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Errata

page 7, line &4 should reasd:

(pg + pr + g8) | t(p + » + S) + grst,

page 7, line 6 should reed:

AJAKpOAKpriigsKtApArNsKgkrliNst,



Abstract

This paper reports research into cellular automata with two binary inputs,
two binary outputs, and an octal control variable. A set of control variables
is choﬁéﬁ énd.it is shown that any function of three variables can be realized
by a 2 x 2 array of cells, any function of four variables by a 2 X 6 array of
cells. A construction based on the Shannon Decomposition Theorem 18 given for
the realization of functions of more than four variables. The existence of
a more efficient construction is conjectured. A definition of_the circuit
defining the cell is given as well as an implementation using NAND gates.
A'practita1 configuration of the cells 1s suggested and faylt correction is

discussed.



This paper presents, for the most part, a statement of new results with
only a sketch of the proofs of those results. At this time elegant proof
methods are lacking and, as a result, the proofs involve consideration of a

large number of cases. An extensive bibliography on cellular automata is

found in [2].

1. Fundamental Results.

»

We consider a cell with two binary inputs and two identical binary outputs.
In addition the cell possesses an octal control input. This control input

determines the function defined by the cell.
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We say that Fpq = <abcd> whenever FOO = a, FO1 = b, F10 = ¢, and F11 = d.

The eight functions defined by the eight control values are:




Control Function
0 Kpg = <0001> {and)
1 Dpq = <1110> ({nand)
2 q = <0101> (left input)
3 Jpg = <0110> (nonequivalence)
4 P =<0011> (top input)
5 Cpg = <1101> (implication)
6 Apq = <0111>  (or)
7 Xpg = <1000> (nor) P

Hereafter we refer to the set of variables defined © this table as the set of

control variables.

It is convenient to use the following schematic representations for the

cell when the contro] variable is 2 or 4:
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_ 2 —  we represent as: |
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ek 4 we represent as:




The selection of the set of control variables is, to some degree, the
result of experiment. The functions K, D, J, A, and X are reasonably natural
choices and thése functions have the advantage of being commutative. Very
early it became clear that it is necessary to include p and q. C was chosen
after it was determined that our first two choices {Np and Epg) were insufficient
to prove Theorem 1. The function Cpg may be replaced by Bpg = Cgp. Cpg can
be replaced by neither Lpg = NCpg nor Mpg = NBpg.

Theorem 1: If Fpgr is a function of three binary variables then Fpgr hay be
realized by a 2 x 2 array of cells with inputs w, x, ¥, z, where

Wy Xy ¥, 2 & {p, g, r}. Thus:

fotn.

The proof consists in dividing the 256 functions of three variables into
thirteen classes and showing that each class may be represented by a fixed

substitution of p, q, ard r for w, x, y, and z.

Theorem 2 can be used to obtain a realization of all four place binary

functions.



Theorem 2: 1If Fwxyz is a function of four binary variables then there exist
functions H, Gy, Gé, G3, and 64 such that H is a function of
three variables and G], GZ’ G3, and 64 are elements of the set of
control variables and Fuxyz = G]GZHk]k2k363k4k5G4k6k7, where

k-ie{ws Xy ¥y 2, O, ]}, f0r1i1£7.

The proof of the theorem depends upon Tooking at 222 classes and also showing
that the use of inverted inputs js unnecessary [3]. Since H may be

realized by a 2 x 2 array of cells, we have F'realized by the 2 x 6 ar}ay of cells:
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It is possible to extend this result to functions of more than four

variables using Shannon's Decomposition Theorem, that s, by using the fact that

if F is a function of the variables X2 X5s ve0os X then we may write:

I}

Fxyoooxy = X Fxquooxg g1 + §;Fx1...xn_]0

n

]

X 6%y .o x QEHX]...xn_].

We write this in parenthesis-free notation and note that it may take an

alternate form:

F = AKXGKNxH = DCHxDxG, where § and H are functions.



Theorem 3: If n > 4, then Fx]...xn may be realized by an array of (n - 2)

X (10'2n'4 - n) cells.

The theorem is proved by induction. The basis of the induction is Theorem 2.

The induction step is shown, for Fx]...xnxn+] = xn+]Gx1=.,xn + xn+]Hx]..ux

ne
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where (H) is the (n - 2) x (10'2"]-4 - n) cells required to realize Hx]...xn;

(H) (A) )

(G) is the (n - 2) x (10“2n_4 - n) cells required to realize GXqeuiXps

(A) is the (n - 2) x (n - 2) array having 4 as control variable on and
above the secondary dfagonal and having 2 as contro] variable below
the secondary diagonal (the effect of this is to take the input
variables from the top to the side);

(B) is a column of cells with each control variable 4;

(C} and (D) are rows of cells with each controi variable 2.

F is actually being evaluated as DCHxDxG. It could also be evaluated as KCxGAXH.
The size of the array above is:

(h=1)x {n-2+20002"% .y 4 1y

={n-1)x (]O'Zn~3 -n -1},

which gives the result.



following the realization of a function of three variables by a 2 x 6 array,
as few as four of the control variables {1, 2, 4, 5) are sufficient to achieve

all further extensions. We suggest the following:

Conjecture: 1If n >4, then Fx]..oxn may be expressed in the form:

Fx]...xn = G}GZHy]...yn_}GBV?,.,Vn_254w?..own_25

where al] Yis Vis wy, E_{x}, cees Xpa 0, 3}, and Gy and Gg,are elements
of the set of control variables, and G3 and 64 are functions of n-2

variables, and H is a function of n-1 variables,

If this conjecture is true, it gives an improved situation with regard to
the size of the array of ceils necessary to realize a function of n variables,

For small values of N we would have-

n ' Theoren 3 | Conjectyre
3 2 X 2 2 %2
4 2x6 2 x 8
5 3 x 15 I x 14
b 4 x 34 3 x 30
7 5x 73 4 x 64




2. Implementation.

Supposing that the octal contro] input to a cell is realized by an ordered
triple of binary inputs (which we denote by r; s, and t) and denoting exclusive-

or by a vertical stroke, the cell used in this paper is defined by:
(P *+ pr+as)  tip+r+3) + qst,

or, in parenthesis-free notation:
AXAquAKerqsKtApArNquKrKNst,

where the octal numerals from the table of contro) variables of Section )

are all replaced by their binary equivalents.

A possible NAND implementation of the cell consists of:




The cells are combined into n x p arrays. Each pair of these arrays is

Separated by an n-bit register. Below the arrays are denoted A and the

registers B.. Each B 1S used for input and output to its neighboring arrays,

The control of the By is such that, say for B]

(i) B] May accept output from Ays
(ii) B may be input for A,;
1 2

{(ii1) Bl may be completely bypassed, A7 being connected
directly to A2'
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The value of n actually chosen is a compromise to avoid the high cost and
complexity arising from a small value for n, and to avoid inefficient use of
the power of the cel] arising from a large value of n. In current experimentation
we are using n = 16.

In the event of a single cell failure within a block, the octal micro-
program can easily reconfigure the array, resulting in the logical removal of

one row and one column from the block.

Suppose that o has failed in the block shown. A1l the cells in the same column
.as a are given the control value 2. A1l the cells in the same row are given the
controi value 4. As seen, this effectively bypasses o in the same way in-

which Akers [1] does for his arrays. Consequently, there is not the loss of a

block, but only a reduction in its useful size.
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