Technical Report CS74004-R
ROOT-HEAVY DIRECTORY TREE ON
DIRECT ACCESS STORAGE DEVICES

Stewart N. T. Shen

Department of Computer Science
College of Arts and Sciences
Virginia Polytechnic Institute & State University

Blacksburg, Virginia 24061

April 1974

I. Intreduction

There are many applications in information storage and retrieval that
require the use of direct access storage devices (DASD) such as the disk drive
and the drum. The typical structure of information for such a system is in
the form of a directory and a file of records. The directory contains the keys
and the pointers pointing to the associated records or lists of records in the
file of records., In a typical application, the entire file of records and
the most, 1if not all, of the directory are stored on a DASD,

The process of finding where a record or a list of records associated
with a particular key is located is called directory decoding. This process
is essentially to find the particular key in the directory. The decoding
technique is directly dependent upon how the directery is structured. When
the directory takes the form of a tree structure,some multiway tree is usually
used on a DASD. A binary tree structure is inefficient on a DASD because to
use it to decode a key we need to make about 1og2N accesses, where N is the
number of keys. N may be a million in an actual application and this size
would require 20 or so accesses to decode a key. Accesses on a DASD is very
time consuming compared to operations in the central memory. Multiway trees
with may more keys per node can greatly reduce the number of DASD accesses
hence can improve the overall search efficiency significantly.

There are many different kinds of multiway directory trees that are used.
Some examples are the tree with fixed length key-word truncation [2. opp.
93-98] and the tree with variable length key-word unique truncatiom [y, pp.

98~104). This paper proposed an approach which can be applied to modify such

trees so that the directory decoding efficiency can be improved,

The proposed appraoch is the root-heavy directory tree. Since different
kinds of multiway directory trees are constructed using different techniques
and criteria, it would be rather awkward to propose a general definition of
the root-heavy directory tree and to present a general algorithm to construct
one using any given multiway directory tree. In this paper, a fixed length
key-word directory tree similar to the fixed length key-word truncation
directory tree of Lefkovitz [2. pp. 93-98] is used as the original directory
tree and based on it the algorithm and the definition of the root-heavy
directory tree are all presented. The purpose of doing so is to obtain a
concise analysis. Both the definition and the algorithm of the root-heavy
directory tree can be easily extended to some other types of mul tiwvay directory
trees. The analysis of the root-heavy directory trees based on other types
of multiway directory trees would be a little more complex,

An example would be helpful to illustrate the proposed. approach. Let us
consider a directory with the following fixed length keys: AAC, ABA, BBC,
BCD, BUV, CDF, EEA, EXA, FAT, FMC, GAD, GBC, and GGV. Assume that the
complete directory is stored on a movable head disk drive with the tree
structure as in Figure 1, The use of only a small number of keys is to
simplify our example. An application may have up td thousands or millions

of keys.

931], £10109aTQ TRUIBTIQ =1 "I 2ANBTH

[T1/1v/A99 [21/2v/da0 e 1/ev/ave | |71/ 9¥/0Rd |S'1/5V/1v4 [97/9v/vxa

hu\h¢\<mm_mq\m<\mmo mq\m<\>:m_ THA\OH¢\mom

Hﬁq\ﬂﬂ<\umm~mﬂg\mﬂa\<m¢
an €T, 71, Ty
|
L8/ a/n09 | 9/%Tnsoma | ¢/% 1 vaa | |#/%%2/a0a ! eT/6TV/0VV] |
R \\\\\\\wNa
e e
. — L
ﬁ@\ﬂﬂa\>ww s\ﬂmy\mum~ “
0T

L

In Figure 1, Tij is used to designate jth track in cylinder i; Ak is the
symbolic link address; Lk is the corresponding list length; and @ is used
te indicate that the triplet containing it is a reference to another track
in the directory and not to the Iist in the file.

The following definition will be helpful in our further discussions:

Definition 1. A physical record on a DASD 1is said to be fully filled if

what is unused on it is only the desired reserve space,
To fill up a physical record is to record as much infor-
mation on the physical record as possible leaving the
desired reserve space unused.
According to Landauer [lj, 10%Z reserve space is adequate for most applications.
To construct a directory tree as in Figuré 1, the standard procedure is to work
from the leaves back to the root and to try to fill up each physical record along
the way i1f possible, 1In Figure 1, it is assumed that 3 triplets will fill up
é physical record, In actuallity, a track of a disk may in fact accommodate
about 200 such triplets,
A characteristic of a directory tree constructed in the conventional manner
is that the tree tends to be light at the root, that is, the root is not fully

filled. Also, the left descendents of the root may not be fully filled either.

II. Root-Heavy Directory Tree

Before congidering a definition of the root-heavy directory tree, let
us first look at the following algorithm. Tn the algorithm, the root of the
directory tree is filled up by moving some elements (An element is a triplet
in Figure 1.) from its right son into it. Tts right son is then filled up
using the same method. This operation terminates at the right leaf. All the
left descendents of the root which are not fully filled are filled up in
similar operations in which the descendents are treated as roots of the
appropriate subtrees,

Algorithm RHDT:

Step 1. Let ROOT be the root.

Step 2. Let CURRENT be ROOT. :

Step 3. If CURRENT is fully filled then go to Step 6.
If CURRENT has no descendents then go to Step 6.

Step 4. Try to fill up CURRENT.
Take away from the right son of CURRENT 4as many elements as
possible from the leftmost element on and insert them immed-
iately in front of the rightmost element of CURRENT so that
no overflow in CURRENT will occur.

Step 5. Let CURRENT be the right son of CURRENT,
Go to Step 3.

Step 6. If ROOT has no descendent then terminate,
Otherwise, let ROOT be the left som of ROOT and go to Step 2.

The application of Algorithm RHDT to the directory tree in Figure 1 will

produce the directory tree in Figure 2.

T Pangrg

@21], 4103001 (Q Aaeeg-j00y oyJ

U1/ V7R3 T ev/ 385 | T9/%v/ona mg\m<\p
A Atd R A T ¢m_oq\@¢\<xm. LT/ 1] vad
. qmw VLYo | : Ilra:1WMi! _ / _mq\w<\qu_mg\m<\>mm@ _OHQ\OHq\momAﬁﬁ@xﬁﬁq\umm‘]
m\ I N.H. I P \\\\\\ NN
..,, \“ 3 . .\\\. -H_
L / S
. . \ e \\\\.\\
[¢/7T | P A R
#/7"1/009 [€1/ev/avo| g/t H\uzm ma\ H\qomﬁNHq\NH<\MmM@mH4\MH<\U<¢m
Ty
\.\\
\\\‘\\
/
v

 —m }lil'llkllillJ.

L4/ H\>wwﬁs\ y\qmm a\wNw\mom h
0T,

m

Figure 2 illustrates that Algorithm RHDT produces directory trees in
which the roots of all the subtrees of order more than zero are fully filled.
In fact, only the left leaf and the right leaf of the tree may be not fully
filled. A definition of the root-heavy directory tree may now be given,

Definition-2, A root~heavy directory tree is a directory tree constructed

according to Algorithm RHDT using a conventionaly constructed
multiway directory tree as input.
A comparison of the decoding efficiencies of the two directory trees in
Figure 1 and Figure 2 respectively are given in table 1. Sequential searches
in nodes are assumed. Note that the superiority of the root-heavy directory

tree 1is onesided. More general comparisons are given in the next section.

Table 1

Comparisons On The Directory Trees R e
Original (Figure 1) Root-Heavy (Figure 2) Superiority of Root-Heavy

Number of Number of Number of Number of Number of Number of
Kevy accesses comparisons accesses comparisons accesses comparisons
-~ AAC 2 2 2 2 0 0
ABA 3 4 2 3 1 1
BBC 3 5 3 5 0 0
BCD 3 6 3 4] 0 0
BUV 3 4 2 3 1 1
CDF 3 5 2 4 1 1
EEA 3 6 2 5 1 1
EXA 3 5 3 5 0 0]
FAT 3 6 3 6 0 0
FMC 3 7 3 7 0 0
GAD 3 6 2 5 1 1
GBC 3 7 3 7 0 0]
GGV 3 8 3 8 0 0

t
|
1
|
|

~ Total 38 71 33 66

W,]
Ln

10

Theorem-3. To fill up a nede which has m element-spaces unused and which

is at kth level, with the leaf level considered to be level one, will save
k-1

=1
b-1 "M

b

accesses, assuming each key in the original subtree of its right son is to

be decoded once,

Froof. The process of filling up the node inveolves moving m elements from

its right son info it, moving m elements from its right son's right son into

its right son, and so on. Move m elements from k-1tB 1evel into kP level
k-2

vields a saving of m+b accesses. Thus, all these moves yield a total

k »
saving of = m-bk okl o
i=2 b-1 I

Theorem 4f To £i1l up a node whichhag m element-spaces unused and which is

at kth level will save bk-l—l - comparisons, assuming each key in the

b-1 ’ .

original subtree of its right son is to be decoded once and assuming
sequential search is used in each node.
Proof. The number of comparisons necessary to reach the b-m—1 elements which
are shifted to the left-hand side in a node is not affected by the movings.
To reach all the elements left in the leaf level require the same number of
comparisons as before. To reach an element that is moved up needs one less
comparison than before. The savings on comparisons to reach the keys

k ki k-1
assoclated with all the moved up elements iz = m'bt = b~ "=1 m+ Thig

i=2 b-1
is also the total saving,

The above theorems descrile the storage requirement and the decoding
efficiency of the root-heavy directory tree. There are two other aspects that
one should also consider for the purpose of Information storage and retrieval.
One aspect is the ereation efficiency of the root-heavy directory tree. To

Create a root-heavy directory tree involves an extra step. However, this

extra step amounts to only a few updatings. 1In other words, this step is

i1

not time consuming., In fact, for a directory tree with fixed length keys
this step can even be avoided by directly creating the root-heavy

directory tree. Such a procedure will require only a few extra calculatrions.
The other aspect that one should consider is the updating efficiency of the
root-heavy directory tree. As far as filling an element or deleting an
element in a node is concerned, the root-heavy directory tree offars no
difference because a node has the same amount of reserve space. On the
other hand, the speed of reaching a desired node is some times faster for a
root-heavy directory tree.

Sequential search is assumed in Theorem 4. In actual applications,
binary search 1s almost always used. When binary search is used, a root-
heavy directory tree does not have absolute advantage over the original
directory tree any more in the number of comparisons necessary to decode
the keys. _For some keys the numbers of comparisons necessary will beéome
in fact even larger in the case of the root-heavy directory tree. However,
the processing time for the increases in comparisons for these keys are

usually very small because, for large N, log, N increases very slowly as N

2
increases. Another point should be mentioned is that when binarvy search

is used in searching a node;the node search time is usually negligible as

compared to the node access time,

13

V. Bibliography

1. Landauer, W. L. '"The Balanced Tree and Tts Utilization in Information
Retrieval", IEEE Transactions on Computers, EC~12, No. 5, Dec. 1963,
rp. 863-871.

2. Lefkovitz, D. File Structures For On-Line Systems, Hayden, N, J., 1969,

Acknowledgments

The author wishes to thank B. Claybrook for valuable discussions.

