Technical Report CS74013-T

THE MIXED METHOD OF
RANDOM NUMBER GENERATION: A TUTORIALYT

Claude Overstreet, Jr.*
and
Richard E. Nance

Department of Computer Science
Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061

August 1974

tResearch supported in part by a grant to Claude Overstreet, Jr.
by the Department of Computer Science, V.P.I, and S. U.

*Department of Computer Science, Bowling Green State University,
Bowling Green, Ohio.

Abstract

Several motivations are recognized for user-defined random number generators
in preference to built-in generators. The mixed method of random pumber generation
i1s discussed, and the conditions for achieving full.period with a modulus of 2P
are explained. Implementation of mixed random number generators is affected
both by the computer and language used, Guidelines are presented for realizing
acceptable mixed generators on several machines using the FORTRAN, PL/1 and

SNOBOL4 languages.

Keywords: mixed random number generator, maximum period, implementation,
language effects, machine effects.

Computing Reviews categories: 3.9, 5.39

Introduction

Random number generation as discussed in the current literature normally
refers to the generation of a sequence of independent values that are uniformly
distributed over the interval from 0 to 1. These values in turn form an
essential part of programs incorporating uncertainty in simulations or the
production of music, poetry and other art forms,

Many programs that utilize random numbers rely on a built-in random number
generator, supplied with the software support by the hardware manufacturer.
While these built~in generators might be adequate for most purposes, a user
might prefer to comstruct his own generator for several reasons:

1. A built-in random number generator is not available in the

particular language favored by the user. This is often the case
with languages suitable for non-numerical applications such as SNOBOL4.

2, Sometimes only a unique seqﬁence of values can be generated with a
built~in generator. By constructing his own generator, the user can
enable the production of varied sequences based on the assignment
of initial values or the redefinition of other parameters,

3. A program which utilizes a built-in generator on one machine seldom
produces the same results when moved to é different machine. This
problem is eliminated with a user-defined generator.

4. Some built-in generators do not appear teo produce independent values
drawn from a uniform distribution and prove inadequate with regard
to the user's criteria for randommess.

It is the purpose of this paper to present a general discussion of one of

the most commonly used methods of random number generation and to offer guidelines

for its implementation, Additionally, the implementation of random number

generators utilizing this method is illustrated for-several different languages

and machines,

Properties of the Mixed Method

Several methods of generating random numbers are currently in use. Among
these methods are the additive congruential [1], the multiplicative and mixed
congruential [2], the quadratic congfuential [3], and the shift register or
Tausworthe technique [4]. An extensive bibliography on random number generation
[5] provides references to literature treating all of the methods above, The
principal subject of thig paper is ome of the most commonly used, i.e. the mixed
congruential method.

We deal with the particular form of the mixed method defined by the relatioﬁ,

— b 1

Xn+l = aXn + ¢ (mod 2°)
The above relation indicates that to.generate a succeeding value in the sequence (Xn+l):
we take the previous value (Xn)’ multiply it by a and then add the constant e,
This result is then taken modulo 2b, or equivalently the integer remainder is kept
after division by 2b. We iliustrate the method using a small modulus value to
simplify matters

X = 53X +3 (mod 8) .

n+l
With the initial value XO = 1, then Xl =543 =8 (mod 8) = 0, Proceeding in this
manner, the complete sequence of generated values is 1, 0, 3, 2, 5, 4, 7, 6, 1,

Beginning with the value XO’ the multiplication and addition modulo 2b

generates successive values untril eventually Xn = XO’ at which point the sequence

‘The relationship Z = Y (mod M), read as "z is congruent to Y modulo M", indicates
that the difference in the integers Z and Y is divisible by M. The congruence re-
lationship employed in the mixed method is sometimes called "the power residue"
method since the values produced are residues modulo M.

of values repeats itself. The number of values generated in a sequence before the

sequence repeats is referred to as the period length. The maximum possible period

length for the mixed generator modulo 2b is 2b. Obtaining a maximum period is
possible only if certain conditions are met [2]:

1. The multiplier a must satisfy a 5 1 (mod 4); the integer remainder
of a/4 must be 1. A good rule of thumb is to pick a in the vicinity
of 2b/2 where 2P is the modulus.

2. The constant ¢ must be an odd number,

Note that no requirement is placed on the initial value XO-

The values produced by the above relation lie between 0 and 2b-l.

To transform these values to decimal fractions between 0 and 1 requires an
additional step in which each of the generated values is divided by 2b.2 This
final division by Zb then produces the desired random numbers. In the example
above, we would divide each generated value by 8 to get the desired sequence
.125, 0, .375, .250, .625,

Before considering the implementation of the mixed generator, we note

several important points concerning the general nature of the method:

First, if the multiplier and additive constant are unchanged, then
using the specific initial value XO allows generation of an
identical sequence of values for subsequent computer rumns,

Second, each sequence repéats after 2b values are generated. This
could be of concern. if 2b is reiatively small. Normally the
period length will be more than adequate, e.g., for the IBM 360-

370 a period length of 231 o 2,147,483,648 can be produced.

2This result is accomplished in assembly language versions by a shift operation

rather than a division, i.e. the radix point is moved from the right-most position
(for the integer value) to the left-most position (for the decimal fraction)., The
effect is the same using either operationm. :

Third, for any initial wvalue XO, we generate fhe identical overall period
of 2P values, A differen; XO simply designates a new starting point
in the sequence of Zb values. Normally, the period is large relative to
the set of numbers desired so that, by changing X , we
Produce an entirely new set of values,
Fourth, different Sequences are generated for different values of the
multiplier a and/or the additive constant c,
One final point that applies to all generators and all methods should be emphasized,
No deflnltlve set of rules exists to guarantee completely acceptable statistical
behavior, The statistical behavior of a random number generator can be evaluated
only after subjecting values produced by the generator to a series of statistical

tests,

Effect of Machine and Language

On most contemporary digital computers integer values are given a base 2
Tepresentation. An integer value in base 2 is limited in size by the number of
available binary places, or bits, available to store the number. For example,
if we are limited to 3 decimal places to store a number in base 10, the largest
value we can represent is 103—1 = 999, If we are limited to 3 binary bits,
the largest representable value is 23—1 = 7,

The word=length of a machine isg the number of bits available to store a
signed integer value. One bit will be reserved to indicate whether the sign
is positive or negative, and the remaining bits represent the magnitude of the
value, For a machine with a word length of k bits, we choose 2k-1 as the modulus
of the mixed generator, This particular choice of the modulus simplifies the

determination of the integer remainder from the congruence relation. In fact,

the remainder is produced automatically although two small problems can arise,
Since such large values are produced in generating random numbers, the
multiplication and addition inadvertently can cause the result to "overflow"
into the sign bit of the Iepresentation. A change in the sign bit indicates
an incorrect negative value, If a negative value ig produced, the change to a
proper positive value ig effected as follows:
1. If integer values are represented in g one's complement form,
add (Zk_l ~ 1) to the negative value,
2. If integer values are Tepresented in a two's complement form,
add (Zk_l - 1) + 1 to the negative value,
One's- and two's-complement representation are the two representations of negative
values.? TFor further information on one's- and two's~complement representation,
the reader is referred to Gear [6]. A description of a particular machine should
indicate the representation in use, In the way of a warning, applying the absolute

value to the result often leads to incorrect values.

terminated, This happens in PL/1 on the IBM 360-370 and can be solved by directing
the PL/1 compiler to ignore overflow as an error condition. This also oceurs in
SNOBOL4, and since the error condition is not easily disabled, we are forced to

use a smaller modulus to avoid overflow,

-UNIVAC 1107-1108 and the Control Data 6000 and CYBER series. Two's—complement
representation is used in the IBM 360-370 series, PDP-10, and RCA SPECTRA 70 series.

Examples of the Mixed Random Number Generator

Below we illustrate the implementation of the mixed random number generator
for several different machines and languages. Each of the generators presented
has been subjected to a variety of statistical tests [7], and all of the generators
appear to produce satisfactory results. Each of the generators presented requires
one additional instruction, which is not included in the examples, The necessary
instruction is an assignment of ap initial value, This is accomplished by assigning
the first value of IX in the following programs. The initialization of IX should
be performed only once, at the start of the program. The random value (called
a "random variate") lying between 0 and 1 is returned as the value of RAN in each

of the examples below,

FORTRAN;

IBM 360-370, a two's—complement machine with a word-length of 32 bitg
(2321 = 2147483647,
IX = 32949 % IX + 8237
IF(IX.LT.0) IX = (IX + 2147483647) + 1
RAN = IX / 2147483648.0

UNIVAC 1108, a one's-complement machine with a word-length of 36 bits

35 0

(277-1 = 34359738367).
IX = 32949 % Ix + 8237
IF(IX.LT.0) IX = IX + 34359738367
RAN = IX / 34359738368.0

CDC-6000 series, a one's-complement machine with 48 bits available
to represent an integer value, Overflow does not disturb the sign bit,

2471 - 140737490355327)

IX = 32949 % 1% + 8237
RAN = IX / 140737490355328.0

PL/1:

IBM 360-370, overflow is detécted 45 an error condition and must be
disabled. Overflow does not disturb the sign bit,
DCL (IX) FIXED BINARY (31);

(NOFIXED&VERFLOW): IX = 32949 * 1% + 8237;
RAN = 1% / 0.2147483648E+10;
SNOBOL 4:

IBM 360-370, overflow is detected as an error condition that cannot
be disabled. Consequently, we must resort to a smaller modulus, As
@ general guideline, if the representation of an integer value uses
N bits, use as a modulus Zk where k is the integer part of (N-1)/2,
Thus on the IBM 360-370 we uge 231/2 o 515 . UNIVAC 1108
use 217, and on the CDC 6000 series use 224 as a modulus,

IX = REMDR(IX * 32949 + g8237,32768)
RAN = IX / 32768.0
BASIC:

Unfortunately, most BASIC tramslators do not allow the Trepresentation
of integer values; all values are stored as real values (a fraction
with an exponent). This eliminates the construction of a random
number generator by the user. The RND function is supplied as part
of the BASIC language.

Conclusions

For the user who desires to construct his own random number generator we

have presented guidelines and design considerations for implementing the mixed

congruential methods. The mixed generator is illustrated using several different

3

languages and machines. We feel that by adhering to these guidelines, a user should

be able to construct a random number generator that is adequate for most applications.

References
SR TENces

Taussky, 0, and J, Todd, "Generation and Testing of Pseudo-Random Numbers",

Symposium op Monte Carlo Methods, John Wiley, 1956, pp. 15-28,
Hull, T. E. and A, R. Dobell, "Random Number Generators', SIAM Review, V. 4,

1962, pp. 230-254,

Overstreet, C, L. and Richard E. Nance, "A Random Number Generator for Small

Word-Length Computers", Proceedings ACM Annual Conference, August 1973,

Pp. 219-223,
Tausworthe, R. C., "Random Numbers Generated by Linear Recurrance Modulo

Two', Mathematics of Computation, V. 19, 1965, pp. 201-209,

Nance, Richard E. and C. L. Overstreet, "A Bibliography on Random Number

Generation", Computing Reviews, October 1972, pp. 495-508,

Gear, C. W., Computer Organization and Programming, MeGraw-Hill, 1969,

Overstreet, C. L.,"A. FORTRAN V Package for Testing and Analysis of Pseudorandom
¥y

Number Generators", Southern Methodist University, Technical Report

CP-72009, 1972.

