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Abstract

in this paper, we shall show that a minimal spanning tree for a set
of data can be used.to reduce the amount of memory space required to store
the data. Intuitivély, the more points we have, the more iikely our method
will be better than the straightforward method where the data is stored in
the form of a matrix. Tn Section 3, we ghall show that once the number of
‘samples exceeds a certain threshold, it is guaranteed that'our method is
better. Experiments were conducted on a set of randomly generated artificial
data and a set of pétiént data. In the artificial data experiment, we saﬁed
232 for the worst casé and 45% for the best case. In the patient data

experiment, we saved 73% of the memory space.



Section 1. Introduction

Recently, becauge of the progress made in computer technoiogy, it is
customary to store more data than to discard them. In many 1n§tances, the
amount of data is so Large that if is desirable to reduce the memory require-
ment of the records. In this paper, we shall introduce a method to reduce
the memory space required.

Our method is based on our observation that similar records do not have to
be stored in thelr entireties. Suppose we have to store two_identical fecords
A and B. We may simply store record A in its entirety and for record B, we
merely provide a pointer to record A. |

1f two records ére similar, but not identical, we may_sfill reduce the
necessary mWemory space by providing a pointer from one record to another and
indicating precisely the differences between these recordé; ?6r example,
consider the following two records!

X
x, %, X3 %, X5 %o %5 Xg %y Fio %11 *12

Bl a a b b c a e a b c b a
R a a c b ¢ a e a d ¢ b a

We note that these two records are different only at X3 and Xg. The two

records can therefore be stored as follows:

For record 1, since it is used as a reference point, the entire record has’
to be stored. For R2,_the first location stores the pointer (pointing to
record 1). After the pointer, the values of those variables which are

different between R4 and Ry are stored. The meaning should be obvious.



In the case of Ry, the memory content tells us that the value of XS is ¢
and the value of Xg is dj all other variabies have the same values as the
variables in Rl' R2 can therefore be reconstructed quite easily by searching

back from R2 to Rl'-

It is possible that we have a third record R3 which is different from
R, only in X.. Suppose in R3. X7=a. We may now provide a pointer pointing

from R3 to R2 as follows:

Ry 2 7 a
Altogether, the three records will be stored in the memory as follows:

Rq a a b b c a e .2 b c b a

Since the lengthé of the records are different now, it is necessary for
us to have another array to store the‘pointers pointing to these records.

We need 3 locations for this array. Totélly, we need 3+12+4543=23 memory
locations, Without this mechanism, we need 12x3=36 locations. We have saved
(36-23)/36=36% of the memory space.

For a rather large set of data, we can expect the existence of many
identical or similar records. It is therefore usually desirable to use our
method to reduce the memory storage requirement. ' However, once we have a
large set of records, it is no longer easy to know how to arrange the pointers.
In [Lee and Chang 1973], it is pointed out that minimal spahning tree concept
can be applied to arrange the pointers. We shall discuss.theif ideas in the

next section.



Section 2. The Minimal Spanning Tree Concept and 1ts Applications to Storage

Reduction.

Let us first introduce briefly the concept of minimal spanning_treés
[Prim 1957].
Definition.

Given a set S5 of points, a gspanning tree of S is a connected graph G of

S that satisfies the following conditions:
(1) Every point of 8§ is on G.
(2) G contains no loops.

Definition.

A minimal spanning tree of a set S of points is a spanning tree whose

total length is a minimum among all possible gpanning trees.
We shall assume that a record is in the form of an m—-dimensional vector.
For two records
i i i

Ri=(x1,X2, s Ny xm>

and Ry =(x1j, xzj, cees ij),
we shall define a function f(xki,xkj)
as follows: .
£t )=0 if b
=1 ié ofherwise.
We shall define the distance between Ry and Rj as

m

i3
dij= z f(xk ,Xk ).
k=1

The distance we have defined essentially counts the number of differences
between two records. Two identical records will have the distance equal to O
and two totally different records will have the distance equal to m (the

number of variables).

e T
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Consider the set

of distances among ré

ghown in Fig. 1.
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of records in Table 1.

Based upon the above definition

cords, we can now construct a minimal spanning tree as
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e any point as the root of the tree and

redraw the minimal

gpanning tree a

The tree in Fig

g a directed tree.

Let us assume that we

. 1 is now redrawn in Fig. 2.

choose R, as the root.

e
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Fig. 2

Based upon the.tree in Fig. 2, we can store the data according to the
following rule:
(1) The root of the tree will be used as a reference point. The record
corresponding to it will be stored in its entirety.
(2) For every no&e i, the following information is to be stored:
(a) Node j: - the immediate predecessor of node 1.
{b) TIf ﬁhé value of Xy of record i is different.from the valug of
Xy of record j, this fact should be stored.
For the set of data in Table 1, we can store the data as follows:
Ry a b a b a a a ¢c a a

Ry, 1 8 b

R4.22a10c

Rg 1 8 a 10b

Table 2
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span (or the window size in the case of DWS) ranged froﬁ 100 Fo 1000 in
steps of 100, and values for the average working set size and the average
inter-page~fault time were measured in each case,

In the first set of tests, three non-overlapping sections of the same length
(100,000 references) were compared. The results were seen to be clese enough
for our purpose and the section which appeared to have characteristics between
those of the other_two was chosen to be the section to use in our experiments,
In no case was the difference between performance measures cver 6.5% and the
majority of these differences were well below 2%Z. In the second set of tests,
the effects of the section length were eﬁamined and 100,000 references was found
to be a sufficient length for the selected section of the trace,

Thus, the portion of trace 1 starting at the 500001st referemce with a
length of 100,000 reférences was selected for our experiments., An identical
" choice was made for trace 2 on the grounds that both traces were generated with
the same program model and hence could be expected to display similar dynamic
behaviors., In the sequel, we shall refer to these portions of traces 1 and 2
as Trace T and Trace II respectively.

Finally, the page trace generation process was checked by processing
Traces 1 and 1II ﬁith the LRU replacement algorithm and.determining the relative
frequencies of reference of different LRU stack positions. Since the page
trace generation process is equivalent to a sequence of independent and identically
distributed random variables which represent the LRU stack &istances, the strong
law of large numbers predicts that the relative frequency of referencing stack
distance k should approach, for a sufficiently long trace, the fixed probability
of referencing thié stack distance which was assumed when the trace was generated,

Also, the results of this last set of tests were completely Satisfactory (details

of all tests are reported in [8]).
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Having selected Traces I and II, four dual algorithm pairs, i.e., elght
algorithms, were simulated, These were the FIFO, LRU, LFU and MFU replacement
algorithms and their respective dual retention algorithms, DWS, LRUT,.LFUT
and MFUT, These algorithms were chnsen basically for their relative popularity.
In comparing them, three performance measures were of interest: average.inter—
page~fault time, efficiency and space-time product., In general, given a page
trace and an algorithm for memory management (either a replacement algorithm
or a retention algorithm), all these performance measures are closely related
to the number of page faults induced by the algorithm in processing the page
trace. Of course, the number of page faults is in turn a function of the size
of the memory space in the case of a replacement algorithm and of the size of
the memory span in the case of a retention algorithm,

The performance measures selected will now be defined, Let Fifgeeety
be a page trace having a length £ and using n pages., Let X be a memory management
algorithm; if X is a replacement algorithm, let the memory space capacity be m
page frames with 1 =m = n, and if X is a retention algorithm, let the memory
span capacity be T time frames with 1 = T = £, Let f be the number of page
faults resulting from processing the page trace using algorithm X, 1In the case
where X is a retention algorithm, let w(t,T) be the working set size at any time
t, 1 =t = £, Finally, let Ty and T, be the access times to main and auxiliary
memories respectively, and R be the ratio T /T_.

(a) The average inter-page-fault time, a, is the average number of references

between the occurence of two consecutive page faults, Thus

£

a=— references,

Since a well~designed memory management algorithm is expected to produce few
page faults, the average inter-page-fault time is a good indicator of this aspect

of memory management as the length £ of the reference string is fixed, Note that
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the reciprocal of a is sometimes referred to as the average-paging rate, or
the missing page:prebability.

(b) The efficiency, e, for a prﬁgram's execution is defined as the fraction
of real processing time spent in executing the program. Of course, the rest
of the real processing time is assumed to be spent in page waits (here, as is
usual in this kind of study, user-initiated I/0 activities are neglected}.

K'Tm : 1.

e

T
m 8 l+£R
Note that in the above expression, only main memory access time, not instruction
execution time, contributes to the program execution time, This is justified
because instruction execution time is generally negligible compared to memory

access time in most modern computers, Note also that if

f-R>>l, then e ~ &£ °

z f

o of
=

Since R is a constant for an experiment, the'efficienc§ will be a scaled average
inter-page—fault time in these cases. 1In fact, this turned out to be the case

in most of our experiments and consequently we only plotted efficiency in

reporting our results, In general, since the speed ratio k of the memory hierarchy
is in the order of 104 to 105 or higher, efficienéy is very low unless f is small
compared to £. An obvious way to achieve high efficiency is to allocate

sufficient memory space to the program., But this solution is generally neither

an economical not an optimal way to utilize main memory in é multiprogramming
environment, as a éonstantly large memory demand by one program tends to interfere
with the execution of the concurrent programs and hence may downgrade the overall

system performance.
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{(c) The space-time product is considered to be a measure proportional

to the cost of storage. Belady and Kuehner [13] define the space~time product

during the real time interval (tysty) as

t

C = 5 S(t)dt

t
o]

*

where S(t) is the amount of storage occupied by the program at any time t in
the interval (to,tl). If the execution of a program is considered a discrete
process, we can rewrite the above integral, as Chu and Opderbeck [12} do, in

the following way:

C‘ZST "'z t+1

where Si is the number of allocated page frames prior to the ith reference and
ty is the time when the ith page fault occurs. For replacement algorithms, since

the memory allocation to a program is a fixed number m, we have
C = m°£'Tm + fom°T
Dividing both sides by L1y | gives

c.=_.C = " em* (1 + £ «R) page-seconds
ST T ;
As the value of £ and T are fixed for an experiment, Cg is actually a scaled
space-time product, The reason we divide C by the absolﬁte value of T, rather
than by Tm is just to preserve the ugit for the scaled sbacewtime product,
For retention algorithms, memory demand may vary with time as represented by

the working set size w(t,T); thus the space-time product becomes
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£ f
C = E m(t,T)'Tm + E m(ti+1,T)-TS,
t=1 i=1

and a similar scaling gives

f
c,=_C - m D(T)+ % E w(ty+1,T)
leml |Tm| i=1
£
5@ -1 2 o, -
where w(T) = z- w(t,T) is the average working set size.
' t=1 :

In designing our experiments, it was discovered that counting the number of
page faults, f, was not as straightforward for retention algorithms as for
replacement algorithms operating in a fixed-space environment, For a fixed-
space environment, if the allocated space is filled and a page fault occurs, the
page chosen for replacement is removed and will no 1onger exist in main Menory.
Thus, a lafer reference to this removed page requires moving it back into main
memory and hence.always generates a page fault, On the other hand, retention
algorithms monitor a program's working set whose size varies dynamically, When
a page drops out of the working set, that is, no more time indices corresponding
to this page are contained in the constant-size memory span, this page is no
longer considered by the retention algorithm to be part of the program's working
information, and hence the page frame it occupies is available for use by the
same or other, concurrently executing programs. However, there is no need to
remove this page from main memory unless the page frame it occupies is indeed
needed for placing énother page. Therefore, when this page is referenced again
at a later time, there is a chance that it is still in main memory and so this
referenﬁe will not be a page fault. In this case, we say that the page is reclaimed.

The probability that a page which has dropped ocut of the working set is
reclaimed is a function of the system workload, more precisely, of the instantaneous

memory demands of all the concurrently executing programs. In our experiments,

we consider a fixed probability p to reclaim a page. Thus, when a page dropped
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out of the working get; a random number (uniformly distribﬁted in [0,1]) was
generated for it, which would be compared with the fixed probability p to
determine whether this page could be reclaimed if it would be referenced at
a later time. It is clear that for a series of experiments with p as a
parameter the number of page faults corresponding to the case p=0 is an
upper bound, Similarly, this case gives an upper bound for space-time
product and a lower bound for efficiency.

In experiments with replacement algorithms, for eacﬁ page trace and for
each value of memory space capacity, values for the average inter-page~fault
time, efficiency, and scaled space-time product were computed using the
expressions presented above and a speed ratio R = 10,000. Likewise, the same
three performance measures were compufed in the cases with retention algorithms
for each page trace and for each value of memory span capacity., With retention
algorithms, the performance measures were also functions of the page reclamation
probability p. 1In addition, a value for average working set size was also
collected in each experiment with retention algorithms, With these data, a plot
of a performance measure vefsus the memory space capacity could be cbtained
for each page trace and for each replacement algorithm tested, and a plot of a
performance measure versus the memory span capacity for eéch page trace and for
each reténtion algorithm tested.

To compare the pgrformances of different algorithms, in particular, the
performances of a.replacementwretention dual algorithm pair, the problem arises
in comparing plots of the performance measures as functioné of different
independent variables. To get a meaningful comparison, we.decided to plot

performance measures on the basis of average memory demand. 1In the case of

replacement algorithms, we regard the (fixed) memory space capacity to be the



average memory demand of a program as estimated by the replaéement algorithms,
Retention algorithms; on Fhe other'ﬁand; do have the ability to dynamically
estimate a program's memory demand and in fact, a program's average memory

demand as estimated by a retention algorithm is just the average working set
size. Therefore, the average working set size curve can be uséd to obtain plots
of performance measures versus average memory demand. Let PM denote a performance
measure, let T denote the memory span capacity and let ® denote the average
working set size. Now for each retention algorithm tested and for each page
trace, two plots, PM vs. T and ® vs. T, can be obtained, Suppose that k is an
integer falling in the range of values of 5, then we can obtain the corresponding
value Ty from the average working set curve, that is, the & Qs T plot. Then,
from the PM vs T plot, a value PM, corresponding to T, can also be obtained,
Finally. a plot of PM vs k is available which consists of the points (k,PM, ).
This final plot then gives the performance of the retention algorithm on the
basis of average memory demand. These procedures are schematically illustrated
in Figure 3.

This transformation requires justification, The question is, whether the
average working set curve is a one-to-one function, The answer to this question
is negative as a simple example will show: for the reference string ABCABC, the
average working set size using DWS is ®»(3) = @(4) = 2.5. However, since LRUT;
LFUT and MFUT are dual retention algorithms of LRU, LFU and MFU which are stack
algorithms, Proposition 2 states that their resulting working set size at any
time is a non-decreasing function of the memory span capaéity, that is,

&(t,T) = »(t,T+l), This in turn implies that ®(T) = o(T+l) as B(T) = % E w(t,T).
The same is also true for the DWS algorithm, Therefore, for all four retention

algorithms we tested, the average working set size is a non-decreasing function
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of T. Hence, if for an integral value k, there correspond a group of values
- Ty, these values are necessarily consecutive, 1In these ﬁasea, we choose the
smallest such Ty to break the tie. However, in our experiments, no such cases
occurred. This is also.easy to understand, for if T) # T,, then 5(T1) = &(Tz)
requires a(t,Tl) = a(t,Tz) for all t. Thus, with t varying between 1 and 10°
and with T; and T, differing for much more than 1, it is highly unlikely that
E(Tl) is equal to.5(T2), as was evidenced from the results of our experiments,
Figures 4 through 7 summarize some of the results for Trace I, and Figures
8 through 11 for Trace II. For each pair of algorithms, there are two figures,
one for efficiency and one for scaled space~time product éo that the relative
performances of these dual algorithms can be readily compared. Note aléo that
the scaled space~time product so that the relative performances of these dual

algorithms can be readily compared. MNote also that the scaled space-time

N
2] Ty |

is main memory access time, TFor our experiments, £ = 10° and a typical value

product is computed by Cg = C, where £ is the ﬁage trace lehgth and T,
for Tm will be lO_6 sec,,; thus Cs is roughly 10 times bigger than C. Similar
curves were obtained for the LFU~-LFUT and MFU-MFUT pairs and are reported in [8].
For the retentién algorithms DWS and LRUT, quite different values of average
working set size, efficiency and space-time product were obtained for the same
memory span capacity. However, if we compare their perfofmances on the basis of
equal average memory demand, they seem almost indistinguishable from each other
(see Figures 4 - 7 and 8 -~ 11). Thus, with respéct to the traces we tested, these
two retention algprithms are almost equivalent in performance, But for the saﬁe
memory s$pan capacity, DWS seems to always make a higher estimate of memory demand
than LRUT, This characteristic of DWS may become disadvantageous in a heavily

loaded system in which memory is always in short supply,
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As expected, dﬁe to the nature of the page traces used, LRU has the
best performances among all four replacement algorithms, In addition, LRU
performs better than both DWS and LRUT when the page reclamation probability
is close to zero, i.e., for p=0 and p=0.1. When there is a higher probability
to reclaim a page (p=0.3); both DWS and LRUT outperform LRU. In contrast, FIFO
is seen to be outperformed by DWS and LRUT for all values of p. It should be
stressed that, even though a program trace generated according to the simple
LRU stack model is inevitably biased towards LRU, these results geem to indicate
that for a reasonable probability to reclaim a page both DWS and LRUT have
better performances than LRU. Since both DWS and LRUT. are retention algorithms,
we may conclude that, juét from considerations of the performance measures
we have chosen the idea that a memory management algorithm should have the
capability to dynamically estimate a program's memory demand is a valid one.
Finally, it must be emphasized that the performance data presented here represent
tﬁe performances of memory management algorithms with respect to a single
program running in a multiprogramming environment. However, it is not straight-
forward to relate these performances to overall system performance such as

system throughput rate,

VI. CONCLUDING. REMARKS

A general method for the design of algorithms, which we call retention
algorithms, for dynamic memory management has been developed, The retention
algorithms we designed have different retentien rules, and hence different
underlying program behavior models; for computing which parts of a program
constitute its working information at any time during its execution. In this

regard, it is of interest to study the relative performances of these retention
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algorithms with respect to each other and, in particular, with respect
to the DWS algorithm.

In our experiments, it was found that, for the page traces tested, DWS
and LRUT were almost indistinguishable in performance and that they out-
performed LFUT and MFUT by almost an order of magnitude in the performance
measures we chose. However, due to the page trace generation process we used
and to the limited number of traces we tested, these findings are by no means
conclusive, To establish the relative merits of these algorithms, more
experiments must be performed so that at lest some statis?ical conclusions
can be drawn, It also appears that real program traces are preferred for such
purposes, as any program trace generation model inevitably biases the results
in.favor of some algerithms. These experiments can be performed on real
systems or in simulated énvironments. A further refinement in the experiments
seems to be in the area of page reclamation, More realistic and sophisticated
schemes, such as one in which the probability to reclaim a page depends on the
length of time since it left the working set, can be employed to reflect the
real operation of a multiprogramming system, Moreover, it would be more
satisfactory to obtain the probability distribution through measurements on
real systems., Choices of other system performance measures that can relate
more readily to éverall system performance than those employed in our experiments
seem desirable. On a higher level, experiments with these algorithms in a
multiprogramming setting, rather than with individual programs, can provide
valuable information in evaluating various memory management échemes.

From the implementation viewpoint, all the newly-designed retention
algorithms appear to require; like Dws; large amounts of information, and do
not seem to be efficient unless implemented in hardware. However, it might

turn out that some variations of these algorithms, in which the rigid requirement
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that & replaceMent of time index from the mémory span at évery instant of
time is relaxed; could be a lot easier to implement, Furthermore, the
determination of the memory span capacity for any of thesé algorithms may
be a fruitful research,topic; If separate working sets are kept for procedures
and for data, it may be interesting to investigate how these new algorithms
can be applied;

In conclusion, we feel that further research work in this area may help
establish the merit and applicability of retention élgorithms as well as shed

some more light on the behavior of programs.
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