Technical Report CS74021-R

NO ABELIAN SEMIGROUP OPERATION IS COMPLETE

T. C. Wesselkamper

November 1974

Department of Computer Science, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061

<u>Abstract</u>

This paper shows that there does not exist a finite abelian semigroup <S, *> with order \ge 3 such that the semigroup operation is complete over S. Neither is {*} complete with constants over S. J. C. Muzio has shown that over any finite space there exists a set of two abelian semigroup operations which is complete with constants over the space. Hence Muzio's result is best possible.

J. C. Muzio has shown that for any finite space $E(k) = \{1, 2, ..., k-1\}$, there exists a set $\{+, J\}$ of two operators such that each operator defines an abelian semigroup over E(k) and the set $\{+, J\}$ is complete with constants over E(k). [1] In this paper we show that there does not exist a finite abelian semigroup <S, *> whose operation is complete over S. Neither does there exist a finite abelian semigroup whose operation is complete with constants over S. Throughout we use the definitions and notation of [1]. We write "xy" for "x*y".

If S is an abelian semigroup and I is a subset of S, then I is an ideal of S if SI \subseteq I. An ideal I is semiprime if $x^2 \in I$ implies $x \in I$. An ideal I is prime if S-I is closed. [2, pp. 5, 71]

If \sim is an equivalence relation on S, then * preserves the equivalence relation if $x \sim y$ and $z \sim w$ implies that $xz \sim yw$. Note that if $|S| \geq 3$ and if both $S = A \cup B$ and $A \cap B = \emptyset$, where A and B are both non-empty, then the decomposition $S = A \cup B$ induces a non-trivial, non-universal equivalence relation on S.

Lemma 1:- If S is a finite abelian semigroup and if I is a maximal, non-trivial ideal of S, and if for all $x \in S$ we have $x^2 \in I$, then |S-I| = 1. Proof:- Let J = S-I and suppose the theorem is false, that is, suppose $|J| \ge 2$. Let a ε J. There are three cases.

Case]: aJ \subseteq I. I \cup {a} is an ideal of S. Since $|J| \ge 2$ I \cup {a} is non-trivial. This contradicts the maximality of I in S.

Case 2: aJ = J. Since $a \in J$, $a \in aJ$, that is, there exists $y \in J$ such that a = ay. Multiplying by y we have $ay = ay^2$. Thus $y^2 \in I$ implies $a \in I$, which contradicts $a \in J$.

Case 3: aJ \neq J, aJ φ I. I \cup aJ is an ideal in S. Since aJ \cup I, I is not maximal. Since aJ \neq J, I \cup aJ is not trivial. Thus I is not a maximal, non-trivial ideal in S.

<u>Lemma 2</u>; If S is a finite abelian semigroup and if I is a maximal non-trivial ideal of S and if I is not semiprime, then $S \neq S^2$.

<u>proof:</u> Let J = S-I. Let $A = \{x \mid x \in J, x^2 \in I\}$. $I \cup A$ is an ideal in S, for if $a \in A$ and $x \in S$, then $(ax)^2 = a^2x^2 \in I$, which implies that $ax \in A$. If A is empty, then I is semiprime, which is a contradiction. If A is non-empty, then $I \cup A$ is trivial, since I is known to be the maximal non-trivial ideal. Hence J = A. By Lemma 1, |J| = 1. But $a \in A$ implies $a^2 \in I$, that is, $a^2 \notin J$. Hence $a \notin S^2$.

The main theorem depends on the following result of Ivo Rosenberg: If A is a set of functions over a finite space S and if \sim is a non-trivial, non-universal equivalence relation on S, for A to be complete it is necessary that A contain a function which does not preserve \sim . [3]

<u>Theorem:-</u> If <S, *> is a finite abelian semigroup but not a group, then the set $\{*\}$ is not complete over S.

proof: If S is not a group then it contains a maximal, non-trivial ideal, say
I. There are two cases.

Case 1: I is semiprime. Since I is maximal, I semiprime implies that I is prime, that is, that S-I is closed. [2, p.71] Let J = S-I. The decomposition $S = I \cup J$ induces an equivalence relation on S. Since I is an ideal, $II \subset I$, $IJ = JI \subset I$.

Since J is closed, JJ \subset J. The equivalence relation \circ is preserved by the operation \star .

Case 2: I is not semiprime. By Lemma 2, $S^2 \neq S$. Let $J = S - S^2$. The decomposition $S = S^2 \cup J$ induces an equivalence relation \sim on S. Since each of the sets $(S^2)^2$, S^2J , and J^2 is in S^2 , the operation * preserves the equivalence relation \sim . Hence $\{*\}$ is not complete.

<u>Corollary 1:-</u> If <S, *> is a finite abelian semigroup but not a group, then the set $\{*\}$ is not complete with constants over S.

proof:- We need only note that each constant function preserves every equivalence relation over S.

<u>Corollary 2:-</u> If <S, *> is a finite abelian semigroup, then the set {*} is not complete with constants over S.

proof:- The author has proved elsewhere that the group operation of a finite abelian group is not complete with constants. [4, p. 396]

Since it is known that a nonabelian simple group is complete with constants [5] the abelian restriction cannot, in general, be removed.

References

- 1. J. C. Muzio, "Concerning Completeness and Abelian Semigroups", (submitted to this <u>Zeitschrift</u>)
- 2. A. H. Clifford and G. B. Preston, <u>The Algebraic Theory of Semigroups</u>, (Providence: AMS, 1961).
- 3. Ivo Rosenberg, "La structure des fonctions de plusieurs variables sur un ensemble fini", <u>C.R. Acad. Sci. Paris</u> 260 (1965), pp. 3817-9.
- 4. T. C. Wesselkamper, "Some Completeness Results for Abelian Semigroups and Groups", Proc. 1974 Int. Symp. on Multiple-valued Logic (May, 1974) pp. 393-400.
- H. Werner, "Finite Simple Nonabelian Groups are Functionally Complete", announcement in Notices AMS 6 (October 1973), *73T-A228.