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Abstract

The three papers presented here all arise from recent'research into
sets of operators which are sufficient to define a horizontal microlanguage
for a computer and which are (in some undefined sense) natural for human |
beings_to use. It is this criterion of naturalness which leads us to consider
dyadic operators which are commutative and associative, that is, structures
which are abelian semigroups.

The first paper will be presented at the 1974 International Symposium oh
Multiple-valued Logics. It discusses the necessary and sufficient conditions
for functional completeness due to Ivo Rosenberg and the application of
those conditions in the situation in which one is permitted to use the
constants of the space in a functional definition. We establish that for
a Sing1e group operation to be functionally complete'it is necessary that
" the group be nonabelian and simple. The sufficiency of this condition has been
announced elsewhere {Reference 3 of that paper). The paper ends with a
proof that for each natural number k the exist three abelian semigroups
defined on the space of K elements whose group operations form a functionally
complete set (in the weak sense that the constants may be used in definftions).

The second paper has been submitted to the Zeitschrift fur Math. Logik
und Grundlagen der Math. It contains an analog of the Shannon Decomposition
Theorem on a space of k elements and uses that Decomposition Theorem to give
a much improved proof of the theorem on the completeness of three abelian
semigroups.

The last paper has been submitted to the Mathematical Notes section of

‘the American Mathematical Monthly. It is an extension of a thearem which



recently appeared in that section., The two notes taken together imply that
it is a necessary and sufficient condition for two ring operations to be
functionally complete that the ring be a finite field. Since two of the
three operators used in the first two papers form a ring over the space,
this shows that the results of those papers are best possible in the sense
that if ring operations are used at all (a fairly natural thing to do) then

in the general case at Teast one additional operator is required.



Some Completeness Results for

Abelian Semigroups and Groups

by

T. C. Wesselkamper®

1. Some Observations about Weak Completeness.

Let E(k) = {0, 1, ..., k=1}, (k < 3). If A is a set of functions
with values in E(k) and variables over E(k), then A is called a complete
set of functions if each function over E(k) can be expressed as a coﬁposition
of functions of A. A is called weakly complete if every function over
E(k) can be expressed as a composition of functions of A together with
the constants of E(k}, that is, if the set A U E{k) is complefe. Thus,
over the space {0, 1} the set consisting of the single function "nand’
is completé while the set consisting of the single function “implication’
is weék]y complete. Since each of these sets consists of a single function,
these functions are called Sheffer and Weakly Sheffer, respectively.

The results reported in this paper arise out of research into
 sufficient sets of operators to define a horizontal microlanguage on a
computer with fixed word size. In this context, since the constants are
always available, weak comp?eteness is quite sﬁfficient. The constfaints
that the operators be commutative and associative arises from a desire that

the operators be natural (in some undefined sense).

* puthor's address: Department of Cdmputer Science, Virginia Polytechnic
Institute and State University, Blacksburg, Virginia
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Ivo Rosenberg has given a set of necessary and sufficient conditions
that a set of functions over E(k).be compiete [1, 2]. In this paper all
of the functions will be functions of one or two variables. Except for this
speciaiization the terminology and definitions of this paper are those of
Rosenberg.

Let f be a functipn of one variable., Let s be a permutation
“of E{k). Then f 1is selfdual with respect to s if for each a ¢E(k)

we have:

Let fa denote the constant function with value a.
Lemma 1: If s s a non-identical permutation of E(k) then there is a
constant function of E{k) which is not selfdual with respect to s.
proof: Suppose s contains the cycle (a b ...).

Then s(fa(a)) = s{a) = b, while f (s(a)) = fo(b) = a.

It follows that a set of functions which contains the constant

functions contains, for each permutation s, a function which is not
selfdual with respect to s. This means that Rosenberg's second condition

for completeness is always trivially satisfied for weak completeness.

2. Some Results Concerning Groups.

In this section we describe a group as Sheffer {weakly Sheffer)
when its group operation is Sheffer (weakly Sheffer).

A relation = is called a partial order of E(k) if it is reflexive,
transitive, and antisymmetric.

Rosenberg's first condition requires that if a set A of functions
is complete then for each partial order of E(k) with a greatest element and

a least element, the set A of functions contains an element which is not



monotonic with respect to the order relation.

Lemma 2: If =< is an order of E(k) with a greatest element and a least
element, and if <E(k), *> 1is a group, then the group operation (*) is
not monotonic with respect to the order.

proof: Let T and t be the greatest element and the least element of
E(k}, respectively. Then there exists an a ¢E(k) such that a*T=t,
since <E(k), *> 9is a group. Now t =7 and a = a. Assume that the

group operation is monotonic. Then a*t < a*T = t. Since t is the

least element, we must have a*t = t, that is, a is the identity element

t, that is, the greatest and Teast elements

of the group., But then T = a*T
areequal and so k = 1. This contradicts our original assumption about k.

A function f of two variables is quasilinear with respect to a
group G if for all a, b, ¢, d €E(k) we have:

f(a+c, b+d) = f(a, b) + f(c, d) - £{0,0),
where + and - are atdition and multiplication in F and 0 is the identity
element of G.

Rosenberg's'third condition is‘that if k = pm (where p is prime
and m & natural number), then for each group & over E(k) such that
the order of G is p, A contains a function which is not quasilinear with

respect to G,

Lemma 3: There exists no group of prime order whose group opefation is
Sheffer (weakly Sheffer).

proof: If k = p, a prime, then all groups ovef E(k) are isomorphic to the
cyclic group of order p. Choose the group G so that the two groups are
isomorphic under the identity mapping. Since the cyclic groups are abeiian,

we have:



(@+c)+ (b+d)="{a+b)+ (c+d)-{(0+0),
that is, the group operation is quasilinear with respect to itself.
Hence, no group of prime order is Sheffer., But since the constant

functions are quasilinear, no group of prime order is weakly Sheffer,
Non-simple groups of composite order fare no better.

Rosenberg's fourth condition is that for each non-universal,
non-trivial equivalence relation on E(k), the set of functions A

contains a function which does not preserve that relation.

Lemma 4: No non-simple group of composite order is Sheffer (weakly Sheffer).
proof: Let <E(k), *» be a non-simple group of composite order. Since the
group is non-simple it contains a proper normal subgroup, say H, of index
h in E(k). Let E(k) = H + aTH Tty
of E{(k). The disjoint cosets of this decomposition induce an equivalence

H be a left coset decomposition

relation on E(k) which is neither trivial nor universal. But since the
mapping x - xH is a homomorphism from'E(k) into the facﬁor group E(k)/H,
the group operation preserves the equivalence relation induced by the
coset decomposition. Hence a non-simple group of composite order is not
Sheffer. However, since the constant functions preserve every equiva1ehce
relation, a non-simple group of composite order is not weakly Sheffer

either.

Theorem 1: No abelian group over E(k) is weakly Sheffer. No non-simple,
non-abelian group is weakly Sheffer.

proof: Lemmas 4 and 5,



3. A Positive Result,.

As has been seen, Rosenberg's conditions are particularly useful in
establishing negative results. They are more difficult to use to establish
positive results, In th{s section we use a constructive proof method.

Define the following three operations on E(k) for each k = 2:

0, if x=0ory =0, but not both;
dxy = ‘{

1, otherwise.

1]

x + y (mod k).
xy (mod k). (1)

Pxy

Txy

1t is easy to show that each of these opeyvations defines an
abelian semigroup over E(k). |

For each jgE(k) let j* denote k-j (mod k}. From elementary group
properties it is clear that x = j* is the unique solution of the equation
X+ j =20, that is, x = j* is the unique solution of Pxj = 0.

We define the functions:
ij = JOPxj*, (0 = j = k=1) (2)

Lemma 5: I], if x = j;
V.x =
T o, i x £
proof: If x = j, then ij = V.j = JOPjj** = J00 = 1. On the other hand,

J
if X # 3, then Pxj* # 0 and V.x = JOPxj* = 0.

We define the function: _
Kxy = TIIxJly | (3)
Lemma 6: 0, ifx=0o0rys=0;

ny = .
1, otherwise,



proof: There are three cases:

Case 1: x =y =10,

Kxy = TJ10J10 = T0O = 0,
Case 2: x #y=0.
Kxy = Td1xd10 = T10 = O,

Case 3: x#0and y # 0.

1]
—
.

Kxy = Tdlxdly = T11

n
Let B oy wens tn be elements of E(k). Let Q be the state defined by:

Suppose that xq, Xo ..., X, are n variables over the space E(k).

Q: x-l=t-[, X2=t2, ..u,x =t.
We define the function:

XQ(x1, cons Xp) = KV, X KV x,K...KV (4)

X Vo X,
11t thy n=1"%"

Henceforth we denote (XT’ cees Xy) by X,

Lemma 7: X X is a characteristic function for Q over En(k).

Q

proof: If X is in the state Q, then Vtixi =71 for1<1i=n,

Hence XQ§'= KIKIK...K11, and since K11 = 1, XQE' = 1., if x is in
a state other than Q then there exists ar least one index 1i* such

that x,. # t;w, that is, Vti*xi* = 0, Hence XQR' = 0.

Now we want to show that if we have a function f of the n

variables x7, ..., x_ and if in the state Q,f takes on a value different

n
from r, then we can define, in terms of f and the semigroups of (1),

a function f' which has the same value as f 1in all states except Q and
which has the value r in the state Q. Said in another way, we can modify

the definitional table for f at exactly one point.



We define:
f' = J . 5
PTXrTI0X o f (5)
Lemma 8: fXx, if X is not in the state Q;
F'x =
r, if X is in the state Q.

proof: Suppose x 1is in the state Q. Then XQ =1, and’

f' = PTIPTION

At

PrTOTf

Pr0 = r.

1]

Suppose X is not in the state Q. Then XQ = 0, and

f' = PTOrTJOOF

n

POTIf

= PO = f,

Theorem 2: For any natural number k there exists a set of three abelian
semigroups which is weakly complete over E(k).
proof: The result is trivially true.for k = 1 and well-known for k = 2.
Let k be a fixed integer such that k = 3. Let § denote the
set of abelian semigroups defined over E{k) by (1) above. The
functions ij defined in {2) are defined in terms of the elements
of S and the constants of E(k). This implies that for each state

of the variables X1 eees X there is a characteristic function,

ne
defined as in {3), which is defined in terms of the elements of
S and the constants of E{k). Given any function f of the n
variables X{s eans X and a state Q such that in the state Qif
takes on a value different from r, then it is possible, by the

definition given in (4), to define a function f', in terms of f



8]

and the elements of S and the constants of E(k) which has the

same value as f in every state except Q and which has the

value r in the state Q.

Suppose that ¢ fs a function of n variables over E(k).

Choose h an element of S. If g = h, then the theorem is proved.
If g # h, then there is some number of state, say J, of the K"
possible state, in which g and h differ. Apply the construction
of (4) to obtain a new function, defined in terms of S and the
constants of E{(k) which differs from ¢ 1in j-1 places. Repetition
of the process j times produces a definition of g in terms of

the elements of S and the constants of E{k).

Since the semigroup h is chosen arbitrarily, there is nothing
unique about the definition obtained by this construction. Neither is
there anything unique about the choice of the semigroups of S. For
example, if the definition of J {is modified, so that it takes on the
values 0 and k-1 instead of the values 0 and 1, then T and P can be
replaced by max and min.

The author is grateful to the referee for the reference to [3].
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fi+1x = Va.x.r + JOVa x.fix.
J J

!

!ajaj.r + JOVajaj.fiaj (3)

1]

If x= aj, then f1+1x

)

l.r + J01.f.a.
1]

r o+ O,fiaj = r,

If x # aj, then f1+1 X = Vajx.r + JOVajx.fix

O.r + JOO.fix

1.f.x = f{x.

Whence if 355 the jth value in the value sequence, is different from r then the
value sequence of fig71 agrees with the value sequence of f; at each position

th

th
except the j* position and in the j position the value sequence of fi+1

contains an r.

Define a set of functions:

BY = C U {d, +, 3 U {Vidy € p(k). (4)

Lemma 2: The set of functions B* generates the set of one place functions

over E(k).

proof: let f = <a0a],..akw]> be a one place function over E(k).

The constant function h0 =<00,...0> ¢C. If f=nh_, then

09
the proof is complete. If f # hys then the value sequences for f and hg
differ in at most p places (1 <p<k-1). Let fy = h0 and et q be the
smallest index for which the value sequences differ. By the construction (3),

fqo x =V, Xor + JOV. x.f.x
1 a ~*t o”e
q aq

defines a new function f1 in terms of the constants 0 and aq, the functions

{ds *, .}, and the function Va € {Vj}. The function f, has a value sequence
q



which differs from the value sequence of f 1in g-1 places. Repetition of

this process g-1 more times produces a function fq = f. (In practice, h,

might be a poor choice for fye)

We define the set:

B=CU{J, + .} (5)

For each j €E(k), Tet j* = k-j (mod k).

Lemma 3

proof:

The set B generates the set B¥*,

We need to show only that the set {Vj} je is generated by B.

E(k).
Let V5 x = J0(x + j*). (6)
From the group properties of <E(k), +>, x =.j is the unique solution
of the equation x + j* = 0,

Jo{J + j*)

I}
[E]

Case 1: If x =3, ij JOO =1,

Case 2: If x ¢ j, ij = J0{x + j*) = 0,
Hence for each j, ij can be defined in terms of the constants 0 and

J*, and the functions J and +.

Corollary 1: The set of functions B generates the set of one place functions

Lemma 4:

proof:

over E(k).

The set of functions B generates all n place functions over E{k).
The proof is by induction. Lemma 3 forms the basis for the induction.

If the statement of the Lemma is true for some n>1, and if f is
some n+l place function, then by Lemma 1 there exist k functions

{91}1€E(k)’ such that each g; is an n place function and,

k~]
XXy en XX o = %;% ViXp g 9iXq e Xy




By the induction hypothesis the g; are generated by B. By Lemma 3
the V. are generated by B and {+, .} < B. Hence f is generated by

B and the induction is complete.
Corgllary 2: The set of functions B is complete.

Theorem: For each natural number k there exists a set of three abelian
semigroups which is weakly complete over E(k).

proo¥: Since the set B {s complete, the set {J, +, .} is weakly complete,

It should be noted that the set {J, +, .} is not unigue. If the definition
of J is modified so that the function produces the values 0 and k=1
instead of 0 and 1, then the construction can be carried out with addition

and multiplication replaced by max and min.

The authaor is groteful +o Dr. J.C. Murioc who suggested definition (6).
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If R 1is a commutative ring with identity, then every function f: R =%
R is representable as a polynomial if and only if R is a finite field [2, p.
507]. This result has been generalized by Brawley and Carlitz [1] in a

theorem which states:

Theorem. Let R be a ring with 1 and Tet L[x] and R[x] denote respectively

the left and right polynomials over R, that is L[x] = {a, + xap + ... ¥

X+ ... +ax" a, e R}. Let PL(R) and

xa a. € R} , R[x] = {ao + a n i

n i 1
PR(R) denote those functions in RR representable by left and right polynomials,

RY Tf and only if Po(R) = RN if and only if R

respectively. Then PL(R)

is a finite field.

The purpose of this note is to extend the Brawley-Carlitz theorem to
polynomials 1in k indeterminates and functions of k variabies for each

natural number k.

Let R*(k) = {f: f: Rk ~+ R}, the functions from Rk into R, for each natural

| number k. Let P{x; k] be the polynomials in k indeterminates, X715 x2, cvey
» - " * L]
Xs over R, Let FP[x; K] be the set of functions in R*{k) which are

representable as polynomials in P[x; k]. It is well known that R*(1) =
FpIx; 177

We employ a Temma which is an analog of the Shannon Decomposition Theorem

[3].
Suppose ‘R is a finite field and suppose that for each j ¢R there exists

a fUnction ij such that:



1, if x = j;
V.x =
J 0, otherwise. (1)
-1
Lemma, If f: R - R, then there exist functions g, : R L R, (i ¢ R},
such that:
fquz...xn = ié:: Vixng1x1x2...xn_].

ieR
proof: For each i ¢ R let gix1x2...xn_] = fx1x2...xn_]1. Choose j € R and
suppose that Xy = j. Then ijn =1 and for all'i # j, Vixn = 0, Using this
fact, we have:

52;:% Vixngixixz...xn_1 = ijngjx]xz...xn_1

95Xy %pe e Xy
gee X pde (2)

fxix

Since j was chosen arbitrarily {2) holds whenever xn = j € R, and the proof

is complete.

Theorem 1. If R ds a finite field, then for each natural number k,

RHK) = For o

proof: The proof is by induction on k. The Brawley-Carlitz theorem is the
case k = 1 and forms the basis for the induction. Since every function ‘
f: R -+ R has a polynomial representétion, the functions ij defined in (1)
have a polynomial representation. Now suppose that the statement of the
theorem is true for some natural number k and suppose that f: Rk+1 -+ R,

Then'by the Lemma there exist functions 9;¢ R"™ R such that:

Y. X ouuX, = :E::; V.x

i%9 n ieR 1 n+]gixTX2"“xn‘ (3)




As already noted the Vix have a polynomial representation. By the induction
hypothesis the gix1x2...xn have a polynomial representation. Hence the

expression (3) is a polynomial representation of fx1x2.,axn+1.

The converse theorem is trivially true, for if for each natural number k
a polynomial representation exists, then it exists in particular for k = 1, and

the theorem reduces to the Brawley~Carlitz Theorem.

Interest in such theorems arises in a natural way if one considers the
following situation: Suppose one has a digital computer with word Tength k.
Then a1l of the operations in that computer are functions of some finite
number of variables over a space of 2k elements if the computer utilizes
twos-complement arithmetic and functions over a space of 2k—1 elements if the
machine utilizes ones-compTement.arithmetic. The theorems of this note
ensure that in the twos-complement case the computer can be competely
described in terms of polynomials over the finite field of 2K elements,
whereas in the ones-complement case if ring operations are used in the
description at least one other operation is necessary, The author has
shown elsewhere [4] that one additional -operation ié sufficient., The
Brawley-Carlitz Theorem is benign since it lays to rest the possibility that
the situation could be improved in the ones-compiement case by using non-

commutative ring operations.
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