Technical Report CS74001-R

A FILE DEFINITION FACILITY
FOR FILE STRUCTURES

Billy G. Claybrook

May 1974

Department of Computer Science, Virginia Polytechnic
Institute and State University, Blacksburg, Virginia
24061 ‘

ABSTRACT

This paper describes a file definition facility (FDF) for defining
files as graph structures. The structure of the file is explicitly declardd
in the file definition., Primitive functions(from graph theory), operators,
and the format of the definition statements are given. The combination of
functions and operators appear as directives to the programming system for
structuring files,

Several simple examples are given to illustrate the use of the FDF.
The data organization for.the implementation of this facility is described
in detail. Problems of considerable importance that are treated aret
(1) garbage collection, (2) template construction,and (3) runtime address
caleculation, The external definitions are represented internally by de-
scriptors. The format of the descriptors is given and a discussion of the

items in the desecriptors is presented,

1.0 INTRODUCTION

Many applications in Information Storage and Retrieval, data base design,
and other file structuring related areas require the use of files organized in
arbitrary ways. Any change in file structure design may require a sufficiently
large amount of recoding so that it becomes inconvenient to make the change.
Current file definition facilities in most programming languages give little,
if any, description of the underlying structure of the file itself. Languages
such as APLU S5, FOL{ 2] , and IDs{1] that allow file structures more general
than trees do not have the capability to allow the user to describe the struc-
ture of his files explicitlyin the file declaration. We feel that it is both
descriptive and instructive for a programming language to have the capability
just described. It is instructive inthe sense that it can "instruct® the
programming system to perform certain operations automatically, both on the file
and on the records in the file,

The desire to have a file definition facility (FDF) that allows the user
to explicitly (and arbitrarily) describe his file structures necessitates the
development of some type of notation for doing this, The notational scheme
should be of such a nature that it can be efficiently implemented in a program=
ming system. Besides using the notation in an instructive manner, e.g., that
described above, we feel that sueh a notation is important for communicating
file structure descriptions between programs or between humans. The FDF initiated
in this paper can be extended to serve as a communicating element and also as
a descriptive and instructive element interpreted by a programming system to
structure files. Therefore, the major incentive for this research is te develop

a "semiformal” meane for defining graph structured files with variably formatted

record elements and then be able to efficiently implement the FDF in a program—
ming system.

The FDF described in this paper is based on a graph structure view of files.
Codd [li] describes the inadequacies of tree structured files or more general
network models of data, e.g. graphs. However, he recognizes that many data
bases are organized along these lines. The development of a FDF for describing
general file (or data) structures brings with it a few potential problems, e.g.
garbage collection, list traversal, reentrant structures, ete., Also associated
with the desirability to have generalized file structures is the need for record
elements to have descriptions that can vary dynamically in size and format and
be referenced individually. So what we are proposing is a FDF that necessitates
the use of garbage collection, reduires templates to describe dynamic records,
and needs a powerful means for describing records with arbitrary types of components.

This type of system might appear, to the reader, to be complex and ineffi-
cient (with respect to space and time) and thus inappropriate for any practical
use. This system is predicated on the fact that virtual memory systems are now
available for use and by the faet that computer systems, especially microprogram-
mable ones, are replacing traditional software functions by mierocodes, But we
do not depend entirely on virtual memory and microprogramming alone to make this
facility feasible. Many inefficiency problems can be overcome by the development
of efficient programming techniques. In Section 4,0 we describe a scheme for
efficient garbage collection that is currently implemented in LPL [3] o The
other potential problems such as 1list traversal, reentrant structures, and templates
to describe records are also treated in Section 4.0,

The FDF makes use of several primitive functions from graph theory fer the
description of files., Operators are defined for use in record and file defini-

tions. The primitives, the operators, and the format of the definition statements

are given in Section 2.0. 1In Section 3.0 we give examples of structures defined
using the FDF. Finally, Section 4.0 describes the data oreganization suggested
for implementing this facility.

2,0 NOTATION AND SYNTAX

This section defines the primitive functions and the operators used in the
FDF. The author by no means deems this is a complete set of functions and
operators for defining all graph structures; thus, he expects more functions and
operators to be defined during attempts to extend the FDF, Throughout the rest

of this paper x is a file, v is a Tecord, and z is a structure.

2,1 Primitive Functions

Each primitive function is given below and the argument type(s) that it
requires are given, When x and y are used as arguments in a function, we are
not referring to the file or record descriptors (see Sectien 4.0) associated with
each, but instead to a particular allocation of each.

1, cycle (pointerl; pqinterz, saes pointern), or

cycle (pointerl(keyi), pointerz(keyz), caep pointern(keyn))

pointer. is the name of a pointer field defined in a record definition.
-pointer}(key.) is the name of a pointer field defined in a record
definition afid associated with a particular key, key, can be a KEY
wvariable [3:] or alternatively key, can be an index ifito an array of
pointer variables, Either way, keyi identifies a particular peinter.

The cycle function indicates that a cycle (or loop) exists im a file,
A cycle is defined as the loop created by traversing the structure
linked by a particular peinter given in the cycle argument list, If
the cycle function has three arguments, then three individual cycles
exist. These cycles may or may not have records in common,

head(x)*

The head function refers to the head record of file x%.

tail(x)*

The tail function refers to the tail record of file x,

son(y)
son implies an immediate descendent of y. The son function can

imply a set of records as well as an individual record, The number
of records in the son-set is less than or equal to outdeg(y).

successor (y)
gsuccessor has the same interpretation as son. Both functions are
given to allow a cheice in terminology on the part of the user,
e.g. the author prefers son when describing tree structures and
successor when describing list structures,

father(y)

father implies an immediate ancestor. The father-set has a maximum
of indeg(y) records in it.

predecessor(y)

predecessor has the same interpretation as father. father and
predecessor have the same relationship as son and successor.

ancestor(y)

ancestor refers to those records that precede y in a file structure.
In reentrant graph structures it is sometimes difficult to deter-
mine the ancestor-set of vy,

descendent(y)
descendent refers to those records that follow y. As with the

ancestor interpretation, it is not always clear exactly what records
are in the descendent-set of y.

#In some file structures it is difficult to discern the head and tail of
a file.

10. f£ilial(y), filial(y, arcname)

filial(y) implies the set of terminal records of all ares {or links)
originating in y. filial(y, arcname) is the set of terminal records
of all arcs that originate in y and bear the label arcname. For

our purposes arcname is a key associated with a particular pointer,
or it is an index into a pointer array.

11. indeg(y)

indeg is the number of branches (or arcs) entering record y (indeg

is related to the reference count). indeg can have more than one
actual parameter,

12. outdeg(y)

outdeg is the number of branches leaving record y. outdeg(y) is

equal to the number of pointer components in a record. outdeg can
have more than one actual parameter,

2,2 Qperators

The notation x.y used below indicates qualification, i.e. v is a record

in file x.

1. pointer -—p record

— {5 the points to operator

Examplet head(x).p(l) —= tail(x)

2. record1-»- record2

«+— 15 the replaced by operator

Example: tail(x)e— X.¥

3, = 1is the assignment operator.

=can assign a specific value to a field in a record, or it can specify
a value to be entered in the descriptor associated with a record or
file. If the assignment specifies a value for a field in a record,
the assignment is done automatically upon allocation of the record.
For examplet! sysid=2, sysrc=3 (the sysid and sysrc fields common to
every record are discussed in Section 4.0). In the case of the

indeg and outdeg functions, these values are specified in the
file or record descripters only.

4, = is the is defined as operator.

= equivalences two items, e.g. head(x) =y.

5. I\,Vj—'a

These operators have the same meaning as the Boolean and, or, and
not operators. An example from Section 3,0 illustrates their use:

y.p(VAR) —=(ancestor(y) v descendent(y))

2.3 Syntax for Definition and Allocation Statements

The syntax of the statements given in this section is not in BNF notation,
but instead it is given via simple examples. At this point in the development
of the FDF, we do not feel that it is important to provide the syntax in BNF
notation. The syntax resembles, to some extent, that used by ALGOL 68 [8] for
defining structures. The most basic definition described in this paper is the

structure definition:

structure z = (1 i integer, 1 a real, 1 value, 2 b real, 2 p(5) pointer)

The structure definition is equivalent to the PL/1 structure with two exceptions:
(1) an FDF structure can have énother structure(s) as a component (we do not
allow a structure to have itself as a component either directly or indirectly)},
and (2) an FDF structure can have components with variable dimensions defined
at runtime,

Recnrd definitions exist as followst

record v = (r pointer, structure z, sysid=2)

This definition of record y says that it has structure z and pointer r as

components. Also, the system identifier field (sysid) in record y is initialized

to 2 automatically for each allocation of y. The record definition can also
include primitive function directives,
The file definition specifies all records that will be elements in a

file, PFor examples

file x = (record y, indeg(y)=2, outdeg(y)=2, cycle(y.p(1); v.p{(2)))

file %* = (zecord Yy Yos Vg igggg(ylg yz) =2, igggg(yB) =1,
outdeg(yl, yz% =2, outdeg(y3) =1, EISEE(Yz’p(l)’ yz.p(z)))
The last statement type that we discuss is the alloc statement, It can
take on variocus forms, one of which is
alloc y, ptr;

Here we are allocating record y with ptr pointing to it (ptr must be a pointer
variable). Descriptive information can also be included in an allecation state-
ment. The degcriptive information can indicate where the record is to be placed

in the fileg or if some directives were not placed in the record or file defini-

tiens, then they can be placed in parentheses immediately following the record
pointer (or type indicator); e.g.

alloe y, ptritail(X)e— X.y)3
A type indicator (must be an integer variable or constant) can be associated
with a particular instance of a record (the use of the type indicator is
described in Section 4.0). The form of the allocate statement with the type
indicator is:

alloc y, ptr, itypes

Section 4,0 gives the internal representation of structure, record and

file definitions in the form of descripteors. The next section illustrates the

use of the FDF by describing some simple structures.

3.0 EXAMPLES

The use of the FDF is illustrated in this section by a series of examples
describing various data structuress

i. Sequential file, singly-linked.

file x = (record y, outdeg(y)=l, indeg(y)=l, tail(x)=—x.y);

2. Sequential file, singly-linked, circular.

file x = (record y, outdeg(y)=l, indeg(y)=l, tail(x) -—— x.Yy,
tail(x).p —~—+head(x));

record v = (p pointer, value integer);

3. Binary tree file.

file x = (record vy, outdeg(y)=2, indeg(y)=l, y.p(1) ——- son(y),
y.p{2) —s son(y))

record v = (p(2) pointer, value integer):;

4. Sequential file, doubly-linked {(SLIP-1ike fashion (9])

file x = (record y, outdeg(y)=2, indeg(y)=2, y.p(l) —+ predecessor(y),
y.p(2) —ssuccessor{y), head(x).p(l) -—staillx), tail(x).p(2)
———s-head (x))

record v = {p{2) pointer, value integer)

Another way to define a SLIF file structure is to indicate that the
head is a separate node, say ¥y Then

file x = (record Yy ¥,» Qutdes (yl, y2)=2, indeg(yl, y2)=2,
yz.p(l) ——spredecessor{y), Yzap(2)-__a-successor(y),
head(x) = Yy yl.pfl) —tail{x), tail(x).p(2) ~—ﬂ»y1)

record y, = (p(2) pointer)
record v, = {p(2) pointer, value integer)
When a particular record is specified as a head record, it must be

allocated just like any other recerd, e.g. alloc Vqs ptr: .

3. Graph file,

file x = (record y, outdeg(y) = VAR, indeg(y) = VAR, y.p(VAR)
—(ancestor(y) \/ descendent(y)));

record v = (p(M) pointer, value integer):

The definition of the graph structure above introduces a new symbol,
VAR, The reserved symbol VAR is used te indicate that a variable number of some
item exists, VAR never has any value associated with it, The value of M in

the record definition must be specified by the user at execution time.

6, Tree file,

file x = (record y, outdeg(y)=VAR, indepg(y)=l, y.p(VAR) — s son{y));

record y = (p(M) pointer, value integer);

The above structures are not the only ones describable by the FDF; they
were chosen because most readers are familiar with each structure. We have
purposely kept the record definitions simple. At this point we could explain
how the directives in the definitions are actually used to help structure files,
but any explanation requires familiarization with the descriptors for definitions,

S¢ we defer this discussion until Section 4.,0.

4.0 DATA ORGANIZATION FOR AN IMPLEMENTATION

Since the file structures are graph structures, the internat represen—
tation of a file is a list of records. Each record has the following fields

in commons

(1) a type field (TYPE) that contains a pointer to the template
describing this type of record,

(2) a copy bit (COPY) for use in copying files, especially re-
entrant files,

(3) a system reference count field (SYSRC),

i0

{4) a system identifier field (SYSID), and
{5) two link fields, MLP and MRP, that link all records allocated
by the user into a doubly-linked "super list” for use by the
garbage collector,
Some of the fields common to all records are self-explanatory; therefore,
we discuss only the SYSID and SYSRC fields and the use of the super list,
Complete details and descriptions of the common fields and record manip-~
ulation statements are available in [2] and [3].

One problem associated with processors that allow generalized data
structures to be defined is gargage collection. Garbage coilection is a
problem for languages like ALGOL 68 and LPL (and for the FDF) because file
traversal for file structures with a variable number of link fields per record
is a problem. Fenichel [6] discusses this list traversal problem in detail.
He try to minimize the pgarbage collection difficulties in the FDF by using the
system reference count (SYSRC) and the super list (this scheme also appears
in IPL). The number of pointer references to a record is maintained by the
FDOF system in the SYSRC field of each record. As long as the SYSRC is greater
than zero, the correspondingtecord is active and is referenced by one or
more records. During garbapge collection the super list is traversed and the
storage occupied by inactive records is releacsed. Reference count garbage
collection schemes are, in general, not capable of freeing records in re-
cursive files because the refernce counts of the records will be nonzero
(since they refer to themselves), We can handle this problem by requiring
the user to erase the file before he destrovs the pointer to it. The erase
routine uses the COPY bit and looks at the SYSRC in each record to determine
whether a record in a recursive file should be placed in inactive status.

Important things to note about this type of garbage collection are:

11

(1) that the super list alleviates the system from maintaining a 1ist of
pointers to all accessible files created by the user {actually this is not
aproblem in the FDF), and (2) that the tracing of accessible files during
garbage collection is aveided and the marking phase is avoided,

The SYSID field is used to specify the pointer structure in a record. This
field requires three bits to specify whether the pointer structure in the
record is singly-linked (SYSID=0), doubly~linked (SYSID=1), left-right-linked
(SYSID=2), multi=-linked (SYSID=3), or key-linked (SYSID=4), Knowledge of the
pointer structure by insert (and delete) ~-type statements is necessary if they
are to automatically handle the manipulation of pointers. KXey-linked pointer
structures associate a key with each pointer, Then the user can specify, by
presenting a key, which pointers to access. Multi-linked records present a
special problem because there is no automatic way, in general, to determine
which pointers to modify during insertion and deletion. For instance, if we
want to insert record y, after record " and outdeg(yl)=5, then we have to
specify which of the five pointers should point to record Yye We could assume
that all five would be modified to point to Yy but that is usually not what

the user wants to do, especially when working with multi~list files [7] .

4.1 Descriptors and Templates

We use the examples of structure, record, and file definitions given in

Section 2,3 for describing the internal representation of descriptors. The
deseriptor for record y appears in Fig. 1. The name of the record references
a descriptor describing the definition (the length of the descriptor is deter-
mined at compile time)., The record descriptor contains the descriptive infor-

mation included in the record definition.

12

record vy sysid=2 ptr to temp

VAR

/ l

T pointer structure z . .
A//./' / /
i integer a real value s / ptr to temp
' /// 4
./// ’/
e /
}b real p(5) pointer

Fig., 1. Descriptor for record vy

Each structure has its own deseriptor. The third field of the record
descriptor is a pointer to the descriptor for z (the structure descriptor is
shared by all records containg z). The names of items are placed in the de-
scriptors in Fig. 1 for illustrative purposes.

If a record y* is defined as below with variably dimensioned components,
defined at runtime, then a set of templates is required for describing the
characteristics of different instances of y* (such a record is hereafter

called a dynamic record), We require the templates not only for traversal and

copying purposes but also for freeing the storage occupied by inactive in-
stances of y'. Each record descriptor for dynamic records has an entry con-
taining a pointer to the list of templates for the record (non-dynamic records

and structures also have a pointer to a template; however, they have a single

13

template and not a list of templates).

Record v* defined below is an example of a dynamic record. The record

and structure descriptors are given in Fig. 2.

record y*' = (r(N) pointer, structure z', sysid=2);

structure z°* = (1 i(M) integer, 1 a(L) real, 1 value, 2 b(20) real,
2 p(X) pointer)s

record y* / \ sysid=2 ptr to temp list

r(N) pointer structure z° / j \ ptr to temp list
N
§
| \
¥ X
i(M) intepger a(L) real lvalue - ' /
.r‘/ ’
o~
‘/”
b(20) real p{(X) pointer

Fig. 2. Record and structure descriptors for y*® and z°

When a dynamic record is allocated, efficiency can be improved by specifying
the type of the record {don®t confuse this with the TYPE field), i.e. alloc
y', ptr, itype, where itype is an index into the record template list for y°.
If itype is not specified, then the system seavrches for a template matching the
characteristics of record y*. We require this because the TYPE field in each
record points to its template. Fach record must know where its template is
because it has to be accessed when files are traversed, copied, etc. If a

template is not located, then one is allocated and filled (the size and

14

configuration of the template can be determined at compile time), The itype
parameter appears to be convenient because many users will have a specified
number of different types of records that they are using, and a natural way
to identify the various types is to assign an integer quantity as an identifier.
Note that several types of records can be associated with a single dynamic
record definition.

The template(s) for record y' defined above have the format given in
Figs 3. The first word of each template contains the number of words in the
template not counting the first and the block size for the particular instance
of the record. After word 1 in the template, the left half of each word con-
tains a code indicating the type of entry in the corresponding right half,
Word 2 contains a pointer to the next template on the list, if one exists,
Entries appear in the templates in the order they appear in the definition
statementss t.e. if three structures appear in a2 record definition, they will
appear in the template for that record in the same order. If a record is
dynamic but contains a structure definition that is not dynamic, there is

still an entry in the record template for it.

of block
entries size
TEMPTR temp link
POINTER value of N
STRUCT ptr to

DESCRIPT descript for z°
i STRUCT ptr to
; TEMP struct temp

Fig. 3. Record template for y°

15

Fig. 4 gives the template for structure z'. Basically, it has the same
format as the record template in Fig, 3. The template in Fig. 4 has five
entries and this particular instance of z° requires a block of 46 words. The
last four entries indicate that M=15, L=4 and K=7 (M, L and K are the variable
dimensions in the structure z'), The left half of each entry indicates the
type of entry and the right half contains the quantity. 7Two things are
important about the template in Fig. 4. First, the components in z* are placed
in the template in depth-first, left-right order, This order is impeortant
because it facilitates address calculatiens. Secondly, the static components

of a structure are also entered into the template,

5 46
TEMPTR 0
INTEGER 15

REAL 4
REAL 20
POINTER 7

*Fig.4. Structure template for z°

Having the block size of a record or structure defined in the template
simplifies dynamic storage allocation considerably. The sequence of steps in
the execution of alloc v*, ptr, itype; followss

(1) the descriptor of y' is used to locate the template list
(indirect addressing set up at compile time can be used to

access the template list),

#*The zero in word 2 of the template indicates the end of template list.

16

(2) itype is used to locate the correct template in the list,

(3) the record block size is extracted from the first word of the

template, and

(4) a block of this size (given in step (3)) is allocated with ptr

pointing to the first word of the block,

Another problem that occurs with the use of dynamic structures and records

is address calculation. If the structures or records are not dynamie¢, then
.offsets for components can be determined at compile time., The offset is
relative to the base address of the storage block allocated at runtime. But,
if dynamic structures and records are involved, then the template must be
interrogated at runtime to determine the correct offsets. Even with dynamic
elements, the machinery for address calculation can be set up at compile time.
The following example from structure z' is used to illustrate this. Suppose

a reference to component b(j) of structure z' occurs, e.g. z*.value.b(j). We
write T(i) to reference the right half of the i tB entry in template T (template
T is the one in Fig. &4). 1In order to determine‘the offset of b(j), the
expression T(3) + T(4) + j is pgenerated at compile time. The absolute address
is determined by adding the base address of the block allocated for z* and the
value of the expression. If structure z° is allocated as part of record y's
then the value N must be added to T(3) + T(4) + j to calculate the correct
offset since a contiguous block of words is allocated for each record. DNote
that the descriptor for structure z' plays an important role in determining

the offset expression T(3) + T(4) + j. The reader should now appreciate the
reason for ordering the template entries as we did.

Instead of illustrating the descriptor for file x since its format is

very similar to that of record y, we describe how the dirvectives, e.g.

17

primitive funetions, in the definitions are actually used. This discussion
will provide the reader with additional details on descrintor formats and the
entries in the descriptors. We use the examples in Section 3,0 for our dis-
cussion here,

In the second definition of file x in example 4, we have the directive
Qggg(x)ggyl. When the dscriptor for file x is constructed, an entry for the
pointer to the head of file x is included (along with an entry that Yy

is the head of x). The pointer entry will be filled when record Yy is allocated.

A second allocation of ¥y causes this pointer entry to he changed; thus,
causing a new instance of the file to be created and the previous instance to
be lost unless it is assigned te another file. If the first instance of the
file is no longer needed, it should be erased. Every file descriptor has an
entry for a pointer to the file it describesg however, if there is no ex-~
plicit definition of the head of a file then the head is the first record
allocated for the file. An implementation of the FDF should include file

assignment statements of the form file x = file v.

The directive y.p{1) —=tail(x) (example 4) causes an entry for a pointer
to the tail of file x to be placed in the descriptor. This type directive
is important when the tail of a file is frequently changing, thus causing one
or more pointer fields to be updated to the new tail each time., The two

directives head{x).p(l) —stail(x) and tail{x).p{2) —+head(x) necessitate the

use of both the head and tail entries in the descriptor during the creation
of such structures (SLIP structures). We mention again that not only do the
directives provide descriptive information to the user and the system, but

they also cause certain operations to be performed automatically during file

creation.

5.0 SUMMARY

The FDF is an attempt at providing am explicit definition of the
structure of files, The FDF provides the user with a considerable amount
of flexibility for defining fileand recerd structures. The implementation
of such a facility is not without its problems (discussed in Section 4.0).
However, we feel that an implementation of the FDF (along the lines dis-
cussed in Section 4.0} can be developed so that it will be of practical use.
Some of the implementation ideas already exist in LPL.

It is the author®s intention to incorporate the FDF deseribed in this
paper into a systems programming language currently under design and im-

plementation.

19

REFERENCES

Bachman, C.W. and Williams, 5.B. “The Integrated Data Store--A General
Purpese Programming System for Random Access Memories™, AFIFS 1964
FJCC, Vol. 26, Spartan Books, M,¥., pp. 411-422,

Claybrook, Billy G. "FOL: A Language for Implementing File Organizations
for Information Storage and Retrieval Systems®, Presented at the
1973 SIGPLAN-3IGIR Interface Meeting, To appear in SIGPLAN NQTICES.

Claybrook, Billy G. "LPL: A Generalized List Processing Laznguapge®,
To appear in the 1974 Proceedings of the NCC&E,

Codd, E.F. "A Relation Medel of Data for Large Shared Data Banks",
CACM, Vol. 13, June 1970, pp. 377-387,

Dodd, George D, "APL--A Language for Associative Data Handling in
PL/1%, AFIPS 1966 FJCC, Vol., 29, Spartan Books, N.Y., pp. 677-684,

Fenichel, Robert R. "List Tracing in Systems Allowing Multiple Cell-
Types"s CACH, Volo 145 Augustg 19?19 ppe 522"5263

Lefkovitz, David. File Structures for On-Line Systems, Spartan
Books, New York, 1969,

Pecky, J. E., L. (ed.). ALGOL 68 Implementation, North-Holland Publishing
Company, Amsterdam, 1971,

Weizenbaum, J. "Symmetric List Processor®, CACM, Vol. 6, September,
1963, pp. 524-544.

