l+C7+C7 CqtCy Co™+ . . .

+ C, C

7

o P < ISPl 14— 1.

1 - C9



Therefore, the folloﬁing inequality

k : C.
st sl1 + 2 1] ]al]] +
1=1 =G

ey
N

st i RS
,

o

i
holds. Thus we deduce from inequality {2.10) that there exists constants

> > - ¥ atisfy ¢ itio
C10 0 and Cll it sgch that {Bk} satisfy the condition

- k i
B e grey, 20 |1t (3.9
Ly

The fact that f(x) is bounded below and {2.8) implies f(xk+1) < f{xk)

"
k o kL ‘
show that sum D' [f{x) ~ i(xi %j} is convergent. DBecause %' denotes the

k=1
sum over iterations for which condition {(2.11) is satisfied, the sum
- k k, k |
EY(f(x7) - d(xHs)) is convergent. Thus by applying the elementary
k=1 :

inequality

|ab| 3.4
winff{al, [b]] Al w ol

we deduce from expression (2.7) that the sum

LRI

e TN 51 10,01

(3.5)

is also convergent. The theorem is proved by obtaining a contridiction

7 where C >(.  In this case {(3.5)

12

if Ek satisfies.the bound [lgklfg_cI

and Ak < A imply thar

o 1]

ET
k=1 l + (AfClz)(Clo + C

1 2OHEND

u'hzw
E._s.

i
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<0

. & ’ .
“is findte. It follows from the fact if %' 'ﬁgwmk** is Ffinite
k=1 X
a,
i=1 *
a3 o ] K
then I° a is finite. Thus (3.3) shows that 51 l!s }, is finite then there
k=1 ke=1 '
exists a constant 013 > 0 such that |]BHIJSC13 for all k.
B 4.

Moreover, from (3.2) we Ffind the 1imit Iisklf‘+ 0. Let kl be so

e
_ K T .
large thart fgr all k 2 ky, we have s I’SCIZ/CJSg Bl - Hence it

follows from {(2.7) that

£ = s 2 oy 11E5)] (16K (3.6)
for all k = kl. Thus the equality (2.6) gives
. * ) T
Kk (S 7 |s* B 8N
!l+ k = g.k" k = [fz(sk) fz( Ky E)! s k s o
F(x) - ¢(x4s") * e i1z ] 1™

Since Bk is uniformly bouﬂded,liékfl 1s bounded away from zero and s

tends to zero, the right hand side tends to zero, hence

. T Kk

lim -~ 5 o = 1 (3.7)

ko ¢ (xk+s) - £ {xk) ’
Let ky 2 k; such that for all k » k, the left hand side of (3.7) is
at least 1/2. By (3.6) and (3.7} we have

klx K K, ke. . C3 |-k K

TRy (G - eGs)) = 3 E] ]]sM] (3.8)

for all k > k,. Since, for all 1 = I, . . .. n

2
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) o
7, 0" - g, GO la + 0, 1S o) - g, ()]
k k" K
<[lg(x" + 8, b° e)) - gx)]]
where

0 <06, <1,

we have the following inequality:

T . T
|f(xk'+ sk) - f(xk) - sk EKIS' fl sk (g(xk + Bsk)
0=0

() a8l + |]s5] | [EF - &

s 1] &€ 1] fw ([$¥I ) + /A sup
1<isn
T

{]]e" + 8, n’ e;) - g |11
<1511 @ (151 + #& w (]85,

Here, w(-) is the modulus of continuity of g(x) which is finite by the

fact that g(x) is uniformly continuous. Thus, since

1A

k k. k-1
[[s™1] >0 and [I0]] < c; [[s7 7%,
.lim f(ka— f(xk+sk) 1im - skT'dk .
| [k ]| ] sKil (3.9)

koo koo

Since (3.8) and liﬁkll is bounded away from zero show that this right

hand side is bounded away from zero, the ratio of the left hand side to
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the right hand side of equation (3.9) tends to 1. Therefore equation

(3.7) gives the limit

k k k :
lim £(x7) - f(x + 8 ) _ :
koo F(xK) - b(xk + 5y 1. (3.10)

showing that the test (2.11) holds for all sufficiently large k. Thus

(2.12) implies that A% s[[¢¥|] for  » k,> 0. since |[s"|| s either

k

L. ~1.k |
A" or IIBk gkll, and IIB I3 |J2C12/013 with the fact that Ilsk'l+0,

k

‘there exists k4 > 0 such that

,Iskll = Ak for all k 2 k
4

k+ll|_= AR+

Hence, {|s z ,fskll for k = max (k4, k.). In other words, after

3
; : k . . k
a finite number of iterations, ||s l[ stops decreasing. Since ||s l]
. . ' . k AN f e
is always positive, we cannot obtain '[s [’ > 0. This is a contradiction.
. —k D
Therefore ||Z || cannot be bounded away from zero. Proof is completed.
From the above theorem, we know there is no need for xl to be close to the
solution x*. The sequence {xk} will converge to x*, if one of the points
k
x falls into a region where f(x) is locally convex and contain a local

minimum and if the definition of xk+l will keep the later points of the

K o
sequence {x } in this region. Hence we have the following theorem:
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Ihggggg:ézgj Let the hypotheses of Theorem 3.1 hold, and assume

(3) £(x) is strictly convex in a closed neighborhood S of the local
minimum =x*,

(4) there exists an integer 0 > 0 such that for all k 2 ¢, the iterate
points xk all 1ie in S. Then {xk} converges to x%.

Proof: Tet p,= inf x5 - x*|1, k> o. If p; > 0, then we define

P, > 0 so large that x - =% < P, for all x e S. Hence for all k 2 ¢,27

Py s fok - x*[]'s Py. Set S = {x:p1 < llx - x*’[ < pz} and f = minf (x).
XES

Since f is strictly convex on $ and P17 O,we have £2f(x*) and

f(x*) = f(xk) + (xk - x*)T gk
> £ = |25 - x| |1e¥]]
ST

Hence, we deduce the bound

v
2

k _—
g™ 2 G - £/, K
By the way we choose.hk, we have

HE 5n5)] 2 0 for all & = 7,
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: S _ . . N
Then we have a contridiction to Thesrem 3.1. That 1mplies inf |fx - X*fl

: k . .
= (0 for k¥ 2 0 _Because f{x) is continucus and f{x ) decreases monontonically,

we deduce the Iimit

.
lim £ = f(x#
ki: G () (3.11)

Now we want to prove that for any £ > 0 there exists 03(8) guch that for

all k = 63(€), [ka - x*][ < g, Let us define %{E) = pin f{x), & is
| x>
~ eSS
any positive number, then £{&} > £(x%*)} and (3.11) implies that there

exists 53(€) > 0 such that for all k = 63(8), f(zk)<§(€)= Hence for all

1

P
e

k
k 2 63(8), flx - x*ll < & gsince x & 5. This concludes the proof.

Note that Theorem 3.1 states that the algorithms will terminate -
because, for some k, ]iékf!*gg , whaere € is the tolefange, It does
not claim that the sequence Xk(k21229353,) would converge 1f £ were
set to éero. Howevé%, Theprem 3.2 teli; ;é that it uéually happen that
condition f(Xk+l)<f(xk} tends to prevent divergence from a local minimum,

80 it is common for the sequencs to tend to a limit.
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The sequence {Bk} of the approximations to ﬁhe secoﬁdrderivntive
matrices {G(xk)} 1s generated by a rule which satisfieg a very loose
condition (2.10). But we can prove they are uniformly bounded if the

......... sequence xk tend to a limit x* where G(x*) is pdsitive definite., ' First,
we need the following two lemmas.

Lemma 3.3: Assﬁme

(1) the sequence xk converges to a limit point x¥%,

(2) the Hessian G(x).of f(x) exists and is continuous in a

neighborhood NO of x*, G(x*) is positive-definite, then there

exists an interger k5 > 0 and positive constants m, M, C14

such that for all k = ks

W w vyl <y e y < |ly[1? for y ¢ &,

(1) m [ - xt]] < [[g]] < v 1] - ],

(111) m/2 |5 - x4]|? < £(xh = £04) < W2 xS - x| |2,
L, kO
(1v) sG], c, k+1

Ilskrl .' 14 if x #x .

" Proof: Since G(x*) is positive definite and G(x) is continuous in a

neighborhood NO of x*, we can find another neighborhood N, of x* such

1
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that for all x € N, G(x) is positive definite. Let M > ||G(x)]|]| for

all x & Nl and m be a lower bound for the eigenvalues of G(x) for all

X £ Nl’ then We'have

~ ST :
i llyl[?s ye@ vy <M ||y]]? for all x e ¥ .
Let m be an upper bound for ||G(x)n1|| for all x €N , and

L

£ > 0 be so small that for all !lx ~ x*|! < £ we have

1.

- % < S

||G(x) G(x*)|! o
Siﬁce_xk converges to x* there exists an integer k5 > 0 such that for all

k2 k., Xk £ N 'and'llxk - x*|| <e. It follows from a well-known result

5 1
that
|lg(x)]| < sup| G(tx + (1 - t) x*)(x - X*)||
te[0,1]
and

|lg(x) - gx*) - Gy) (x = x5 |] < sup [ 6(tx + (1 = t) x%)

- e Hx - =]
where v = rx + (1 — r) x* for any re[0,1]. Therefore, we have

I|g(xk)|1 <M !!xk - x*|| for k 2 k5

and g || 2 —— Cswp e+ @ =0 K8

e ™1 eelo1l
- —G(y)l|) |]x - x*|!, because
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Jltxk - (1-t)x*- (rxk + (lwr)x*)|[<€ for all te (0,1), we have

1
swp  |]G(ex® + (- 0) x0) - 6] < &

te(0,1) L

ey)~1]]

[\

Hence, by the fact that

=3 Eale

G912 1 - x|

for all k = kS' .Choose m = minc%ﬁ, m), then we have prbved (i) and (ii).
From the identit?

£ - £ay = /1 @ - e - T ek + a0 - 1))
N

(5 = %) 4o

and inequality (i), we deduce the bound (iii). Finally, if xk+l% Xk by

Ea

applying (2.8 (a)) and (iii), we obtain

AT | Y

1A

s ] = 17 -

[ = x|+ @reeE™y © £y 1/md/2

1A

< 155 - 4] ]+ QLEGES) —£(x%) 1/m) Y2
< @+ ATm || - x| (3.12)

e k
Thus it follows from (ii) that l[sklj < (1 + vM/m ) liﬁ—lL. Let

jul

k] K+l , K
C14 = 1+ JE7E , then ++§E++ z C14 for all k = k5 and x # % .
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It follows dire&ﬁiy"ffdm'tha abo;Eﬁiemma tﬁégjm1§gT;K? converges
tQ x* at which G(x*) is positive definite and G(g) is continucus on a
neighborhood around x*, then x* Is a local minimum.
The followingilemma provides a relation between the finite-difference
derivative é(x,h) and the real derivative g(x).
Lemma 3.4. Suppose f is twice differentiable in an open set DeRr”™
g is the gradieﬁt of £ which satiéfies the Lipschitz condition on D, i.e.
{Ig(y) - glx) ll < C0 Ily—klf with CO>0,
for all yeD. xeD apd G is the Hessian matrix of f£. Then we have
| Iétx,h)fg(?c)l'l?col |nl| | : (3.13)

G(x)|| is bounded by C

In particular (3.12) is true if l 0
Proof: See [1].
Theorem 3.5: Let the assumptions of Lemma 3.3 hold. Then the sum

E'lskI| is convergent. Furthermore, {!|Bkl|} is uniformly bounded.

" Proof: Because (f(Xk) - f(x*)) is a monotonically decreasing sequence,

we ¢ tain

m : 3
Ly [EGED - 16 - G - £l VEED - £G9)

- o
2P (VEGD) - £Ge) -V £ ) - £ )

i



18

QG = F65 - G = T8 « 2/F Gy TEGE

Hence, the sum _

o0 | o . _ (3.14)
G - e SRR TR
k=1

is convergent. Suppose K' = {k:k = k5 and xk+1 is defined by (2.8(a))$
Then by applying Lemma 3.331), (3.1, (3.13) with Con and the fact the
step sizes {hk}k e ' Satisfy (2.2) and (2.3), we get

136, 0] < [ty | + v | k]|

i

A

R I (I Tt ISP

LA

IR SR TR RINIE

A

M+ MC + DA+ Aim) |]|sK]]) |]E - x*] |

A

ﬁ ka -y (3.15)
where ﬁ >0 | Choose ei so small that

m=m- M(Cy + .02)(1 + /faTnY)Tel >0,
Then theré exists k6 2 kS > 0 such that for all k » k6,ika'— x| < €y
Thus again with Lemma 3.3 (i1) and (3.12) we have

TG 0911 21865 (- a0 | |0E] fom [~ ]|

I IR F T P T T
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v

e | R R R IPTL

(m = M(C, + C,) (1 + ATmY | [ = xx[[) | - x|

n

v

(m - M, + ) (1 + AiTm)? e 15— xf]

Then | [gG5, 0|2 @ || <5 - xx|] | | (3.16)

for % 2k6 and k £ K'. It follows from (3.16) and Lemma 3.3 (iii) that

AR ©EGH < M2 | e, h5[]

for k 2k6 and k € K'. Therefore, the summation (3.14) is convergent

implies that

f

k+1

f(xk) ~ f(x )

I
k=1 HekT]

is convergent. With equation (2.11) and (2.7) we obtain
. ke :
£ minl|[s5[], [[21/]1B 111 <+

" Thus by applying (3.4), we deduce the sum

5 [1s*11 1125 (3.17)
IEZIERIGIRIEA 3

is also convergent. Remember that it followed from (3.12)7that

|| <+ 7y LESLL

~
™

Hence, there is a constant 015 = T > 0 such that
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for all k = k6 and k £ K'. Since K' includes all the k in I', (3.3)

and (3.17) show thét

k
| AENN
o > 3t sk z I k '
' i
1+ ¢ JTB, T] 1+ Cpg + Cyy 27182
. w K
By the fact that if 7 k is finite then ay is also finite,
k=1 ,Z_ a,
i=l 1
we have I f|sk[| is finite. Therefore, because of inequality (3.2)

pX J|sk|| is finite. Tt follows directly from (2.10) fﬁat |}BkIJ is
r ‘

uniformly bounded by C4 + Cq ) Ifsk]I. The proof is completed.

4, Superlinear Convergence
Let.us first stéte the following result which is proved in :l].
Theorém 4.1: Assume
(1) g: R N R" be differentiable on an open convex set in R
{(2) for some.x* in D, g' is continuous at x* and g(x*)'is nonsingular.
(3) {Bk} ié é sequence of nxn nonsingular matrices,
(4) g(x,h) is an approximation rule for g(x) and suppose for some

1 k-1

k-1 -1 u(xk— . h )

kl £ D :he sequence {xk} where xk = X - Bk—l g

remains in D and converges to x%,



21

then {xk} converges Q- superlinearly to x* and g(x*) = 0 1ff

iim 1| By~ G(X*))(T x4 T(xuwi Y. = 89|

o x
Proof: See [1].
With this result, we can prove the superlinearly conﬁergence property
of our class of algorithms even if Bk may not converge to G(x%).
Theorem 4.2: Let the hypotheses of Lemma 3.3 hold and in addition assume
(4) the matrices B, satisfy the following condition

tim || (B - G(x*>?|s +EGE, 1 = g6
koo sk

(4.1)

Then {xk} converges Q-superlinearly to x*.
Proof: The assumption (4) implies that there exists k7 2 k6 such that for

all k = k7

' k |, - 1
HE - 66) s + 565 1% - g < La |6k (4.2)
whefe m is the constant in Lemma 3. 3. Therefore, by (2.5) (4.2) and Lemﬁa

3.3 (i), we obtain.

' T
£ -0 5+ 55 = sk gK L1y K B sk

[=)
A

T T i
<=8 B o172 55 o oF - gk - ) 22

T T T
- sk Ek - 1/2 sk G (x*) sk + 172 sk [g# —.gk] +-% [fskflz

A
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T

s T - 117 1 (] gk g

| (4.3)

If xk+l # xk, then it follows from (3.12) and hk satisfy (2.2)(2.3) that

185 = &R0 IS <o (L = ] o

S M (c, +C,) |[s5]]2 (4.4)
i 2
, k |, , k+1 k , .
However, since x 1is convergent to x%, if x = x 1is defined by (2.8(b))
, , i
we can always find a xk+1, i > 1 such that xk+1 # Xk and xk 3 xk
for all1 1 2 j <4 ~1., 1In this case we have hk = hk+l =, ., ., =
hk+}qland

R T I TP TNTE

1A

ISR PRTRCE

Xk+173’ 123§ <4i-1, the inequality (2-11)7ﬁUSt be failed

A

k
Because x =

for xk-l_lﬂJ with 1 £ j s4i -1, Therefore, by (2.13) we obtain

J kti-2 k+i-2
[] <. .

<

l}sk+i~l]'SAk+i—l<

<Cg | Cgi"lJ,Sle

eyt

Since C9 < 1, the above inequalities imply that

51 <) 6k

which givesg

k ket k
HBETT = 11 0% f<c, ) 5% |2
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W] < ey 11812

ktl

Hence, (4.4) can be proved even if sk 1s not used to define x , L.e.,

xk = xk+l 19 defined by (2.8()). Therefore, (4.3) gives the following

inequality

T _
0 < -s& X _ 1/4 m ljskljz +1/2 M(c, + c,) lfsklls.

If we further choose k8 2k7 80 large that for all k = kl

M (C; + Cy) lisk[] < m/8,

then we have

T
0 < _Sk gk - 1/4 m llskllz + %_m ]iskllz < -

'k om oy, ks
I
for all k » k8, which gives the inequality

18] 1= L m | o] 2k

Therefore, from (2.7) we obtain
2 (m ])s®|[)?
f&)-¢@ + 55 » Cmmﬁmfhlf MTH
It follows from (3 3) and Theorem 3.5 that there exists C 16 > 0 such

that ],Bk[‘ < Clﬁxfor k 2 k4. Hence, there exists a positive constants

'C17 such that

f(xk) - ¢(xk'+ sk) = 617 ,fsklfz

for k = k8.

(4.5)
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From Taylor's Theorem we can deduce

1
EGE 4+ 8% - 165 = ¢ W a R G e ek
K 0
g (1 - t) dt.
T T
Since flsk G(x*) sk (T - ¢y dc = 1/2 sk G(x*) sk this provides
0
Kk k Kok 1k k K
X +s) - f(x) =g s + s [G(x + ts))
0
K 1 k° K
- Gx*)] s (1 -t) de + 5 s G(x*) s
From (2.5) we have
T T
P -0 G 48 =gtk L Lk K

Let us assume that f(xk + sk) - ¢(Xk + sk) 1s positive. Add the

above two identities, we obtain

KL K

f(xk + sk) - ¢(xk + sk) = (gk - g Y8+ %—s {(G(x*) - Bk) 8
T

+ 1 GG + esF) - ety K (1-t) de
0

A

2 - 21 115+ 2 1] @, - a0 oF
+2< - g ][]0
I K.k
+2 |ls H max lle(x™ + t5%) - G(x*)l[
te[0,1]

By (4.4),

0 < — ,!Sklfi X < M(Cl <+ CZ) ,iskll+
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L@;ﬁ%ﬁé*‘ 2 - g +

1O fi=d

‘% max HG(Xk + tsk) - G(x*)||

te[0,17

As ||skFl =+ 0, xk > x%* 50 xk + tsk + x%, by the continuity of G(x) and

(4.1)
ko k Kk
f(x +s8) - o(x + s5)
IE3k >0 (4.6)
Since
EG) - o + 8 = £ - £6F 4 65 4 rf 4 s - 05+ 55

F(xK) - £(x* + sk) £(x%) - £(xk + sK)

=1+ (EGE 48 - 96K + /)62
EED) -6 &+ 5 ef a6 - b+ s

)

155112 5]
with (4.5) and (4.8) we have

f(xk) - ¢(xk + sk)

> 1 as k -+ 4o
£ - £G5 + 89

Thus there exists an'k9 2 k8 such that for all k = k9 inequality (2.11)

is.satisfied if f(xk + sk) > ¢(xk + sk)n However, if f(xk + sk) <

¢(xk + sk),_(2.11) is by all means true. So for all k = k

satisfied, and the conditions

9.3

(2.11) is
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k+1 k

AT 2 ]8T

k+1 k k for all k¥ =z %
x + s 9

»
It

hold. Therefore, if an iteration gives the reduction l[sk+l!] Sl!skf|,

k+ k+1
then the rule governing the definition of s 1 implies that s =

—Bk+1_1fk+l. Since llskfl tends to zero as k tend to infinity, it

follows that the Newton's formula is applied an infite many times.

Suppose, klO 2 k9 be so large that sklo is defined by Newton's formula,

and such that for k = klO

k
| Cig |[s™
oG o+ gy - g+ || « o

and

18, - 660y 8% + 55 = g5|] < T24 | [aF)

(Note: 614 is defined in Lemma 3.3).

Add the above twolinequalities and we have for all % ZIklO

k k k., k k ‘
1B + 25 - 5“4+ 9| < ¢ 11s¥]] 4. 7)
Let k 2 klO be an integer such that sk = ~F ~1sk k+l k k

gince k = kg. Furthermore, (4.7) implies

that

G D] < ey, 1184
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By Lemma 3.2(iv)}, we obtain

k+1 ' k+1
* SEII.+h> Clé g jsk ;

ARy koo gk

Hence [}s .+ It follows by induction that s = —Bk

for all &k = %

10° Therefore, the subsequence {xk} satisfies

k2k10

all the assumptions of Theorem 4.1. This implies that the sequence {xk}k>k
o _]_O
converges to x* Q—superlinearly° Hence the sequence {xk} converges

to x* Q-superlinearly.

5. Application

)The abave theorems prove all the convergence properties of the
class of algorithms we discussed in S ection 2. This theory can be applied
to a practical method, a modification of Powell's dogﬂleg metﬁod [3]. (We
call it algorithg MD).

Let us describe-algotrithm MD more precisely. TIn general algorithm
MD will generatg a sequence {xk}-iteratively the way we defined in Section
2. However, the increment vector sk, the step bounds {Ak} and the

approximation matrices Bk to the Hessiansare defined more spécifically in

the following way:
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~( B B)) 4F B 1s positive definite and

-1 k k
18,755 < ok,
T
—~ ) k _ - :
Kok el ) if (g B, AWAIPNELINER
o Hg(xka hk)”
: K2 _k A
a - a)'iig f! g 14 Bkmlgk = sk(a), otherwise.
' T
=k _k
g BB

where o is choosen so that (IJ(Xk + skﬁl)) is the least

\ for [ ]] < Ak,
k- k _k ok e
where B = g(x, h ), and h™ is chosen according to Section 2.
: k+1 | ,
The step bound A is calculated according to the success of the

kth iteration,

wr YIS or 20185 18 265 + 6% - £ € 0.1 (G0 4 o5y - £ (x5,

A = '

%—]lsk|| otherwise.

And Bk+1 is generated by:

T T
k k., k k k
- g 9 - Bs) s +sy ~Bs)
Ppp TB t 0 L k
[1s¥] 12
T , T
2 K (yk _ Bksk) Sk K |
HSkHL. (5.1)

where 0is the number closest to 1 such that [det B l > 0.1| det B

k+1 k l’
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yk = é(xk + sk; h) - é(xk) where h 1s one of rhose hk+l'5'which satisfies

(2.2) and (2.3) with xk+l = xk + sk.

Now we will show that algorithm MD belongs to the class of derivative—

frge algorithms defined in Section ? and hence also has all those desirable
convergence properties proved in fhe previous sections. First we need

the following theorem.

?héorem 5.1: Let n e R" be the value of s that.minimizes $(x+s) subject

to the inequality -
’ k k .

HIn®l] < s™| (5.2)
and subject to the condition that has the form

L | (5.3)
Then the bound

K Kok o1 1k K 3

P - oG+ 2 2 3 11| mint ][4, HEH (5.4)

| o k!
is obtained
Proof: By (2.6) and (5.2) we have

£ - 06 ey = a |52 - Loz 5K g gk R

kT

Therefore, if 3% B B

e & < 0, then the required vector nk is obtained

k
s

when o has the value @ = wk in which case

[tj=]

£ - ¢ ey 2 (165 1189
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T
which is consistent with the bound (5.4). However, 1f §k Bk§k 20,

then o is the numbér which will make the derivate of (f(xk) - ¢(xk+nk))'

W. T. t. 0 bacome §, 1f flnkll < [Iskll still holds. Hence, o =

k o T
min ( ;k 3 ”Ek’ ,z/gk Bk gk}. Thus,
ok k
ag” B E < 1252 (5.6)

and by'gk By, §k £ [lék lzlka[J we have,

* = naall 1] 1/1189) 1, 1] [ 1) | (5.7)

Thus, in this case, it follows from (5.5) (5.6) and (5.7) that

s

FT) -~ ¢+ )

1%

Sa |lg4]2

[\

7 I mtnl {151, 112917113, 11
The theorem is proﬁed.

This theorem shows that the sk defined by (2.4) will satiéfy
condition (2.7). Therefore, the Sy in Section 2 is well-defined. This
theorem also proves that requiring condition (2.7) is equivalent to
requiring the difference.f(xk) - ¢(xk + sk) to be no less than a positive
constant multiplé of the greatest value of the difference.f(xk) - d)(xk + nk)
that can be obtained when nk is subject to (5.2) and (5.3). Algorithm ™MD

defines the increment sk in three ways. If sk is defined either by
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Newton's formula or as a gradient step, (2.7) is clearly satisfied.
If sk is defined by the combination of Newton's formula and the gradient
k. k. k . k

step such that ${x + s) will have the least value, then ¢(x + s ) =

k k k R , . el
@(x + n) for all n~ defined by (5.2), (5.3). Thus (2.7) is satisfied
by this sk too. Dennis [2] has proved that under the assumption ||G(x) -
el <L Hx - v|| the update of the Powell symmetric Broyden's method
satisfies (2.10), Applying: hisiproof by replacing g(x) by 2(x, h) we can
prove that the matrices Bk of Algorithm MD satisfy (2.10). Heﬁce, we
R 4
are ready for the following global convergence theorem for Algerithm MD.
Theorem 5.2: Sﬁppose f(x) is bounded below and twice differentiable
and g(x) is uniformly continuous and there exists L > 0 such that

e = em!] <1 ||x - v/

for all x, y in a convex hull of the level L(xl), where xl is the
. =k .k ky
initial point. Then the vector sequences g(x , h') where {x"} is
generated by Algorithm MD are not bounded away from the zero vector.

Theorem 5.3: Under the assumptions of Theorem 3.2, the sequence {xk}

generated by Algorith MD will converge to the local minimum x%,
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Proof: TImmediately follows from Theorem 3.2

Furthermore, we can prove Algorithm MD actually convergesQ -superlinearly.
Theorem 5.4: If the hypotheses of Theorem 5.2 hold and assume the sequence

k _ ky |
{x"} generated by Algorithm MD converges to x*. Then {x } is Q -super-
linearly convergent to x*.
Proof: Since the’Bk's in Algorithm MD is generated by the Powell symmetric
Broyden update, it is proved in [1] that Bk satisfies condition (4.1).
Therefore, we can apply Theorem 4.2 to Algorithms MD. The result follows
directly.

In the original dog-leg algorithm, every third iteration is a special

. . : ;. k , . '
iteration, for which s 1is defined in such a way that for some constant

E < 1,

k+4

INISCELES = RN

A
=

will.be true for éll k and a fixed 2. And it gets Ak+l = Ak. If

we also adopt the'sﬁecial iterations into our Algorithm MD, (call it
Algorithm MDS), then the convergence still can be retained.

Theorem 5.5; Thé feéult of Theorem 3.1 is true for Algorithm MDS, under
the same assﬁmptidns.

Proof: The only difference between Algorithm MDS and the general class
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of algorithms is.the special iterations. This proof will be concluded_
if we can prove thaf the special irerations do not affect the proof of
Theorem 3.1. Let us redefine L' to denote the sum over the ordinary
iterations for which (2.11) is satisfied. Because in a special iterationm,
l!sk’l < Ak and Ak+l = Ak, the inequality (3.2) will still hold fér the
new definition of I'. Hence the rest of the proof of Theorem 3.1
applies unchanged to this theorem.

i : '
The following.theorem shows the rate of convergence after the special
iterétipn has been édded.

Theorem 5.6: If-fhe hypotheses of Theorem 5.4 hold and assume the sequence
x5} generated by Algorithm MD converges to x*. Then {xk} is twghstep
Q-superlinearly convergent to x*,

Proof: By Theorem 5.4 we know that xks generated only by o?dinary
iterétions converge Q~-superlineatly. The proof is completed if we can
show the superlinear convergence is not damaged by the special iterations._

It follows from Lemma 3.3(iii) that since {f(xk) - £(x*)} is monotonically

decreasing

5l ¢ AT | - ]|
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Because every speéiai iteration is followed by two ordinary iterations,
if kth iteration is a special iteration, (k-1)th, (k-2)th, (k+1)th, (k+2Yth

are ordinary iterations. Hence, the ratio

o« L - x| B el IE S I
| 1xk=2 = x| 2 o x|

tends to zero when k tends to infinity. And

ESE T TP o SN T

LR [P ey it ||t — s |
‘ _ o %!xk+2* x*”
tends £o zero when k tends to infinity. Therefore, the vatio ! '
P ) - .
- ]

tends to zero asmi tends to infinity for the sequence {fo'generated:
by Algorithm MDS. This implies that Algorithm MDS i= two~étep supér~

linearly convergent,
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