Technical Report CS574005-E

INTRODUCTION TO ?EST CONTROL
USING THE WATFIV COMPILER

David A. Ault

Department of Computer Science
'College of Arts and Sciences
Virginia Polytechnic Institute & State University

Blacksburg, Virginia 24061

April 1974

wo

As much as 507 of programming'time is spe#t testing and debugging the
program. Analyzing a proﬁlem for computer éolution and developing the algorithm
and program structure to be used are intellectually challenging and rewarding
and so this time is well spent. The trahslaﬁion.of this algorithm into N
.partiéular statements of-a programming ianguage is often tedious, but usually
a step willingly taken by one who is interested in seeiﬁg the results of h&s

"programming" courses.

design. These two areas are the main conéern of most
Keypunching this program onto cards is a chore which is necessary at fhis stage
of computer related technolegy, but hopefully'it'wiil be removed in the future,

. The p;oblem‘of testing and_debugging a program is usually left to the sEqdént.

. As a ;esult, many extra hours are spent looking for unexplained errors. Not_all
df the time spent débugging a prpgram is wasted time. The imperfect huﬁaﬁ being
1is likely,tormake mistakes at all stages of the programming task: from the
design logie, through the program coding to the kéypuncbing. Therefore, it i;
"worthwhile to obtain a certain degree of pfoficiéncy in debugging programs and
this can be leafned%only by experience. However, obtaining experience armed
only wifh.the brief syntax erro} messages of most com@iiers and execution

error messages of most operating systems condemns the new programmer (and often
the experienced programmer) to spending an excessive amount of time correcting -
progra;é.

The purpose of this paper is to consolidate into é brief guilde procedures
to aid in debugging FORTRAN programs which are being executed under the control
of a WATFIV compiler. No attempt has been made to include facilities available
under other compilers, although many of the principles explained here apply ﬁhen

using other_lénguages or other compilers. . It is intended to inform you of useful

ar

practices in debugging and uéeful facilities of.WATFIV, so that your debugging
experience will be more profitable and so you wili more quickly become proficient
at debugging your own programs. Please read it carefully and keep it handy
while you are preparing your progfamming assignments. The procedures'préseuted
here are a combination of personal éxperience_with my owﬁ program bugs and with
those of my. students, suggestions_of.othér faculty members and ideas obtained
frsm the references lisfed at the end of the.paper. |
The paper is titled."Iﬁtroduction to Pest Control" because successful
program debugging begins before the bug is foﬁnd by the computer. That is,
this paper stresses both the prevention of bugs and effective methods of |
locating them after they occur. The techniques presented here are fundamep;al
and are impbr;ant for both the casual programmer and‘thg professional."Thé
profeésicnal programmer will be interested in a more detailed study of
programming methods (references [4], [6] and.[ll]) and programming.testing and
-debugginé techhiques (references {2], [71 and.[lO])} Mathis [9] describes a
course devoted to debugging techniques. The gourse’includes specific
facilities which are available now and those that hg would like to see
developed.
 The integer and real constants used in the examples in this paéer and
;he bounds on their ranges apply to the IBM 360 and 370 series computers.
I. Punched card ﬁreparation hints.
A. Compare each card with its corréspondiﬁg FORTRAN statement to be sure
you have it punched correctly.
B. Make sure that each statement is contained between columns 7 and 72,
inclusive, and that statement numbexs appear in columns 2 through 5.
€C. Column 6 is left blank except when the card is a continuation card.
It f¢ useful to use nonblank characters which will sequence the
continuation cards, i.e., place the numeﬁﬂi 1 in column 6 of the first
continuation card, the numeral 2 in column 6 of the second continuation

card, etc,
D. Be sure that all comment cards have a € punched in column 1.

II. Syntax error messages.

W

The WATFIV compiler provides the best syntax error messages available to
the FORTRAN programmer. -Follow the steps below to correct each syntax error.

A. Read the WATFIV érror message carefully and determine the error it
identifies. a _ .

B. Locate the error in the FORTRAN statement. In most cases the error
message follows immediately after the statement in which the error

] was found. ‘ S _ .

C. Correct the syntax error. You may need to consult a reference manual
or a. textbook for the correct syntax.

II1, Avoiding.coding errérs.
' We include specific suggestions to help you avoid execution errors and/or_
execution intefrupts arising from coding errors._rEven though you have made
all of the approptiate corrections in the syntax, your program may not

execute successfully.

A. Check to be sure that you have spelled each variable consistently.
For example, an easily made keypunch error can produce the distinct
variables SUM and SUN. The compiler will not catch this error, but
execution of the program will either produce faulty answers or an
interrupt because of an undefined variable.

B. Check to be sure that each variable is the data type intended.

A variable beginning with A through H or 0 through Z will be a single
precision, floating point real variable unless it is declared
otherwise in an explicit or an implicit type declaration statement.
Similarly, a variable beginning with a letter I through N will
default to a full word integer variable unless otherwise declared.
1f any special type declarations, like DOUBLE PRECISION or COMPLEX,
are made, check all of your assignment statements to make sure that
all arithmetic and all assignment statements use properly declared
variables. For example, if DOUBLE is a double precision variable
and SINGLE is a single precision variable, then the assignment
statement

S : SINGLE = DOUBLE

will truncate the number in DOUBLE from a 16 decimal digit number to a
7 decimal digit number, _ ,

C. Check for the possibility of an attempt to divide by zero during execution
of your program. If you are not absolutely sure that a divisor will
never be zero, place a check for zero in your program and branch around
the division step if the divisor should become zero. ' S

D. Check the possible range of all subscripts. If a subscript can increase
without bound (or decrease below 1), place a check on the subscript
before it is used to identify an array element.

Iv.

If you are using double precision or complex library functions or user
written functions, they must be declared:in an appropriate type
declaration statement.

Be sure that the variables or constants which are used as arguments in

a subprogram call agree in precision and type with the parameters in the
parameter list of the subprogram definition. For example, if the
parameter is a single precision variable and the corresponding argument
is 10000000., then the WATFIV compiler will interrupt and return an error
message since 10000000. is a double precision constant., It can be
expressed as a single precision real constant in the form 1E7. As another
example, suppose a parameter in a subprogram is declared to be an
INTEGER*2 variable andthe integer5 1is passed as the corresponding

‘argument in the subprogram call. When using the WATFIV compiler an

interrupt will occur, but when using a compiler which does not check
for agreement of the argument and parameter, the value received by

the subprogram will be =zero!

Be careful when using a subprogram whlch changes the value of a parameter
in the parameter list of the subprogram definitiom. If you use a
constant as an argument in the corresponding position in the program
call, the subprogram will attempt to change the constant. WATFIV will
catch the error, However other compilers may not. As a result, the
constant will have the new value whenever it is used in the future.
WATFIV checks the range of subscripts in subprograms as well as in
the.main program. Either the extent in. each dimension of an

argument in the subprogram call and the corresponding parameter

in the subprogram parameter list must agree exactly (it is allowed

to have the extent of the highest dimension of the array in the
calling program to be less than the corresponding extent in the
subprogram, but it is best to dignore this potential trouble spot)

or the extent in each dimension of the parameter must be passed as

.an argument in the subprogram's parameter list [1, p. 162].

Be very careful when using COMMON. 1If a COMMON variable can be
changed by more than one module of the program, then either an
unanticipated execution time change in the variable or program
modifications during program development and testing can cause
unexpected side effects and bugs that are very hard to locate.

Common arithmetic execution errors and their detection.

A.

B,
~+ modulas less than 10%%-78. The standard fixup is to set the variable

’The DIVIDE CHECK error 1s caused by an attempted division by zZero

{see part C of section III),
UNDERFLOW occurs when your program generates a nonzero number of

to zero.

Exponent OVERFLOW occurs when a value over 10%*75 is generated.

The standard fixup is to set the variable equal to 10%*75, 1In some cases
overflow and underflow may be avoided by periodically normalizing

the numbers used in the calculations,

Integer OVERFLOW occurs when an integer is generated of modulas

greater than 2%%*31, Integer overflow is not detected by some WATFIV
compilers. The result of this overflow is the number modulo 2%*31.

!
*

While aﬁ expdnent underflow is not ?eallxran er:or; it will cause the
interruption of program execution unless the programmer takeé steps to preﬁent_
this aciion. Sée the TRAPS subroutine &escription Below‘ |

Although a divi&e check and an exponent overflow condition are errors,
during fhe debﬁgging'stage of program development.it ﬁight'be useful to let
the progran keep executing to catch other program bugs in the same run. -

This is made possible by the use of the subroutine TRAPS The subprogram call
.is of the form . . |
CALL TRAPS(nl, Ny, Mgy Ty, ns)
where the positive integer arguments n. correspond to the following arithmetic
errors:
n, Integer atrithmetic overilow.
h2 Exponent overflow, i.e. larger. than 10**75
ny Exponent underflow, i.e. less than 10%%-78,
n, Integer division by zero. :
ng Floating point division by zero.
.Program execution will continue until one of the program errors, Say the ith
error in this list, occuré n; times. The subroutine call s@ould be placed
at the beginning of the program.

Inhibiting termination of execution is not enough for proper code
checkinge You need a record of the errdr even though executioﬁ continues,

To do this you may use.the standard subprograms called OVERFL (for testing
arithmetic overflows) and DVCHK {(for testing for divide checks).

The statement CALL DVCHK(J) tests for the presence of a divide check
condition: J is set to 1 if a divide check is detected, J is set to 2 otherwise.
The aivide check indicator is then ''turned off". You can use the value of J
in a GO TO (n,m), J statement, where n is the first statement number of the

~
program segmenf to handle a divide check error and m is the flrst statement

ol

number for normal processing.

- similari-

~or underflow c- . .-

if an ariﬁhmeti; i

and underflow in’
as was suggesis!
V. General pr:.
to find bug:s

To limi:
for codis:

That is,
executnd

Use a

values,

and priv
them ini:
need o’
subpro. -
The =z«

For eac:n

followic:

The fiy:
[4] pren
prograu
of thes
buildin

may oo
threc

Ctranst -

“

2 statement CALL OVERFL{J) tests for an arithmetic overflow

‘an. The value of J upon return from the call is: Jis1

orflow condition is detected, J is 2 if there was no overflow

and no underflocw, zad J is 3 if arithmetic underflow occurred. The overflow
.ators are "turned off". J can be used in a similar manner

- ave to handle these error conditions.

+ing techniques to avoid errors and to locate difficult

-z complication of your program and thus to lower the chance -

and logic errors, write your program in modular form.

“znlate distinet parts of your program (even if they are

st once) and write each part in the form of a subprogram.

"o main program to test each subprogram by reading in

ling the subprogram with these values as arguments,

-2 the results. When each part is thoroughly tested, combine
ne program. If each subprogram is, in fact, correct,'you'
~sst the logic and coding of your program that connects the
zalls. .

sart of producing correct programs is clean coding.

dule, draw a flowchart which is constructed from the
“asic structures:

'wo structures are basic structures of smooth [6] or structured

.xming. The third structure is an adaptation of other smooth
¢ structures. The author agrees in principle with the goals
ithors, but considers their structures too restrictive. In

-y program logic from these structures, a rectangular box

v, may contain one operation or may be replaced by any of the
-ures. One of the two decision boxes in structure three may
nile writing each program module, limit your code to a direct

» of the resulting flowcharts.

References - ’ _ e

1.

10!

11 .

Blatt, John M., Introduction to FORTRAN IV Programming, Goodyear Publishing
Company,; Pacific Palisades, Calif., 1971.

Brown, A. R, and Sampson, W. A., Program'Debugging) American Elsevier,
New York, 1973. -

Computex Center User's Guide Volumes 4 and 10 Virginia Polytechnic

Institute and State Unlver51ty, Blacksburg, Va., 1973.

Dijkstra, E. W., Notes on Structured Programmlng, in Structued Programming
(APIC Studies in Data Processing No. 8) Academic Press, New York, 1972

‘FORTRAN Debugging, Computer Center Information Systems Division, Virginia

Polytechnic Institute and State University, Blacksburg, Va.

Foulk C. R,, Smooth Programming, First Computer Science Conference
(Columbus, Ohio), Feb., 1973. :

Hetzel, William C., Editor, Program Test Methods, Prentice-Hall, Inc.,
Englewood Cliffs, N.J., 1973.

Kreltsberg, Charles B. and Ben Shneiderman, The Elements of FORTRAN Style,
Harcourt Brace Jovanovich, Inc., New York, 1972

"Mathis, Robert F., Teaching Debugglng} SIGCSE Bulletin 6, 1 (1974), 59 63.

Rustin, Randall, Editor, Debugging Techniques in Large Systems, Prentlce-Hall
Inc., Englewood Cliffs, N.J., 1971.

Wirth, Niklaus, Systematic Programming, Ptentice—Hail, Inc., Englewocod Cliffs,
N.J., 1973,

