Technical Report CS73005-R

omplete Machines

Functionally Comp

by

T. C. Wesselkamper

and State University

Virginia Polytechnical Institute

Science, v.p.I. & 8.U.»

Dept. of Computer
24061

Author's address:
Blacksburg, Virginia

ABSTRACT

This paper defines a functionally complete machine as a machine which
is capable of evaluating every two place function over its data space.
Necessary conditions on memory size for completeness are developed. These
conditions are applied to System/360 as modelled by the space of bytes,
the space of halfwords, and the space of words. sufficiently large (> 64K
bytes) models of System/360 are shown to be complete for the space of bytes.
Yo models of System/360 are complete for the spaces of halfwords or words.
The inequalities developed and known examples of universal decision elements

suggest structures for complete machines.

I Preliminarios and Definitions

Computer manufacturers are wont to describe their machines
as "veneral purposc computers. ™ The implication of this desceription
appears (o be that an advertised machine can do anything and every-
thing. This corresponds clusely to the mathematical notion of
Lunctional completeness, This paper investigates the ovidence avail-

able concerning the validity of such a claim.,

A sct F oof functions defined from a space X (o a space Y is
vomplete if every function from X into Y may be dcfined as a composite
of the elements of F. For cxample i{ Y is the space {U, I} and if
X =Y xY, then I is complete if each of the sixtecn pos‘sib;e functions
from X into Y can be defined in terms of the elements of F. Common
usage permits a certain amount of imprecision about the domains of the
functions of ¥, Typically both one place and two place functions are
mcluded, Thus the functions corresponding to the operations of impli-

cation and negation are said to be a complete set of functions for the
gpace {0, 1} .

Of particular interest is a kind of complete function introduced
by Sobocinski. In 1953 he exhibited a four place function defined over
{U, D which has the property that cach two place function sver
((.), l} may be defined by a substitution of variables and constants

into a single instance of I, Sobocinski called this a universal decision

clement (UDE) and showed that there exigt no three place UDks
[or the space 0, 1 . fl] Others have investigated all

such four place UDES, [_&_[

In this paper we consider completencess to mean the
ability to define two place functions over a space. The set of
two place functions includes the set of one place functions as a
subset. Each function of more than two places may he defined
in terms of one and two place functions, [J] We consider
here whether stored Program machines are lunctionally com-
plete and conditions, some necessary, some sufficient, for

completeness,

2. Completeness via Function Tables

If we discuss the completeness of a machine we must decide
upon a space which is to be considered to be a model of the machine's
operation. In the case of the System/360 group of machines, there
secm to be three reasonable choices: the space of bytes, the space

of halfwords, and the sp.ace of words.,

There are 28 = 256 elements in the space of bytes. Hence

ps
6256 219

there 2 25
lere are 2

two place functions over this space,
Is it possible to define each of these functions on a System/360

machine? The answer depends on the memory size of the machine,

One completely general way to describe a two place function
is by means of its functional table. Evaluation of the function is
accomplished by table lookup. For the space of eight bit bytes this
table would occupy (28)2 216 = 26K -: 64K bytes. Additional
core space would be required for a table lookup algorithm. Surely
any model of System/360 with more than 64K bytes of core is com-

plete over this space of bytes,

While on System/360 the byte is the smallest addressable
unit, it is not the normal operational unit, The halfword is an
operational unit and the full word is the normal operational unit,

The previous table lookup technique works in neither case,

The space of halfwords containg 210 elements and there

232 ’236

232)
2 two place functions over

are (Zl(’) (&24}
the space. The function table for a two place function would
contain (216)2 halfwords, that is, 233 bytes. Since System /360
employs an addressing technique which uses 24 bit addresses,

this table lookup technique would require far more core than is

possible for System /360 addressing.

The space of words would require (23‘2)2 words which is

566

bytes for the function table of a two place function. There

are (232) H = 2 two place functions over

this space.

3. Complete sets of Algorithms.

The notion of table look-up is not a realistic model or the
operation of a machine. If a machine possesses an algorithm
such that for each two inputs there is an output, then the machine
may be regarded as a two place function. If for each input there
1s one output, then it may be regarded as a one place function.

This in no way describes the behavior of all computer programs.

Throughout this paper we use the function log to denote

the logarithm to the basc 2.

If 2 machine has word length k bits and has M machine
instructions, then there are (Zk)ZZk two place functions over
the space of words and to each of these functions there must
corrcspond an cvaluation algorithm consisting of (not necessarily)

distinct) machine instructions .

There is one trivial program consisting of no instruction;
there are M programs of one instruction; there are M2 programs
of two instructions; and, in the general case, there are MDP
programs of n instructions, If a sot of algorithms is to evaluate
all two place functions there must be al least as many algorithms
as functions., The sct of all algorithms of n or fewer exXpressions
containg

2 N) n o Mn"l -1
) ' M - 1

elements.

Hence for completeness n must satisfy the inequality

+1
MM z okeck
M -

{1

The left side of inequality (1) is sirictly greater than MU

for M > 1 and so if (1) is a necessary condition for complete-

ness then the inequality

52k
Mt (Zk)z (2)
is a necessary condition for completeness,
Now suppose that, as in the case of System/360, there

exists an integer j such that k = 20, The last inequality becomess

i 2k P2k
Mt s 25 L L2 . (3)

Since the function log is a monatone lunction, taking the

logarithm of the inequality twice results, successively, in:

nlog M > ZJ‘.Mk log 2 2’ Hek

0

and .

logn +log log M > j + 2k log 2 = i o2k,

This last inequality may be rewritten:
log n > j + 2Jt1 _ 164 log M. (4)

For System/360 the possible values of k are 8, 16, and

32, and so the possible values of jare 3, 4, and 5,

Machine instructions for System/360 are 16, 32, or 48
bits long, In cach case the first 8 bits denote the op code of the
instruction, ‘. There are approximately 55 instructions of 8 bits
(type RR), 70 instructions of 32 bits (types RX, RS, and SI1), _
and 20 instructions of 48 bits (type SS). [4]

If the host machine is so large that each possible 24 bit

address is an actual address, then there are:

- 2
k = 55.28 5 70.2°% | 50.210

possible machine instructions, and

-1

log log k¥ - 5,47 approximately.
Small changes in k have little eflect on the value of log log k.,

‘he average value of the length of a machine instruction

28, 138 bits or ahout 3.5 bytes,

For the possible values of j noted above we have from (4)

the inequalities;

j = 3: logn >19 - log log k = 13,53,

—.
i

4: logn >36 - loglog k = 30.53;

J = 5: logn>69 - log log k == 63, 53, (5)

To be functionally complete for each of the three spaces a machine
must evaluate programs dlength greater than or equal to n instructions
where n is the smallest integer which satisfies, respectively, the

three inequalities of {5).

If & program has n instructions and the expected value of the
length of cach instruction is 3.5 bytes, then the expected size S of
the program is § = 3, 5-n, where S ig Measured in bytes. Hence
to be functionally complete over the space of bytes, halfwords,
and words the number of bytes in core must at least s.atisfy the

inequalities:

bytes: log S > 13.53 4 log 3.5 == 15, 34,
halfwords: log 5 > 30.53 + log 3.5 == 32.34;

words: log 8 2> 63.53 + log 3.5 == 65,34, {6)

In the case of the space of bytes this means that there be in
excess of 215 - 32K bytes, which is comparable to the result based

upon evaluation using table lovkup,

In the case of the spaces of halfwords and of full words, there
is clearly no way to store such a program on System/360 cquipment.

System /360 is not complete for these two spaces.

The development of inequality (4) makes it clear that it repre-
sents a necessary condition for completeness and not a sufficient
condition. Among other things, its sufficiency would require that
of the programs of length n statements or fewer, no two programs
define the same function. This is surely false since the one state-

ment programs co rresponding to the Assembly language instructions
OR fn,n (0 < n< 15);

and

NR ' n, n (0 < n < 135);

Fepresent thirty-fwe examples of programs which evaluate i)e
tdentity Mapping,

10

4. Universal Decision Elcments,
25 ZAlldIon Blements

I Fis a UDE for a space of n points, then a machine which
evaluates F ig complete for the space,

n-valued space X there is an (

We can show that for any
nd +

Z)-place UDE.

Let N = nz and define:

(%, vy; 21 Zh, e, zN) = z;, where i = nix - 1) +

Now if fxy is any two place function over the s

pace X, {xy is given
by:

Ixy = (x, y: f11, {12, -+, fnn),

that ie, by the substitution:

#i = djk, where j = ([(i-1)/n 14, ang

k= ({((i - Dmod n) 4+ 1)

, and

I_x] s represents the greatest integer in x,

. . . 2
J. C. Muzio has conjectured that there is g UDE of n
n-valued space X, [5]

t 1inputs for the

11

The UDE defineq in (6) is a glorified table look-up technique,
Prog ramning for such g compute r would e rtainly differ from pre-
sent Programming, However, experience with small values of n
Sugpests that when UDE's exist they exist in abundance, In the
tasen = 2, Epic Foxley showed that there are 263 four place UDEs, [3]
All of this Buggests that the re may be complete machines which eval-
wate functions in familiar ways over the Space of k bit words and have
"Memory size in the neighborhood of 22k + 2 words., The numbers
involved here SUugpest a configuration consisting of 22k words. of
tore, cach with a double word address, together with 4 double word

next-instruction register,

In Section 3 we obtained the hecessary condition:

52k
MY > k2 (2)
Again, taking the logarithm twice yvields:
logn + loglog M > 2x . log k (7

If each instruction is J words long then M - Zkl, and (7) gives:

logn + 1log 1 gy log k > 21 4 log &k, or

logn + 1oy 1 > 2k, which is to say,

12

nl > 2k . {9)

Clearly nl is the total number of words required to store n instruc-
tions of I words per instruction. Thus the stored algorithm method
of function evaluation require that there be strictly more memory
for program storage than can be addressed using double word

addresses,

The derivation of sufficient conditions for functional complete -
ness would require some knowledge about the distinctness of the al-
gorithms defined by different séquences of machine instructions. This
appears to be a very difficult question, Qf course, increasing memory
to that memory addresses include an additional bit means doubling the
size of memory. Conditions for complete sets of functions have been

given by I, Rosenberg. L(}J

In conclusion, a machine with a k Lit word is functionally com-
plete by virtue of the table lookup technique provided that it has
2ok 41 words of memory, In virtue of this sufficient condition
existing machines are complete over spaces corresponding to values
of k such as k = 6 ork = 8, For completeness over 5PACes corres-
ponding to larger values of k, the size of memnory would have to be

vastly increased,

References
aLrierences

. Boleslaw Sobocinski, "On a Universal Decision Element", The

Systems, v. I, no. 2(1953), pp. 71-80.

Journal of Computing

Eric Foxley, “"Dete rmination of the Set of All Four-variable
Formulae Corresponding to Universal Decision Elements Using
a Logical Computer, Zeitsch,

é Math, Logik und Grundlagen ii

Math., Bd 10, (1964), pp, 302-3]4.

J. B, Rosser and A R. Turquette, Many-valued Logigfs_,

(Amsterdam: North Holland Publishing
pp. 19-26,

Company, 1952y,

IBM, IBM System/360 Re

ference Data, GX20-1703-9, n.d.,
(This is the "Green Card, ")

J. €. Muzio, and D. M. Mille r, "Decomposition of Ternary Switching
Functions", Proe. 1973 Inte rnational Symposium on Multip

Logic, (To ronto, 1973)

le Valued

Ivo Rosenberg, "1,a Structure des Fonctions de Plusiers Variables

Sur un Ensemble Fini”, _C-J_.B”.Ac:aci. Sc. Paris, t, 260 {April, 1965),

pp. 3817-9,

