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ABSTRACT

GILM is compared to continuous approximation for comnvex, integer programs,
After noting the stronger bound provided by GLM, Lagrangian duality and
a gap closing heuristic is used to demonstrate how GILM may provide a better

feasible policy as well.

Computing Reviews Number 5.41

Keywords: Optimization, Lagrange Multipliers, Integer Programming, Convex
Programming.



We are concerned with a mathematical program of the form:

Max f(x): x in SATI and g(x) = 0,
where f is concave on 3, g is convex on S, and I is the set of integer n~vectors.
Our concern is with comparing solutions obtained using the Generalized Lagrange
Multiplier Method: (GLM) and the continuous approximation (CA), where"x in
1'is relaxed. For convenience we shall let S be a rectangle with integer ex-
treme points. If we further assume that £ and g are affine, then the Nemhauser -~
Ullman theorem (4) shows the GLM bound equals the CA bound, and a gap prevails
if, and only if, the continuous program (which is an ordinary linear program)

has no integer optimum.

In a recent note (3) I established a theorem on conjugate bounds which can be
specialized to show that the upper bound generated by GLM is stronger than that
of the continuous approximation. Falk (1) subsequently showed that if g is con-
cave on 5 and sum-separable then the two bounds are equal. Thus, in our preseat

model, if g is affine, then the upper bounds by GLM and CA are equal.

However, the affine case notwithstanding, we shall show how GLM may generate
better feasible solutions than searching from a continuous approximation. Let
S be a rectangle with least element, 0, and let g(0)£ 0. The Lagrangian duals

for GLM and CA, respectively are as follows:

G: Min L¥(y)= Sup éf(x) - yg(x): x in Sa f% for v & 0

C: Min L (y) = Sup {f(x) - velx): x in S? for v £ 0.

Under our assumptions, both G and C have solutions, say y* and ¥, respectively.

It is noted that if CA yields an integer optimum, then no duality gap prevails
for GLM and we may consider y* = y. To see this let x be such a policy, and
observe:

fx) =L +7gx = G +7 gx).



More typically, the set of policies associated with C (ie, where f(x) =
CLxdy) + vy g{x)) are never integer, - Thus, CA ‘has noninteger policies which
satisfy the g-constraints, while GLM produces integer policies which need
not satisfy the g-constraints. 0f course, in the special case of one con-
straint at least one GIM policy associated with y* is feasible, but it need

not satisfy the complementarity condition: v* g(x) = 0.

What advantages does GLM offer in getting a "good" feasible solution? An answer
lies in the meaning of a GLM solution. At a minimal multiplier, there are kil
. s . 0 k
policies (with k$m), say x5, . . - » X, which satisfy:
S fexly = Lx(y® % g (xi
1. f&h) = LxGT) + y* g (xD)
K
2. % wgGh) =

P 3

3. y*® Z: Wy g(Xi) = 0
ize [
for some weights, w>0 and2210:=1. These can be interpreted as probabilities, and
53

the GLM solution can be interpreted as a mixed strategy.

Now consider the associated average defined by

x= w, Xt
i=o i

Since g is convex, we have

g(x) £ 0,
so x is feasible with respect to the g=constraints, but not necessarily integer. If
it should tuxn out that

y* g(x) = 0
(as when all functions having positive multiplier are affine), then x is a solution
to the continuous approximations and y* is a minimal multiplier of its Lagrangian

dual (C).

However, while CA only produces the average policy, from which some heuristic method
: k
of rounding tan be used, GLM produces the base set,é;ﬁﬁ% . If, for example, g
' o
is monotone increasing, then it is easy to search for a feasible policy from any



base point.

A related, but different, heuristic was described in (2) for gap closing. The
criteria used for choice of base (from different multipliers used during the
course of sblving G} was its proximity to the target right-hand-side, which we
have canonically taken to be zero. Given a base, coordinates may be decreased

or increased to £ill slack or remove excess. The Lagrangian aids in the trade-
off between changes in objective and constraint values by providing a net measure

of profitability.

In summary, I have made the following points:

1. if the continuous approximation has an integer optimum, then no duality
gap prevails for GLM and both methods succeed in finding an optimum;

2, for linear contraints, GLM can produce the continuous approximation
and there is a multiplier minimal for both Lagrangian duals;

3. in general, GLM has more tactical flexibility to provide integer base
points from which a search may proceed.

In conclusion let us consider the case of a single, linear constraint more closely.
I shall prove that the feasible GLM solution is better than the truncated CA
solution for the gpecial program:

p

Mang%j(xj):zga_ X, = b, x 20 and x integer, where each f is monotone
] J

nondecreasing and a >0,

=
At a minimal multiplier, y*, the GLM solution,é¥ggg, can be ordered so that
ES o 4 & r r+1 2 2z k
g, X, = ... =4Fa, X, £Lbéja X, - T
3 7] ZJ N Z;i 3 ZJ 37

where we have assumed a gap.

The multiplier, y*, is also minimal for the CA dual, C, since the g~constraint

is linear. (This is unique if f is strictly concave.) Each CA solution, X, is

~

not integer since otherwise GLM would have no gap. Let ¥ be feasible truncation



e — ~ >
of ¥ ( i.e., X £ % and ¥ is feasible), and let us show £(x*) = £(X)

T
Since Xj solves

J
it follows that

Max f, (%x.) — yv* x_ : x_ integer, and X, Z’0,
J J 3 1

r, > I - _ .t
fj (Xj) = fj (xj) v aj (xj Xj).

Further, TEX, so
. " r
£ (5) £2E, (K) - *2 -
Zey o) 225 &) -yl & - xp.
However,
Z’aj XJ=b
implies

3 r
f(xF) = £G) - y* (b 'Zaj Xj)
Since ¥ is feasible, it follows that
Y
£G) = £,

which is the desired result.

Note that judicious choice of the truncation, ¥, gives the GILM solution, which
is the best possible rounding. The "judicious' choice is the inherent one when
using GLM. Notice that xﬁcorresponds to complete trumcation, but x "per formed

some upward rounding to get close to b.
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