Technical Report CS73007-R

THE DYNAMIC CREATION AND MODIFICATION
OF HEURISTICS IN A LEARNING PROGRAML

Billy G. Claybrook
and
Richard E. Nance

May 1673

Department of Computer Science,

Virginia Polytechnic
Institute and State University, Blacksburg, Virginia
24061

The research reported here was u
with the Computer Sedience/0
University.,

ndertaken while both authors were associated
perations Research Center at Southern Methodist

followed by the
A 8eneray Procedyre for

lug representation is

C.R. Categories:

Keywords; multivariable polynomial factorization, representation of

heuristics, predicate calculus, learning program

I, INTRODUCTION
S VL LON

of the first-order bPredicate calculus, ye Provide the motivation for the

Scheme implemented in POLYFACT in Sectiop IIT, Section IV discusseg the
Tequirementg of heuristics, describes the first-order Predicate calculus

representation, and the Creation, modification, and eXecution of heuristics.

I1. ELEMENTS o THE PROBLEMnSOLVING TASK

The complex learning task confronting POLYFACT initially Prompts the

heuristicg becomes 5 Prominent consideration, We consider each of these,
i.e. the type of learning, the heuristies by which 1earning is effected,
and the representation of heuristics, to be elementg of the problem~solving

task,

altering the heuristics thar guide their actions, Learning involves the
need to change the mode of attack on a problem by modifying Present heuristieg

OT creating ney ones, Learning also involves the selection of Particular

fiable, ang (2) sufficiently Powerful to Tepresent complex actions. The

First-Order Predicate Calculus
The reader desiring a comprehensive description of the first-order
predicate calculus shouid consult other Sources, e.g, Korfhage [6] or
Mendelson {7]., we attempt only to furnish a brief introduction to the
Principal characteristics, beginning with a few definitiong.

The symbols, constants, and variables require Some interpretation.

variable, are called respectively the universal and existential quantifiers,
and are the formal equivalents of "all" apg "'some
A term ig defined ag follows:
(1) Individual constants and individual variables are terms,

(2) 1f 9 55 4 function and ¢ » Tos ", £ are terms, then
3 1 2 n

£

J

(3) The only terms are those formed by (1) angd (2).

(tl, t2,"‘, tn) is a term,

A propositional variable ig g variable that hag either a true or false
value, A String is an atomie formula if it is either
(1) & Propositional variable gtanding alone, or
(2) a string of the form F? (tl, t2,"', tn), where F? is a
predicate ang tl’ L= T t, are terms,
A well-formed formula (wff) ia defined ag follows:
(1) An atomic formula 1g 5 wif,
(2) If A ig a wif and g 1s ap individual variable, then (a)A

and (Ja)A are wifg,

(3) If A ang B are wffs, then ~(A), (A)>(B), (A)A(B),
(AVB), and (A)=(B) are wffs,
(4) The only wffs are those obtainable by finitely many
applications of (1), (2), and (3).
The expression to which the Quantifier ig applied is called the Scope
of the quantifier, The CCcurrence of an individual variable x ig bound
if it is an Occurrence of (x), (3x), or within the Scope of a quantifier (x)

or (dx). Any other oCturrence of g variable ig 3 free OCtcurrence, Anp

III. OVERVIEW OF POLYFACT
———=— ¢ TULYFACT

the authors (Claybrook [1]}). The Primary objectives in the development of
POLYFACT were:
(1) o design a multivariable polynomial factoring Program that could
(2) to develop a powerful representation for heuristicg permitting
dynamic Creation and modification,
(3) to show that 1earning through the dynamic modification of heuristics

can be usged Successfully in g complex eénvironment to increase the
efficiency of the Program, and

Program to extend itself to nevly classified polynomials ang fur-
nishing a mechanism for 1mplementing localized learning,

the other objectlives were responsible for causing the development of the
representation discussed in the remainder of this paper.

The factorization scheme [8] implemented in POLYFACT relies on the
fact that a reducible polynomial can be written as the product of two factors,
one with M-terms and one with N-terms. During a factorization attempt the
M-term factor is sought, and the N-term factor is determined by division of
the M-term factor into the subject polynomial, Then both factors are saved
and later reduced.

POLYFACT attempts to minimize the amount of searching for the M-term
factor by: (1) building a model for each polynomial, {(2) using learning
for term selection to initiate the factorization process, and (3) using
learning to select term possibilities in the M~term factor. The ﬁodel-
builder is not described in this paper since it has no direct bearing on
the representation of heuristics, but its importance to the factorization

gscheme in POLYFACT is considerable,.

Classification of Polynomials

POLYFACT classifies polynomials according to certaln features that each
exhibits. Through classification the capability exists for applying specific
heuristiecs to a designated polynomial. Two types of features are used in
classification: surface features and hidden features. Surface features are
those feagtures that can be determined by visible examination of the subject
polynomial, Hidden features are those features not immediately visible to
- either a human or a pattern recognition program. The hidden features are
detected during a factorization attempt, i.e. during the factorization of a
polynomial characteristics are discovered that are not obvious from the

initial examination.

zation attempt is successful. The reclassification process is a powerful
one since it provides the capability to apply different sets of heuristicsg
to a single polynomial during itrs factorizarion.

POLYFACT also uses the classification mechanism as a means for extend-

ing itself to factor newly classified polynomials. It does this by borrowing

heuristics. We have solved this problem by developing a representation of
heuristics that can be easily encoded into a fornm requiring littie memory
and then decoded for expansion into the predicate calculus notation prior

to execution. Thig idea of encoding and subsequent decoding requires the

manipulated.

Learning in POLYFACT

We have stated that the amount of searching for the M-term factor is
reduced by using learning to aid in the selection of a term to initiate the
factorization pProcess and to select term possibilities for the M~term factor.
The primary objective in term selection is to choose a term that leads tgo g5
small search space. The heuristic associatred with directing learning in
term selection utilizes the presumption that the term exhibiting the fewest

number of possibilitieg leads to the minimym search space.

The learning assoclated with terp selection is ag follows, After a
factorization attempt ig complete, the number of bossibilities ip each term
of the polynomial ig determined, The features of the term(s) with ninimum

number of possibilities have their frequency count (s) increased. Thep

that do not have thisg feature agre removed fronm consideration for T. The

the rank of each possibility, After a Pelynomial has been factored, each
of the ternmg in the M-terq factor ig examined tro determine itg set of char-
dacteristic features, 4 binary vector is created with nonzerg entries

indicating the featureg Present. Then g heuristic ig constructed in firgp-

characterizing the M-term factor,

if the vector is already Present. If 50, the frequency count for the match—

ing row ig incremented, 1g the vector ig not in the MALTIX, it is added and

the torresponding heuristic is created,

Corresponding to the predicates in the satisfied antecedent, When an ante-
cedent is satisfied the vector (created by the satisfied antecedent) is
compared to each row in the history matrix., 1f the vector is in the matrix,
the rank of the pPossibility is the frequency count, kept as an augmented
column entry in the matched row; otherwise, the rank is zerg,

The possibility selection heuristics are maintained in complete predi-
cate calculus notation and also in the encoded matrix form. The matrix form
is convenient for determining the need for modifications to the heuristics,
The term selection heuristics are kept in an encoded form for all classes of

Polynomials and thep expanded prior to execution,

Analysis of g Factorization Attempt

Regardless of failure or Success, the results of each factorization
altempt are analyzed. During this analysis, POLYFACT determines if the
heuristics for term and possibility selection require modification and L
whether or not the polynomial warrants reclassification in the case of

failure. The learning associatred with term and possibility selection can

As one can determine from the above discussion, the demands on the
heuristies in POLYFACT necessitate a répresentation that can be easily

manipulated and modified during program eXecution. The predicate calculus

(3) ranking the Possibilities ip the set g according to their probable
merit in Creating the M~term factor,

(&) selecting » possibility p from 8, where P is the first term in
the M-terpy factor,

(5) Creating the ger g° of Possibilitieg used to complete the M-term
factor,

(6) ranking the possibilities ip S', and

(7) Creating the remainder of the M-term factor (terms 2 through M)
by the selection of terms from g',

We make np attempt here tq describe the detailg associated with Creating the
Sets of POssibilitieg referred to above, Instead, we refer the Treader to

[1] or [8].

11

The Tépresentation of the heuristics ig probably the key to the sﬁccess
of any heuristie Program (with or without learning), Representation of
heuristies in 4 complex problem—solving environment Prompts several con-
siderations:

(1) The heuristics muse be capable of reépresenting complex actions,

(2) The creation, modification, ang eXecution of heurigticsg should e
relatively simple tagks,

(3) 4an appealing Property of g Tépresentation scheme ig that it econ-

(4) The Iepresentation shoulg allow at least 4 partial solution of
the credit-assignment Problem [5],

(5) The heuristicg should be modular, i.e, the Tepresentation should
allow the construction of heuristiecs frop distinguishable com-
ponents,

(6) The representation should allow heuristies to be referenced ag
(7) The heuristics shoulg rermit dynamie manipulation during program

(8) The final consideration is the flexibility of the representation,

Programs such ag POLYFACT Tequire g comprehensive analysis of the pProblem

situation, i.e. several criteria must be tonsidered, often simultaneously,

te the actugl Creation and modification of heuristics to be simple; however,

once these decigsiong are reached for particular heuristics, the procedyres

with an individual identifier, The Practice of associating an identifier
with each heuristic ig useful when learning ig implemented ip different parts
of the Program. The heuristicg peculiar to each area can be referenced and
eXecuted ag required by a Standard execution Program,

Of the eight tonsiderationg stated above, the final four, i,e. con~
siderationg numbered 5 - 8, constitute significant requirements beyond those

usually placed on the representatiop of heuristicg, These four requirements

First-Order Predicate Calculus Re resentation

In treating the creation, modification, and execution of heuristics, we

13

advantages, We recognize that other applicationg might foster details that we
do not consider, Consequently, we limit tha description of implementation detailsg

Lo only the few taken from POLYFACT to illustrate certain ideas,

General Form

The notation is identical to that of first-order Predicate calculyg except

(1) NaME (DOMAINl) (DOMAIN2)°'°(DOMAINR) ((ANTECEDENTl c CONSEQUENTI)
0-++0 (ANTECEDENTn c CONSEQUENTn)) $, or
(2} NaMg ((ANTECEDENTl C CONSEQUENTl) 0 (ANTECEDENT2 C CONSEQUENTZ)

Qa9 (ANTECEDENTn C CONSEQUENTH))$.

14

tonnected by conjunction ('A' = AND) and/or disjunction ("0 = OR) operators,
Each predicate is a logical function and tan be referenced with arguments that

are constants, variables, or functions, ‘¢ is the conditional operator, and

H1.1 (ET 1IN IPTRS0) ((n Hl(Gll(T), MINDEG) C FIX123)) §

This heuristic consists of tha components:

Hi.1l 1s the NAME of the heuristic,

(ET 1IN IPTRSO) is the DOMAIN of the heuristic,

N is the negation operator,

H1 is a predicate that is '"TRyUR! if GLi(T)
equals MINDEG,

Gl1 jg :ef;n;fion whose value ig the degree

T iz a bgggg_variable,

MINDEG is a constant function, i.e. a function

whose value is constant during the exe- :
cution of the heuristic, oo

c is the conditional o erator, and
—————=272. Operator

FIX123 is a CONSEQUENT .

15

Each individual heuristic in POLYFACT is represented internally as a
right-linked 1ist. The value of each cell in the list 1is an alphanumeric
string of characters representing a token in the heuristic. The tokens 1in
the heuristic are individual entities such as 'H1.1', ‘c', 'E', 'T', 'IN',
"IPTRSO', etc. The internal representation of heuristic Hl.1l is shown in
Fig. 1.

The heuristics corresponding to a particular classification in POLYFACT
are similar in representation to H1.1. All heuristics in a set are linked
together as a left-linked list with the subsets comprising the total set
delimited by a cell with value '?'. Generally an entire subset of heuristics
is executed; however, by using the name of a heuristic and a pointer to
the total set of heuristies, an individual heuristic can be referenced,

i.e. any single heuristic can be executed provided its name is known.

"Insert Fig, 1 here"

Creation and Modification

We have emphasized that the learning process in POLYFACT is through
the dynamic creation and modification of heuristics. Tables are used to
define constraints on the creation of heuristics, Although these constraints
could be null, giving the learning program total responsibiiity for the
Creation decisions, some limits seem appropriate for most applications,
In both the creation and modification of heuristics, tables serve to specify
relationships between predicates, tonsequents, domains, etc. The data in
these tables can be read from input cards, thereby adding a note of flexi-

bility to thelr creation.

Fig. 1. 1Internal representation of heuristic H1.1

|

HL|

[~ | i | i
IPTRSO { N

[| i [— o—
Hi —'t@ { I T

= 1 = = |
) MINDEG]) C

16

consequent palr, The consequent-domain type table specifies the correspon-

dence between each Consequent and the sets frop which values for a variable
are selected. Each bound variable must be an argument in a predicate (within
an antecedent) or consequent, Normally, we can expect the variable in 1
domain field to be used as an argument 1in specific antecedent-consequent
Pairs designated in this table.

The domain type-variable-set table defines the variable-set pair

associated with a domain type. The domain is determined by the variable
and the set from which the values of the variable are taken, The purpose

of this table is tg bprevent heuristics with a given type of domain from

a certain mixture of domains.

These three tables are used by the routines that create and modify
heuristics, The implementation of these tables for the creation of
heuristies can be simplified by having entries that are pointers to lists
containing the variables, predicates,‘consequents, ete. in symbolic form
rather than storing the symbolic names of these tokens in the tables,

Assoclated with the translation from infix predicate calculus notation
to Polish postfix notation, which is described in subseqpent paragraphs, is
a predefined symbol table. This symbol table has an entry for each token
that can appear in a heuristic. Three attributes are associated with egch
token: (1) token type, (2) number of arguments, if any, associated with the

token, and (3) an index. The token type identifies the token during the

17

translation Process, i,e, it indicates whether 4 token ig ap operator or a
variable., The function of each of thege other two attributes ig discussed

later, an example of the Predefined symbol table ig given in Table I.

"Insert Table I Here"

In Table I, the token N (negation symbol} has type 1, a single argument and

an index valye of 1. @11 is 4 function and has type 2 (all functions are

of type 2), All predicares are of type 3, and all forma] Parameters guch

as T,F,IPTRSO, etc. are of type 17,

the Creation routinesg:

ISBTYP = 1 ‘ add a predicate to a heurigtie

ISBTYP = 2 ¢ add an antecedenthéonsequent pair to a heuristie

NEWSET = 3 { & new set pf heuristieg

NEWSET = ¢ { an old set of heuristics

INOM =9 * the heuristic ig a4 new one

INUM # ¢ ‘ gilves the number of the antecedent—consequent pair
to which a new Predicate ig pq be added, or it gives
the positioﬁ in a heuristic for the addition of a
new antecedent-consequent pair

IVDEX ? pointer to g variable

ISDEX * pointer to a ger in the domain field

ICDEX i pointer to the consequent

IANTC ¢ pointer to the antecedent

NAME name of the heuristic to be modified

ce

TARLE 1

EXAMPLE OF SYMBOL TABLE ORGANIZATION

G I F Ho
0 o 6 $
o] 0 8 {
0 0 L)
& 2 9 o)
€ 2 G o]
2 - v v
I i ! N
X3ANI SIN3IWNONY d40 ¥3gWnNN 3dAL NIMNOoL

Technical Report C573007-Rr

THE DYNAMIC CREATION AND MODIFICATION
OF HEURISTICS IN A LEARNING PROGRAM1

Billy G. Claybrook
and
Richard E. Nance

May 1973

Department of Computer Science, Virginia Polytechnic
Institute and Sta

te University, Blacksburg, Virginia
24061

The research reported here was undertaken while both authors were associated

with the Computer Science/Operations Research Center at Southern Methodist
University,

IPHRT ! pointer to the heuristic with name NAME
IHEURT ¢ pointer to the set of heuristics created.
Whenever a consequent or domain is required in the construction of a
heuristic, the particular entity is formed (as in the case for domains) or
simply copied (as is the case for consequents) from the lists of tokens,
thereby never allowing any of the original tokens to be destroyed. All of
the parameters described above are used by the creation routines. Note
that IANTC is a pointer to the antecedent and not a pointer to a predicate.
The antecedent is determined before the actual creation of a heuristic is
performed since it can be a logical combination of predicates and is usually
determined by the learning programs.
Each heuristic is represented in fully parenthesized form so that no
ambiguities can resylt as modifications are made to the heuristiecs. A
heuristic can have the following form:
NAME (DOMAIN) ((ANTECEDENTl c CONSEQUENTI) 0
(ANTECEDENT2 c CONSEQUENTZ) 0 (ANTECEDENT3 C CONSEQUENT3)) 5.
Initially this heuristic consists of one antecedent-consequent pair. Modifi-
cation for this heuristic results in the addition of antecedent-consequent
pairs. During the execution of this heuristic, execution is accomplished -
for the first comsequent whose antecedent is satisfied. This execution %‘

process is similar to the COND statement in the LISP- language [9].

The order of the antecedent-consequent pairs in a heuristic can be
important, especially when more than one antecedent can be satisfied per
execution. With multiple antecedents the parameter INUM becomes crucial,
and some procedure is required to determine its value and to establish the

reordering when antecedent-consequent pairs are added to a heuristic. To

19

a heuristic between two already existing heuristics in a set, thereby changing
the order of execution, When the insertion process is necessary in POLYFACT,

the name of the predecessor for the heuristic must he specified. Insertion

Within POLYFACT the heuristics are created and modified dynamically
during program execution. However, if the Predicate calculus representation
is used in a heuristic proegram not requiring this capability, then the
heuristics can be created by reading the parameter values in the above list
from input cards. An alternative procedure would be to input the heuristicsg
in the first-order predicate calculys representation,

We remind the reader that any symbol in the predefined symbol table
can be used as an entity in a heuristic. For example, the formal arguments
in a predicate can be different from one use to the next. In most instances
the user requires some method of controlling which entities are allowed to
be selected during creation, and he can control this selection by the use of
the tables described earlier. The modular form of the Tepresentation allows
the designer to increase the entities available for heuristic construction

by adding them to the input stream,

Execution of Heuristics
Each time ga heuristic ig executed, it is translated into a reverse
Polish string and then executed interpretively. Interpretive execution of
the heuristics in POLYFACT is necessary since they are modified dynamically,

However, the execution routine is quite straightforward.

20

Whenever a heuristic or subset of heuristics is to be executed, a
pointer to this set ig passed to the execution routine. The heuristics that
contain non-null domains select elements from the sets given in the domains.
In the selection of elements frem a set, a heuristic can consider all ele~
ments in the set, and the elements can be selected serially or randomly. 1In
this case, the domains have the form:

(ET IN IPTRSO),
where the E indicates that all elements (T) in the set IPTRSO are selected
during the execution of the particular heuristic, A heuristic with a non-
null domain can also consider elements from a sel until an antecedent is
satilisfied. The corresponding consequent is then executed and activation of
this heuristic is terminated. Thig type of domain is represented as:

(EA T IN IPTRSO).

We refer to the execution routine as procedure EVAL. EVAL is responsible
for determining when the execution of a subget of heuristics is to cease.

It is also responsible for identifying the sets within each domain field and
monitoring the order in which elements are selected from these sets. For
example, assume that the heuristic currently executing is:

Hl.3 (EA F IN IFPTRL) (EA T IN IPTRS0O) ((HL(L11(T,F),TF) C SUB1))S
The execution of heuristic H1.3 ceases the first time an antecedent is satis-
fied, i.e. the consequent SUBL is executed at most once. The execution of
the heuristic formed by replacing EA by E in the innermost domain in heuristic
H1.3 can cause multiple executions of the consequent SUBl. Note that the
nested domains give the same effect as nested loops, i.e. elements are selected
from the inner domain more rapidly than the outer domain,

The precedence functions in Fig. 2 are used in the translation algorithm,

X F(x) G(x)

FUNCTION (OR SUBRQUTINE) 15 15
PREDICATE 14 14

N 12 13

A ! i

_ 0 10 io

C S)

(8 7

) 7 7

5 6 6

Fig. 2. Precedence functions for parsing algorithm

The translation algorithm in Fig. 3 is similar to that of Graham [10]. The
¢ and y symbols 1in Fig. 3 are the current token and top of stack token,

respectively,

"Insert Fig. 2 here"

"Insert Fig. 3 here"

The translation brocess is carried out in the following manner:

(1) The translation algorithm bProcesses each token in the heuristic
in a left to right manner. A pointer to the corresponding token
in the predefined symbol table ig determined.

(2) The algorithm uses the Precedence functions in Fig. 2 to determine
whether to cutput the token (actually the symbol table pointer
replaces the token in the reverge string) to the reverse string
or place it on g stack..

(3) When all tokens have been scanned and the stack is empty, the

its symbol table entry pointer.

EVAL changes the contents of each cell in the string to obtain the
token type, number of arguments, and the index. Once each cell in the
string contains this information, EVAL is ready to begin eXecution of the
heuristic. Even if 4 heuristic is executed several times, e.g, a heuristic
with domain (E T IN IPTRS0), the translation process is performed only once.

We use the following heuristic to illustrate the translation process:

H1.2 (E T IN IPTRSO) ((N Hl(Gll(T),MINDEG) AN Hl(GZl(T),MINVAR)C FIXi23)) § .

START

STACK '§'

+

GET TOKEN

oA
VARIABLE

PUT O
IN STRING

Fig. 3. Translation algorithm for first-order predicate calculus

IN STRING

POP STACK

EXIT

Y

STACK o

PUT ¥
IN STRING

:

POP STACK

Fig. 3. Continued

Strict; this ig illustrated by the relative positions of C and FIX123, A
Striect translation to postfix notatiop would result ip FIX123 C. Since we
want to execute the Consequent FIX123 only if the antecedent is true when
the token C ig encountered (indicating that the antecedent value has been
determined), we check the value of the antecedent, Ap antecedent valye of

"TRUE" triggers execution of the consequent, otherwise execution is omitted,

mentioned in the reverse Poligh string,

The final €xecutable form of the Polish String above ig shown in
Fig. 4. 1f 1P ig 4 pointer to any cel] in the list, thep LLINK(IP) is
the token type, LLINK{IP+1) ig the number of arguments and RLINK(IP+1) ig
the index, Since POLYFACT ig implemented ip FORTRAN, the index is for a

computed GOTO; however, generally speaking the index is an indicator where

"Insert Fig. 4 here"

EVAL (in POLYFACT) has a Statement number which Corresponds to each
index in the Predefined symbol table. When the Polish string 1is executed,
the index entry in each cell indicates the statement number to which control

is transferred causing some action, The action may be: (1) stack an argu-

ment, (2) reference & predicate and stack the resulting logical value, (3) call

9] - 5 013 l 2 15 |
0_120 (3] 0!l0 2 115 [
4 Lo o [0

212 4 0125

Fig. 4. Executable form of Polish string

23

a consequent type subroutine, or (4) perform a logical operation and stack
the result. If a function, predicate, or subroutine has arguments, then the
entry LLINK(IP+l) in the corresponding cell is nonzero. In this case before
the routine is executed, the arguments are popped from the argument stack
and placed in their respective positions in the parameter list of the
routine. This process allows the arguments in a predicate or the functions

in a heuristic to vary from one execution to the next.

V. SUMMARY

The task for which POLYFACT is designed is complex. Factorization of
multivariable polynomials is an exceedingly difficult problem for humans.

An integral part of the internal strategy of POLYFACT is the ability to
create and to modify heuristics dynamically, i.e. during program execution.
This ability places extraordinary requirements on the scheme for representing
heuristics; yet the first-order predicate calculus notation has proved
effective.

We believe the predicate calculus representation to be sufficiently
powerful and flexible to function effectively in problem-solving environments
other than the factorization of polynomials. For someone considering the
use of the representation, we can sketch a step-wise description of our
development (assuming the potential user has formulated his problem):

(1) Determine the heuristics for attacking the problem,

(2) Describe the heuristics formally, if possible, in first-order
predicate calculus notation.

(3) From (2) determine the domains, variables, constants, functions,
predicates, and consequents.

24

(4) Write the necessary programs for the functions, predicates, and
consequents described in (3),

(5) Write an execution program for translating and executing the
heuristicg.

(6) Write the routines for Ccreating and modifying the heuristics.

(7) cCreate the cross-reference tables or give the program the capa-
‘bility for learning the correspondences,

Specific aspects of the relationships between heuristic Trepresentation
and other elements of the problem—solving task in POLYFACT might prove use-~
ful to others. In particular, the cross-reference tableg to define con-

Straints on the creation of heuristics seems ap effective approach. One can

natural than the one we Propose. Finally, we believe the predicate calculus
representation enables a more comprehensive implementation of learning than

iz described in bPrevious research.

10,

25
REFERENCES

Claybrook, B.G. POLYFACT: 4 learning program that factors multi~
variable Polynomials, Ph.D, Dissertation. Computer Science/Operations
Research Center, Southern Methodist University, 1972,

Samuel, A.rL. Some studieg in machine learning using the game of
checkers, 1p Feigenbanm, E., and Feldman, jJ, (Eds.), Computers and
Thought, McGraw-Hill, New York, 1963, pp. 71-105.

Slagle, J.R., and Farrell, ¢.p, Experimentg in automatic learning
for a multipurpoge heuristic Program. ACM Communicationg 14 (1971),
91-99,

Doran, James. Ap approach to automatie problem—solving. In
Collins, N.L., and Michie, Donalg (Eds,), Machine Intelligence 1,
American Elsevier, 1967, 105-123,

Waterman, D.A, Generallzation learning techniques for automating

the learning of heuristicsg, Artificial Intelligence 1 (1970),
121-179.

Korhage, Robert R, Logic and Algorithmsg, John Wiley & Sons,
New York, 1966,

Mendelson, Elliott, Introduction to Mathematical Logic., Vanp
Nostrand Reinhold Company, New York, 1964,

Claybrook, B.G, A heuristic factorization scheme for multivariabie
Polynomials, VPI & Su Technical Report €5-73002, 1973,

McCarthy, John, Abrahams, Paul w.,, Edwards, bD.J., Hart, T.P., and

Levin, M.7T, LISp 1.5 Programmer's Manual, MIT Pregs, Cambridge,
Mass, 1969,

Graham, Robert M. Bounded context translation, 7, Rosen, Saul(Ed.),
Programming Systems and Languages, McGraw—Hill, New York, 1967,

