
Design and Implementation of a Massively
Parallel Version of DIRECT

JIAN HE

Department of Computer Science, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA

ALEX VERSTAK

Department of Computer Science, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA

LAYNE T. WATSON

Departments of Computer Science and Mathematics, Virginia Polytechnic Institute and State University, Blacksburg,

VA 24061, USA

MASHA SOSONKINA

Ames Laboratory, Iowa State University, Ames, IA 50011, USA

Abstract. This paper describes several massively parallel implementations for a global search algorithm DIRECT.

Two parallel schemes take different approaches to address DIRECT’s design challenges imposed by memory require-

ments and data dependency. Three design aspects in topology, data structures, and task allocation are compared in

detail. The goal is to analytically investigate the strengths and weaknesses of these parallel schemes, identify several

key sources of inefficiency, and experimentally evaluate a number of improvements in the latest parallel DIRECT

implementation. The performance studies demonstrate improved data structure efficiency and load balancing on a

2200 processor cluster.

Keywords: data structures, DIRECT, global search, load balancing, task allocation

1. Introduction

The availability of compute power on large scale parallel systems offers both potential and chal-

lenges for solving high dimensional scientific optimization problems using global search algorithms.

Many of these algorithms have large memory requirements and strong data dependency that de-

grade the program scalability and parallel efficiency as more and more processors join the workforce.

The global search algorithm DIRECT (Dividing RECTangle) by Jones et al. (1993) [13] is one

such algorithm. Several research projects ([19], [10], and [11]) address its parallel design issues on

large systems. Baker et al. ([19]) discuss the performance of several load balancing strategies for

a fully distributed version of DIRECT, which solved a 28-dimensional problem on a 256 processor

supercomputer. He et al. in [10] and [11] tested two different parallel schemes with various problem

scales on a 200 node Opteron cluster of workstations. The intent here is to present the history of

these evolving parallel DIRECT implementations. Finally, the current improved parallel scheme is

explored analytically and experimentally on System X, a 2200 processor Apple Xserve G5 cluster

1

N=10
N=50

N=100
N=150

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 0 50 100 150 200 250 300 350

N
um

be
r

of
 B

ox
es

Number of Iterations
Figure 1.1. The growth of number of boxes for a test problem with dimensions N = 10, 50, 100, and 150.

at Virginia Polytechnic Institute and State University. The performance studies focus on data

structure efficiency and load balancing.

In the past decade, DIRECT has been successfully applied to many modern large scale mul-

tidisciplinary engineering problems ([2], [3], and [9]). Recently, DIRECT has been used in global

nonlinear parameter estimation problems in systems biology [15]. However, unnecessary overhead

and complexity caused by inefficient implementation inside other software packages (e.g., Matlab)

may obscure DIRECT’s advanced features. Some computational biologists are attracted by its

unique strategy of balancing global and local search, its selection rules for potentially optimal re-

gions according to a Lipschitz condition, and its easy-to-use black box interface. Like other global

optimization approaches of [4] and [6], DIRECT is being challenged by high-dimensional (≥ 50)

problems including nonlinear models for parameter estimation. The present work applies DIRECT

to a 143-parameter estimation problem for a budding yeast cell cycle model [17].

As the scale of both computational problems and clusters of workstations has grown, parallel

optimization algorithms have become a very active research area. However, the nature of the

DIRECT algorithm presents both potential benefits and difficulties for a sophisticated and efficient

parallel implementation. Gablonsky [5] and Baker et al. [19] are among the few parallel DIRECT

implementations known in the public domain. In [5], Gablonsky adopts a master-slave paradigm to

parallelize the function evaluations, but little discussion is given to the issue of parallel performance

and potential problems, such as load balancing and interprocessor communication, both of which

raise many challenging design issues. A major contribution in [19] is a distributed control version

equipped with dynamic load balancing strategies. Nevertheless, that work did not fully address

other design issues such as a single starting point and a strong data dependency.

At a high level, DIRECT performs two tasks—maintaining data structures that drive its

selection of regions to explore and evaluating the objective function at chosen points. One of the

limitations of DIRECT lies in the fast growth of its intermediate data. Jones ([14]) comments

that DIRECT suffers from the curse of dimensionality that limits it to low dimensional problems

(< 20). Figure 1.1 shows the growth of the number of search subregions (“boxes”) for a standard

test problem with dimensions N = 10, 50, 100, and 150. The amount of data grows rapidly as

the DIRECT search proceeds in iterations, especially for high dimensional problems. This dictates

techniques to reduce the size of data structures, thus the number of machines required to hold

the distributed data in memory. The second task of evaluating the objective function at sample

2

F

D

box column

convex hull

Figure 2.1. An example scatter plot of boxes. The F -axis is function values, and the D-axis is box
diameters.

points presents its own challenges. The selection of sample points in the current iteration depends

on all the points that have been sampled previously. Empirically, the inherent inefficiency of this

necessary point sampling has a great impact on load balancing. Several strategies proposed in the

parallel implementation of DIRECT are explored analytically and experimentally.

The paper is organized as follows. Section 2 begins with an overview of the DIRECT algorithm

and its parallel design challenges. Section 3 presents two parallel schemes of DIRECT and discusses

the evolution of the parallelization process. Performance studies for the latest parallel DIRECT

version are presented in Section 4.

2. Algorithm overview and design challenges

DIRECT finds the global minimum of an objective function f(x) inside an N -dimensional design

space ` ≤ x ≤ u. Each iteration of DIRECT consists of the following three main steps.

1. SELECTION identifies a set S of “potentially optimal” boxes that are subregions inside

the design domain with dimension N . A box is potentially optimal if, for some Lipschitz

constant, the objective function value at its center is potentially smaller than that in any

other box (a formal definition of potential optimality can be found in [13]).

2. SAMPLING evaluates new points sampled around the centers of all “potentially optimal”

boxes in S along their longest dimensions.

3. DIVISION subdivides “potentially optimal” boxes in S based on the function values at

the newly sampled points.

These three steps repeat until the stopping condition is satisfied. Initially, only one box exists

in the system. As the search progresses, more boxes are generated, illustrated by the scatter plot

shown in Figure 2.1 in which each circle represents a box. The sizes of boxes increase along the D-

axis (diameter) and the function values at box centers increase along the F -axis (function). All the

boxes with the same diameter belong to a “box column”. Reference [13] proves that all potentially

optimal boxes in S are on the lower right convex hull of the scatter plot points in Figure 2.1. Here,

3

Function Evaluation

Domain Decomposition

Box Subdivision

Functional Components

Figure 3.1. Three functional components.

ε = 0 in the definition of “potentially optimal” in [13]. Call these boxes “convex hull boxes” and

the boxes with the lowest function values in each box column “lowest boxes”.

In the DIVISION step, multiple new boxes are generated for each convex hull box. The multi-

ple function evaluation tasks at each iteration give rise to a natural functional parallelism used in

[5] and [19]. This is especially beneficial for expensive objective functions, since the communication

cost of distributing evaluation tasks to multiple processors is negligible compared to the computa-

tional cost. On the other hand, a few design challenges are also observed here. First, the algorithm

starts with one box, which produces simply one evaluation task for all the acquired processors.

With a single starting point, load balancing is always an issue at an early stage, even though

the situation will be improved as the search progresses by subdividing the domain and generating

multiple evaluation tasks. When a large number of processors is used, the load balancing issue is

more critical for low dimensional problems (< 20), which subdivide fewer boxes at every iteration

than high dimensional problems. For iterations that generate fewer new boxes, a load imbalance

occurs with some processors sitting idle. Second, the number of boxes subdivided at each iteration

is unpredictable depending on the result of identifying convex hull boxes. For high dimensional

problems, the number of boxes grows more rapidly (as shown in Figure 1.1), challenging data

structure expandability and memory capacity. Therefore, data parallelism is considered here as a

remedy, whereby data is distributed across multiple machines. Third, a strong data dependency

that exists throughout the algorithm steps lessens program concurrency, thus degrading parallel

scalability. Efficient task and data distribution strategies are demanded here for a scalable parallel

DIRECT implementation, especially for large scale systems that host hundreds and thousands of

processors.

3. Parallel schemes

All the observations above engendered a combined functional and data parallelization in two parallel

implementations of the DIRECT algorithm, called pDIRECT I and pDIRECT II in what follows.

4

The algorithm operations can be partitioned into three functional components: domain decom-

position, box subdivision, and function evaluation as shown in Figure 3.1. Domain decomposition

is an optional component that transforms the single start DIRECT into a multistart algorithm.

Moreover, the resulting multiple subdomains are optimized independently, so that the objective

function value may be reduced faster [10]. The domain decomposition is accomplished in the

following two phases.

1. The longest dimension of the N -dimensional domain is subdivided into s =
√
m partitions,

where m is the desired number of subdomains.

2. Inside each partition above, the longest dimension is subdivided into s parts.

As the second component, box subdivision applies data parallelism that spreads data across

multiple processors collaborating on the SELECTION and DIVISION steps. Lastly, the function

evaluation component uses the classical master-slave paradigm that distributes evaluation tasks to

multiple processors during SAMPLING.

To store the unpredictable number of boxes, both pDIRECT I and pDIRECT II reuse the set

of dynamic data structures presented in [12]. In addition, a few techniques are developed for pDI-

RECT II to reduce local memory storage and network traffic. To distribute data and computation,

pDIRECT I combines a shared memory model (for box subdivision) with a message passing model

(between box subdivision and function evaluation), and dynamically spawns processes for these

two components. The data is distributed through the global data structures in the shared memory

and computational tasks are distributed via messaging. This mixed paradigm improves data distri-

bution efficiency compared to the pure functional parallel versions in [5] and [19]. However, it has

its own shortcomings in program portability, processor utilization, load balancing, and termination

efficiency. Therefore, the second version pDIRECT II was developed to address these inefficiencies

with a pure message passing model and more dynamic features in data structures, task allocation,

and the termination process. Performance results prove that pDIRECT II is effective for solving

complex design optimization problems on modern large scale parallel systems. The following two

sections first present pDIRECT I and its design drawbacks, and then discuss the considerations

leading to the improved version pDIRECT II.

3.1. pDIRECT I

The parallel scheme of pDIRECT I consists of three levels as shown in Figure 3.2, each level

addressing one of the functional components in Figure 3.1.

3.1.1. Topology

The processes at Level 1 form a logical subdomain master ring. The entire design domain is

decomposed into multiple nonoverlapping subdomains. Each process SMi (subdomain master i,

i = 1, . . ., m) on the ring starts the DIRECT search at the center of a chosen subdomain i. SMi

detects the stopping conditions, merges the results, and controls the termination at the end. SMi is

spawned at run time by MPI and joins the logical ring formed for SM processes. Level 1 uses a ring

topology, because it fits the equal relationship among subdomains and represents the dependency of

the stopping condition of each subdomain on other subdomains. The overall termination condition

is when all subdomains have satisfied the specified search stopping criteria. In other words, a

subdomain will be kept active until all search activities in other subdomains are done. This rule

aims at reducing processor idleness when subdomains generate different amounts of computation.

The drawback is that the stopping condition (i.e., maximum number of iterations) becomes a lower

5

SM

SM

MM

Level 3

Level 2

Level 1

subdomain
master ring

SM

SM

SMSM

M−ary tree
subdomain

MM

1

m

W1

1,1

SD5
SD4

SD3

SD2

SDm

SD1

2

3

45

W W W2 3 k

1,n

Figure 3.2. The parallel scheme of pDIRECT I.

bound on the computational cost instead of an exact limit. Furthermore, the termination process
is controlled by a token T passed as described in the following.

1. SM1 issues T and passes it around the ring.

2. After the local stopping criteria are met, each SMi checks if T has arrived at each
iteration. If not, DIRECT proceeds. If yes, T is passed along in the ring.

3. After T is passed back to SM1, a termination message is sent to all SMi.
4. SM1 collects the final results from all SMi.
This process decentralizes the termination control, thus avoiding the bottleneck at SM1 when

the number of subdomains m is large. On the other hand, there are a few disadvantages of using

the ring. First, the communication latency on a ring is higher than on some other topologies, such
as a star or a tree. Second, the lower bound stopping condition can not provide users accurate
estimates of computational cost.

Below Level 1, Level 2 uses GPSHMEM [18] to establish a global addressing space to access the
data for SELECTION. This globally shared data structure corresponds to a work pool paradigm [7]
that dynamically adjusts box subdivision workload among mini subdomain master (MM) processes

at Level 2. Between Levels 2 and 3, a master-slave paradigm is used for distributing function
evaluation tasks. Both Levels 2 and 3 take advantage of dynamic process management in MPI-2
[8] so that processors are assigned to these two levels at run time with approximately (p−m)/m
processors available for each subdomain (out of p total processors). In Figure 3.2, a bMc-ary tree
structure is rooted at each SM process, where

M =

√
p −m
m

.

Each SM process dynamically spawns n = bMc mini subdomain master (MM) processes at
Level 2 for box subdivision tasks. Similarly, each MM process spawns bkc or dke worker processes
for function evaluation tasks, where

k =
p−m(1 + bMc)

mbMc .

6

To form the bMc-ary tree of processes, pDIRECT I requires that the total number of processes

P ≥ 16. If the number of available processors p ≥ 16, then P = p. Otherwise, P is set at 16,

so that multiple processes may run on the same physical processor. Pseudocode 3.1 shows the

interactions between MMi,1 and MMi,j (j = 2, . . . , n) in subdomain i (i = 1, . . . , m) managed by

SMi.

done := FALSE (the search status)

MMi,1 receives DIRECT parameters (problem size N , domain D,

and stopping conditions Cstop) from SMi

broadcast DIRECT parameters to MMi,j

do

if (MMi,1) then

if (done = FALSE) then

run one DIRECT iteration and merge intermediate results

if (Cstop satisfied) then

done := TRUE

send done to SMi

end if

cycle

else

receive a message from SMi

if (not a termination message) then

send a handshaking message to SMi

broadcast a message to keep MMi,j working

run one DIRECT iteration and merge intermediate results

cycle

else

broadcast a termination message to MMi,js

terminate workers

store the merged results

exit

end if

end if

else

MMi,j receives a message from MMi,1

if (not a termination message) then

run one DIRECT iteration and reduce intermediate results

else

exit

end if

end if

end do

MMi,1 sends the final results to SMi

Pseudocode 3.1.

7

OPTSET_INDEX

MM MM MM MM

OPTSET

i,1 i,2 i,3 i,n

Figure 3.3. Data structures in GPSHMEM.

The control mechanism is a two-level messaging—between SMi and MMi,1, and between

MMi,1 and each MMi,j . The DIRECT parameters are passed from SMi to MMi,1, which broad-

casts them again to each MMi,j . To reduce the control overhead, no handshakes are involved

between SMi and MMi,1 before the local stopping criteria are met. However, it is inefficient to

dedicate a SM process to monitoring the search status and wrapping up the search at the end,

causing significant communication overhead.

3.1.2. Task allocation

3.1.2a. The SELECTION implementation

At Level 2, MM processes cooperate on identifying convex hull boxes stored in a shared data

structure of a global addressing space using GPSHMEM [18]. Two sets of global shared data

structures OPTSET and OPTSET INDEX (Figure 3.3) are used.

The structures OPTSET and OPTSET INDEX are allocated and distributed across all MM pro-

cesses, which use one-sided communication operations such as “put” and “get” to access shared

data. These one-sided operations provide direct access to remote memory with less interaction

between communicating parties. In addition, the data structure LOCALSET is allocated at MMi,1

for merging the boxes with the same size. When only one MM process exists, SELECTION is

the same as that in the sequential DIRECT. The following steps describe the SELECTION step

implemented in pDIRECT I.

1. MMi,j (j = 1, . . . , n) puts all the lowest boxes for different box sizes to its own portion

in OPTSET and updates its index in OPTSET INDEX.

2. MMi,1 gets all boxes in OPTSET and merges the boxes with the same size to LOCALSET.

3. MMi,1 finds convex hull boxes in LOCALSET and puts a balanced number of boxes for each

MMi,j into OPTSET (the load balancing algorithm at MMi,1 is described in Pseudocode

3.2).

4. MMi,j gets its portion of the convex hull boxes from OPTSET, removes some boxes (if

any) that are assigned to other MMi,j , and starts processing its convex hull boxes.

Each box is tagged with a processor ID and other indexing information to be tracked by its

original owner. To minimize the number of local box operations (i.e., removals and additions) and

maximize data locality, MMi,1 restores the boxes back to their contributors before it starts load

adjustment. The shared memory approach can access more memory on multiple machines than

on a single machine. However, it depends on multiple software packages for global addressing,

such as GPSHMEM and ARMCI [16]. Secondly, resizing the global data structures to hold an un-

predictable number of lowest boxes involves expensive global operations across multiple machines.

8

Thirdly, collecting all lowest boxes at MMi,1 burdens local buffer storage as well as network traffic.

Lastly, a global barrier is needed between steps to avoid premature “get” operations.

Nbox: the number of global convex hull boxes

n: the number of MM processes

avgload: the average workload measured in boxes

underload: the workload shortfall from the desired avgload

overload: the workload extra over the desired avgload

merge all boxes from OPTSET to LOCALSET by the box sizes

find convex hull boxes in LOCALSET and update Nbox

restore boxes given by MMi,j to its portion in OPTSET

avgload := d(Nbox/n)e
d := 1 (loop counter)

OUTLOOP: do

if (d = n) exit OUTLOOP

if (OPTSET INDEX(d) < avgload) then

d1 := d

INLOOP: do

underload := avgload− OPTSET INDEX(d)

d1 := (d1) mod n

if (d1 = d) exit INLOOP

if (OPTSET INDEX(d1) > avgload) then

overload := OPTSET INDEX(d1)− avgload
if (overload ≥ underload) then

shift enough load over

OPTSET INDEX(d) := avgload

OPTSET INDEX(d1) := OPTSET INDEX(d1)− underload
exit INLOOP

else

shift some and look for more

OPTSET INDEX(d) := OPTSET INDEX(d) + overload

OPTSET INDEX(d1) := avgload

end if

end if

end do INLOOP

end if

d := d+ 1

end do OUTLOOP

Pseudocode 3.2.

3.1.2b. Worker assignment

As shown in Pseudocode 3.2, the load adjustment is done at MMi,1, which distributes the work

to MMi,j by using the shared data structures in GPSHMEM. Then, each MM process subdivides

its share of convex hull boxes and distributes the function evaluation tasks down to its workers.

Although the control mechanism is simple, this centralized strategy suffers a common bottleneck

9

SD

SD SD

SD

global worker pool

1

SM

SM

1,1

SM 1,n1,2
2

SM2,1

m

SMm,1

3 SM3,1

masters
subdomain

workers
W1 W2 W3 Wk

Figure 3.4. The parallel scheme for pDIRECT II.

problem. Furthermore, workers are not shared by MM processes. A worker is exclusively under

the command of a particular MM that spawns it at the beginning. This fixed assignment degrades

the processor utilization and load balancing among workers.

3.2. pDIRECT II

The three-level hierarchy in pDIRECT I is reshaped to be a group-pool structure with subdomain

groups of masters and a globally shared pool of workers as shown in Figure 3.4. The SM and

MM processes in pDIRECT I are now grouped together to maintain data structures and perform

SELECTION and DIVISION, while globally shared workers perform SAMPLING. This scheme

is implemented with a pure message passing model, which removes the dependency on multiple

software packages, simplifies the program structure, and improves the parallel performance.

3.2.1. Topology

Each subdomain is served by a subdomain group of masters in lieu of the subdomain master ring.

Let SMi,j stand for the master j in subdomain i. SMi,1 is the root master for subdomain i. In

addition to carrying out common tasks like other masters, the root masters SMi,1 (i = 2, . . . , m)

also communicate with SM1,1 to finalize the search. This star shaped connection centered at SM1,1

has replaced the ring topology in pDIRECT I.

Moreover, all SMi,j (j = 1, . . ., n) processes except SM1,1 become workers when they have

finished all search activities for their subdomain. This dynamic feature reduces the processor

idleness and offers an exact stopping condition unavailable in pDIRECT I. When the stopping

condition is satisfied, a termination message is sent from processor 0 down to a logical tree of

processors in log2(p) steps. Recall that the termination message is passed linearly along the ring

10

and logarithmically down to the bMc-ary trees in pDIRECT I. Clearly, the new termination scheme

here does not require such a complicated control mechanism as in pDIRECT I.

3.2.2. Data structures

The data structure design directly affects the efficiency of local memory operations as well as global

data distribution. The set of dynamic data structures borrowed from [12] was kept the same in

pDIRECT I, but improved in pDIRECT II. Limiting box columns (LBC) is a technique developed

to reduce the memory requirement.

Let Imax be the maximum number of iterations allowed (a stopping criterion), Icurrent be the

current iteration number, and C be one of the box columns. Each of the iterations Icurrent, . . ., Imax

can subdivide at most one box from C, because at most one box from C can be in the set of convex

hull boxes at any iteration. Therefore, C only needs to contain at most L = Imax − Icurrent + 1

boxes with the smallest function values. Boxes with larger function values are not considered by

the DIRECT search limited to Imax iterations. However, the number of boxes generated per box

column is usually much larger than L. Figure 3.5 shows the box column lengths for (1) Test

Function 6 with dimension N = 10 and Imax = 400 and (2) the budding yeast problem with

Imax = 40. (These two functions are defined later in Section 4.) Most of the box columns are

longer than Imax >= L in both (1) and (2). When the stopping criterion Imax is given, storing

only L boxes in box columns would significantly reduce the memory demands.

Since each box column is implemented as a min-heap ordered by the function values at the

box centers, all box column operations without LBC take O(logn) time and only two types of

heap operations are involved—removing boxes with the smallest function values and adding new

boxes. Additionally, LBC needs to remove the boxes with the largest function values (bmaxs). The

min-heap data structure requires a O(n) time algorithm to locate the bmax boxes. In future work,

a min-max heap [1] will replace the min-heap data structure to find the bmax boxes with constant

time, which makes all operations O(logn) time. The min-max heap makes a huge difference when

Imax is large, since the number of boxes in a box column heap is very large. The experimental

results in Section 4 show the improvement of pDIRECT II over pDIRECT I in reducing local buffer

size.

3.2.3. Task allocation

Task allocation policies have strong connections to important performance metrics such as paral-

lel efficiency and load balancing. Here, several improvements were made in allocating both box

subdivision tasks in the SELECTION step and function evaluation tasks in the SAMPLING step.

3.2.3a. The SELECTION implementation

In subdomain i, SELECTION is accomplished jointly by masters SMi,j, j = 1, . . ., n, where n is

the total number of subdomain masters per subdomain. When n = 1, SELECTION is the same

as that in the sequential DIRECT. When n > 1, SELECTION is done in parallel over the index i

as follows.

1. The SMi,j identify local convex hull box sets Si,j , j = 1, . . ., n.

2. SMi,1 gathers the Si,j from all the SMi,j.

3. SMi,1 merges the Si,j by box diameters and finds the global convex hull box set Si.

4. All the SMi,j receive the global set Si and find their portion of the convex hull boxes.

11

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

N
um

be
r

of
 b

ox
es

Box diameter

box columns

(1) Test Function 6 with N = 10 and Imax = 400.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 20 40 60 80 100 120 140

N
um

be
r

of
 b

ox
es

Box diameter

box columns

(2) Budding yeast problem, N = 143 and Imax = 40.

Figure 3.5. Box column lengths at the last iteration Imax.

All buffers used here are locally allocated and resized incrementally according to the updated

number of boxes involved in the convex hull computation. Note that all boxes in the global convex

hull box set Si must also be in the union of the sets of local convex hull boxes (Si,j) of the masters.

Therefore, each master SMi,j computes Si,j in parallel and SMi,1 only considers the union of all

Si,j instead of all the lowest boxes with different diameters, as was done in pDIRECT I. This

decentralized SELECTION implementation reduces memory requirements for buffers, as well as

the amount of data transferred over the network. However, a large number of subdomain masters

will not perform well due to the global communication and synchronization required for finding

convex hull boxes at every iteration. [20] describes a sampling technique that can further reduce the

bandwidth requirements, but it comes at the expense of requiring another global communication

round. Another possibility would be for SMi,1 to gather via a d-way tree only the final merged

Si,j , where each intermediate tree node does a partial convex hull merge of its d (merged) inputs

(the optimal value for d is derived in [20]).

12

boxes boxes boxes

SMi,1 SMi,2 SMi,3 SMi,n

(a) Horizontal 1-D partition.

function evaluations

WORKER POOL

SM i,j

W1 W2 W3 Wk

(b) Vertical 1-D partition.
Figure 3.6. Task partition schemes.

3.2.3b. Task partition

pDIRECT II supports two ways of task partitioning. In the case of low computation cost, communi-

cation overhead dominates the parallel execution time and overshadows the benefits in distributing

function evaluation tasks to workers. Wisely, masters would rather keep computation locally and

simply share the memory burden with other masters without any worker involved in the picture.

This is called horizontal 1-D partition for box subdivision tasks (Figure 3.6(a)). Experimental

results in Section 4 show that this scheme achieves better speedup (for cheap function evaluations)

than the vertical 1-D partition for function evaluation tasks (shown in Figure 3.6(b)). When these

two ways are combined, they become a hybrid 2-D partition. This hybrid scheme is usually pre-

ferred for the following reasons. First, the computation cost is higher or at least comparable to the

communication cost in most real world design problems. Generally, overlapping the computation

on worker processors in the vertical 1-D partition is a reasonable approach. Second, the data shar-

ing scheme in the horizontal 1-D partition relieves the heavy memory burden on a single master

processor for solving a large scale and/or high dimensional problem.

3.2.3c. Worker assignment

The worker pool is globally shared by all masters in all subdomain groups. Each worker polls

all (selected) masters for evaluation tasks and returns the function values. Workers proceed in

cycles that roughly correspond to the DIRECT iterations. During each cycle, a worker requests

tasks from a randomly selected subset of masters until all of them are out of work. This is called

the “nonblocking” loop in Pseudocode 3.3. Once the cycle is over, the worker blocks waiting (the

“blocking” loop) for further instructions from a fixed master, which is selected such that every

master has a fair number of blocked workers waiting in the queue. Pseudocode 3.3 below describes

how a worker Wi evaluates the objective function for masters SMi,j (i = 1, . . ., m and j = 1, . . .,

n) during SAMPLING.

m: the number of subdomains, given as input

loop: the loop status

Cactive: the counter for the total number of “active” masters

13

that have not reached the last iteration

Cidle: the counter for idle masters

Pwi: the processor ID (PID) of Wi

mesg: the message received from others

loop := “nonblocking”

Cactive := current total number of active masters

Cidle := Cactive −m (assume all root subdomain masters busy initially)

OUTLOOP: do

if (loop = “nonblocking”) then

send a nonblocking request to a randomly selected master SMi,j

from Cactive − Cidle busy masters

else

set all masters to status busy

Cidle := 0

send a blocking request to the master SMi,j that ranks as

(Pwi − Cactive) mod Cactive in the list of all active masters

end if

INLOOP: do

keep waiting for any messages

select case (mesg)

case (an evaluation task from SMi,j)

evaluate all points in the task

send the results back to SMi,j

if (SMi,j is responding to a blocking request) then

loop := “nonblocking”

end if

case (“no point” from SMi,j)

if (SMi,j is at status busy) then

set SMi,j ’s status idle

Cidle := Cidle + 1

end if

exit INLOOP

case (“all done” from SMi,j)

if (SMi,j is at status busy) then

set SMi,j ’s status idle

Cidle := Cidle + 1

end if

remove SMi,j from the master list

Cactive := Cactive − 1

if (Cactive = 0) then

cycle INLOOP (will wait for “terminate”)

end if

exit INLOOP

case (a “non-blocking” request from a worker)

reply “all done” to this worker (Wi was a master)

14

case (a “blocking” request from a worker)

reply “all done” to this worker (Wi was a master)

case (“terminate” from the parent processor)

pass “terminate” to the left and right children (if any)

exit OUTLOOP

end select case

end do INLOOP

if (Cactive = Cidle) then

loop := “blocking”

else

loop := “nonblocking”

end if

end do OUTLOOP

Pseudocode 3.3.

At the same time, the master SMi,j is generating sample points and responding to worker

requests as described in the following Pseudocode 3.4.

Si,j: the portion of global convex hull boxes for SMi,j

Qw: the blocked worker queue

Ab(1 : k) := 0 (the array of counters for tracking the number of blocking requests from

workers W1, W2,. . . ,Wk)

Cnew := 0 (the counter for new points)

Csend := 0 (the counter for points that have been sent to workers)

Ceval := 0 (the counter for evaluated new points)

Nbin: the upper limit on the number of evaluation tasks sent to a worker at one time

mesg: the message received from others

if (Si,j is empty) then

release all blocked workers in Qw (send them “no point” messages)

else

find the longest dimensions for all boxes in Si,j
Cnew := the number of all newly sampled points along longest dimensions

if (Qw is not empty) then

loop sending at most Nbin number of points to each worker in Qw with a tag

“responding to your blocking request”

update Csend
release the remaining blocked workers (if any)

end if

do while (Ceval < Cnew)

keep waiting for any messages

select case (mesg)

case (a “non-blocking” request from Wi)

if (Csend < Cnew) then

send at most Nbin number of points to Wi

update Csend
else

15

send “no point” message to Wi.

end if

case (a “blocking” request from Wi)

if (Csend < Cnew) then

send at most Nbin number of points to Wi with a tag

“responding to your blocking request”

update Csend
else

if (Ab(i) = 0) then

Ab(i) := 1

send “no point” to Wi

else

put Wi into Qw
end if

end if

case (function values from Wi)

save the values and update Ceval
if (Csend < Cnew) then

send Wi another task with at most Nbin points

update Csend
else

send “no point” to Wi

end if

end select case

end do

end if

Pseudocode 3.4.

At the beginning of each iteration, SMi,j sends evaluation tasks to its blocked workers. If

it has more blocked workers than tasks, it signals the remaining blocked workers to start a new

cycle of requesting work from other masters. Otherwise, SMi,j keeps receiving function values

from workers and sending out more tasks. When SMi,j is out of tasks, it notifies workers that are

requesting tasks and queues up the workers that are blocked waiting for the next iteration. An

array of blocking status (Ab) is used to track the number of times that a worker has sent a blocking

request to this master during this iteration. After the first blocking request from a worker, SMi,j

tells the worker to continue seeking work from other masters. After the second blocking request

from that same worker, during this iteration, SMi,j queues up that worker; this gives workers a

better chance to find masters who have just become busy. Observe that the subdomain masters

within the same subdomain need to synchronize with each other to find global convex hull boxes

during every iteration; however, no synchronization or communication is needed among workers,

and masters from different subdomains also work independently, until the final termination starts.

When all the masters are out of work at the end of an iteration, the next iteration begins, and

the masters from different subdomains may start the next iteration at different times. Therefore, a

master should encourage a worker, who has sent it the first blocking request, to seek work again from

other masters. This asynchronous design allows a large number of workers to be used efficiently

across masters and subdomains. Empirical results have shown that workers achieve a better load

balance for a multiple subdomain search than for a single domain search. In comparison, workers

16

Table 4.1. Test functions.

Description
1 f = x · x/3000

2 f = −
√∑N

i=1 xi − 0.5(i− 1)/N

3 f = 1 +
∑N
i=1 xi

2/500−∏N
i=1 cos(xi/

√
i))

4 f =
∑N
i=1 2.2× (xi + 0.3)2 − (xi − 0.3)4

5 f =
∑N
i=1

∑i
j=1 xj

2

6 f =
∑N
i=1 100(xi+1 − x2

i)
2 + (1− xi)2

7 f = 10N +
∑N
i=1 x

2
i − 10 cos(2πxi)

8 Budding yeast parameter estimator [17]

in pDIRECT I work only for a fixed master, so they have to sit idle when the master runs out of

work until the next iteration starts.

This scheme also naturally distributes tasks to workers according to the speed at which they

finish the work, unlike the load balancing methods that attempt to distribute an approximately

equal number of function evaluation tasks to each worker. These methods assume that (1) the

function evaluation at different coordinates costs the same computationally and/or (2) each worker

finishes the function evaluation within the same amount of time. In fact, these two assumptions are

not satisfied in many parallel systems, even though some are claimed to be homogeneous. Most

importantly, many engineering design problems do have different computation cost for different

regions. Therefore, the measure of a reasonable load balancing should not be the equal quantities

of tasks that are distributed among workers, but the degree that all of the workers are kept

busy. Note that this scheme adds a parameter Nbin used for stacking function evaluations to one

evaluation task. It reduces the communication overhead when the objective function is cheap.

However, Nbin should be set to 1 if the objective function is expensive. Otherwise, fewer tasks are

available to workers and a load imbalance occurs.

4. Performance results

This section presents performance results regarding the main design issues discussed in the last

section. The test functions used are described in Table 4.1; the first seven have the same initial

domain [−2, 3]N . For some experiments, dimension N = 150 and an artificial time delay Tf are

used to make the first seven test functions comparable to the 143-parameter estimation problem

from computational biology.

4.1. Data structures

The size of the data structures is the number Creal of 64-bit REAL variables in the box data

structures. Table 4.2 compares Iout (the number of iterations when the memory is used up) with

and without LBC and computes the percentage of Creal reduction in LBC for runs with Imax = Iout

without LBC. All tests failed to allocate memory when Creal reaches ≈ 150 ·106 on System X. LBC

reduces the size of the data structures by 20–50% for all the test functions 1–7 and by 37% for the

budding yeast problem. As the number of box columns grows larger without limit, a single master

runs fewer iterations without LBC than with LBC.

17

Table 4.2. Comparison of experiments without (NON-LBC) and with LBC for Test Functions 1–7.

NON-LBC LBC

Iout Creal/106 Creal/106 % diff. Iout

1 159 153 112 26 273
2 79 164 77 52 647
3 213 162 111 31 391
4 90 163 82 50 1000
5 286 164 124 24 467
6 163 160 109 31 328
7 78 162 85 47 377

Table 4.3. Comparison of Ngc, Nlc, and Nd at the last iteration Imax.

Ngc Nlc Nd
(Nd−Nlc)

Nd

1 58 2605 33358 92%
2 89 1228 6805 81%
3 145 2056 22375 90%
4 3 3201 6756 52%
5 140 1830 20276 90%
6 144 1276 28003 95%
7 144 3531 20614 82%
8 20 159 6545 97%

4.2. Task allocation

The following experiments demonstrate the effectiveness of the SELECTION implementation, task

partition, and worker assignment in pDIRECT II.

4.2.1. SELECTION efficiency

Table 4.3 compares Ngc (number of global convex hull boxes), Nlc (the combined number of local

convex hull boxes), and Nd (the combined number of different box diameters) on 32 subdomain

masters for all test functions at the last iteration (Imax = 1000 for Test Function 1–7 and Imax = 100

for the budding yeast problem). In pDIRECT I, MMi,1 collects Nd boxes and finds the convex

hull box set. In pDIRECT II, Nlc local convex hull boxes are found by SMi,j (j = 1, . . ., n),

then gathered on SMi,1, which identifies the global convex hull boxes. This approach increases the

concurrency of the SELECTION implementation. Table 4.3 shows that it reduces the amount of

data transferred over the network and the buffer size by 50–90% for all test functions.

4.2.2. Task partition

The following experiment is to study the parallel performance of the horizontal and vertical 1-D

partition schemes. A total of P = 288 processors are used. In the horizontal partition, each run

has all P masters that evaluate objective functions locally. In the vertical partition, a single master

sends evaluation tasks to P −1 workers, each task holding Nbin = 1 set of point coordinates. Table

4.4 shows the timing results for Test Function 6 with N = 150, given two function evaluation

costs: Tf=0.1 second (the artificial case) and the original cost Tf = 0.0 (less than 1.0E-7 second).

18

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250 300

E
ff

ic
ie

nc
y

Number of Processors

HP_1
VP_1
HP_0
VP_0

Figure 4.1. Comparison of the parallel efficiencies with different partition schemes and objective function
costs.

Set Imax = 300 for the original cost and Imax = 90 for the artificial cost. To ensure that the two

partition schemes are comparable in the number of processors, the timing results are measured

from P = 3 processors (if P = 1, no workers are used in the vertical 1-D partition). Note that the

horizontal 1-D partition has all P processors available for function evaluations, while the vertical

1-D partition has only P − 1 processors for that. Therefore, the parallel efficiency is estimated

with the base = 3 processors for the horizontal 1-D partition and base = 2 for the vertical 1-D

partition. The efficiency E is thus computed as (Tbase/TP)
/

(P/base) as shown in Figure 4.1.

Table 4.4. Parallel timing results (in seconds) for different function evaluation costs Tf for Test Function 6

with N = 150.

Horizontal 1-D partition
Tf\P 3 5 9 18 36 72 144 288
0.0 21.04 15.36 12.03 12.78 14.88 40.71 23.37 31.49
0.1 6785.88 4614.23 2741.11 2633.46 2634.53 2636.03 2652.78 2644.96

Vertical 1-D partition
Tf\P 3 5 9 18 36 72 144 288
0.0 49.93 41.18 40.28 41.81 45.10 45.53 65.10 55.07
0.1 8720.27 4361.30 2184.76 1033.28 507.14 256.09 149.95 79.27

When Tf = 0.0 second, the horizontal 1-D partition (HP 0) runs faster than the vertical 1-D

partition (VP 0). The masters in HP 0 locally evaluate the cheap objective function, thus avoiding

the communication overhead for talking to workers. However, HP 0 does not achieve any speedup

for P = 72, 144, and 288, because the number of convex hull boxes is insufficient to keep all

masters busy (some masters have no convex hull boxes, thus evaluating no points locally). As for

VP 0, the communication overhead always dominates the execution cost and it fails to achieve any

speedup after P reaches 144. When Tf = 0.1 second, the vertical 1-D partition (VP 1) runs more

efficiently than the horizontal 1-D partition (HP 1) (see Figure 4.1) except for P = 3. When P = 3,

three masters are evaluating functions for HP 1, while only two workers are doing so for VP 1.

Nevertheless, all runs with P ≥ 5 of VP 1 take a much shorter time than those of HP 1. The first

19

Table 4.5. Comparison of theoretical parallel execution time Tt and the parallel timing results Tp with
different hybrid partition schemes for Test Function 6 with N = 150, Tf = 0.1 sec, and Imax = 90.

P100 stands for using a total of 100 processors. W100, W200 stand for using a total of 100, 200 workers,
respectively.

Number of Masters
schemes 1 2 4 8 16 32

P100 Tp 203.42 204.20 207.79 215.44 234.15 282.38
Tt 180.10 181.70 185.80 192.90 211.40 260.20
To 23.32 24.10 26.09 29.64 41.25 22.18
Ef 88.5% 88.9% 89.4% 89.5% 90.3% 92.1%

W100 Tp 201.53 185.41 184.83 184.88 185.61 187.29
Tt 178.00 178.00 178.00 178.00 178.00 178.00
To 23.53 7.41 6.83 6.88 7.61 9.29
Ef 88.3% 96.0% 96.3% 96.3% 95.9% 95.0%

W200 Tp 102.32 102.06 101.56 101.55 103.14 105.86
Tt 91.30 91.30 91.30 91.30 91.30 91.30
To 11.02 10.76 10.26 10.25 11.84 14.56
Ef 89.2% 89.5% 89.9% 89.9% 88.5% 86.2%

reason is that the communication overhead is negligible compared to the objective function cost

for VP 1. Secondly, when P is large, no convex hull boxes are assigned to some masters, so they

have to sit idle in the case of HP 1. In general, the number of convex hull boxes is much smaller

than the number of function evaluations, because DIRECT samples two new points along each

longest dimension for every convex hull box. Hence, the pure horizontal 1-D partition reaches its

limits when P is greater than the number of convex hull boxes. On the other hand, the memory

limit on a single master makes the pure vertical 1-D partition impossible for runs with large Imax.

Therefore, a hybrid partition scheme is generally preferable to the pure partition schemes.

In the following two experiments, several hybrid partition schemes with different numbers of

masters and workers are compared with the single master scheme for Test Function 6 with N = 150

and Tf = 0.1 second for a single subdomain. The first experiment varies the number of masters

(2i, i = 0, . . ., 5) and fixes the total number of processors (implicitly, the number of workers also

changes). The second experiment varies the number of masters and fixes the number of workers.

P = 100 (total number of processors) is used for Experiment 1. 100 and 200 workers, respectively,

are involved in Experiment 2. The measured parallel execution timing results listed in Table 4.5

are compared to a theoretical lower bound defined by

Tt =
Imax∑

i=1

⌈
Ni
k

⌉
Tf ,

where Tt is the theoretical lower bound on the parallel execution time, Ni is the number of function

evaluation tasks at iteration i, and k is the total number of workers. Tt depends on both the problem

and the computing resource. It assumes all workers are fed continuously with evaluation tasks,

distinct from reality, where finding convex hull boxes, synchronization, and communication all cost

time as well. Clearly when Ni is not exactly a multiple of k, some workers are idle during the
last working cycle for that iteration. A worker ideally obtains either δ+ = dNi/ke or δ− = bNi/kc
number of tasks. The number X of idle workers can be derived from

δ+(k −X) + δ−(X) = Ni.

20

 500

 1000

 1500

 2000

 2500

 3000

 0 10 20 30 40 50 60 70 80 90

N
ew

 e
va

lu
at

io
ns

 p
er

 it
er

at
io

n

Number of Iterations

number of evaluations

Figure 4.2. The plot of Ni (i = 1, . . ., 90) for Test Function 6 with N = 150.

Here, define the overhead of function evaluation To = Tp − Tt and the efficiency of function

evaluation Ef = Tt/Tp, where Tp is the measured parallel execution time.

Figure 4.2 shows how the number of new evaluations per iteration (Ni) changes for Test

Function 6 with N = 150 and Imax = 90. Given the number of workers, Tt is then computed in

Table 4.5, which shows that a wide range of hybrid task partition schemes perform reasonably well

(86.2% ≤ Ef ≤ 96.3%). In the case of P100, Ef grows slightly as the number of masters increases

up to 32. Clearly, the number of convex hull boxes is sufficient to keep 32 masters busy. Moreover,

smaller master-to-worker ratios seem to correspond to lower Ef values. This phenomenon may

indicate a potential bottleneck problem at masters that communicate with a great number of

workers, or simply more idle workers. The above supposition was further investigated in the second

experiment. In both W100 and W200, Ef is improved at the beginning as the number of masters

increases to a “peak point” with the best Ef . Then, it is degraded when the synchronization

overhead among masters starts to dominate. Note that the peak point is 4 for W100 and 8 for

W200, while the master-to-worker ratios at these two points are the same, 1:25. Moreover, W200

has lower Ef values than W100 for the same number of masters, because masters in W200 deal with

more workers, and more workers in W200 are likely to be idle. Also, the same amount of work

distributed to 100 workers in W100 generates more communication interactions between masters

and workers in W200. Therefore, the search with a single subdomain will always eventually decrease

Ef as more and more workers are used.

4.2.3. Worker assignment

The following experiment demonstrates that function evaluation tasks are allocated more efficiently

for a multiple subdomain search than for a single subdomain search. Load balancing among workers

is improved greatly with the globally shared worker pool of pDIRECT II, especially when masters

of different subdomains generate unequal amounts of work. P = 320 processors were used for

the budding yeast problem. P = 200 processors were used for the artificial test problems (Test

Functions 1–7) with N = 150 and Tf = 0.1 sec.

In this experiment, the feasible domain is split into four subdomains. Note that the same test

problem with four split subdomains can be solved in three different ways using P processors.

21

Table 4.6. Comparison of Ta, Tb, and Tc in seconds.

Ta Tb Tc
(Tb−Ta)
Ta

(Tc−Ta)
Ta

1 382 407 441 6.2% 15.4%
2 1132 1139 1185 0.6% 4.6%
3 358 369 417 3.1% 16.4%
4 870 874 921 0.4% 5.9%
5 260 263 312 1.1% 20.0%
6 428 476 477 11.2% 11.4%
7 1142 1148 1196 0.5% 4.7%
8 8595 10643 11059 23.8% 28.7%

Table 4.7. Comparison of total number of subdomain function evaluations for experiments listed in Table
4.6. ei is the total number of evaluations for subdomain i, which is the same for all of the ways (a), (b),
and (c).

e1 e2 e3 e4 ē s2

1 181409 194927 194927 181463 2090.9 7789.12

2 550691 550691 550691 550691 6118.8 0
3 176075 176075 176075 176075 1956.4 0
4 421723 421723 421723 421723 4685.8 0
5 123685 123685 123685 123685 1374.3 0
6 228193 203635 198727 192397 2286.0 156612

7 555435 555435 555435 555435 6171.5 0
8 82471 44631 47531 87063 1635.6 224452

(a) All P processors are used to run a multiple subdomain search with four subdomains. The

parallel execution time is Ta.

(b) Four single subdomain searches are run in parallel, each using P/4 processors on one of

the four subdomains. The overall parallel execution time Tb is the longest duration of all

four runs.

(c) Four single subdomain searches are run sequentially, each using all P processors on each

of the four subdomains. The parallel execution time Tc is the total duration of these four

runs.

Table 4.6 compares Ta, Tb, and Tc for all the test problems (Imax = 90 for Test Functions 1–7

and Imax = 40 for the budding yeast problem). Ta is the smallest among the three. Tb is only

slightly bigger than Ta for Test Functions 2, 3, 4, 5, and 7, but becomes significantly bigger (> 5%)

for Test Functions 1, 6, and 8, each of which has a large s2, the variance of the total number of

function evaluations for the four subdomains (in Table 4.7). Also, Tc is the largest among the

three. Observe that it is only slightly bigger (< 5%) than Ta for Test Functions 2 and 7. Table

4.7 shows that these two test functions have a large ē =
∑
ei/Imax (> 6000), the average number

of function evaluations per iteration, where ei is the total number of evaluations for subdomain i.

Since more tasks are generated at each iteration for Test Functions 2 and 7 than for the other test

functions, P − 1 workers are better load balanced in case (c).

Figure 4.3 shows the normalized workload among workers for two runs: (1) Test Function 6

with moderate ē and large s2, and (2) Test Function 7 with large ē and small s2. Generally, workload

is normalized by dividing the total evaluation time for each worker by the average evaluation time

22

Table 4.8. Normalized workload ranges (WR) of a, b, and c for experiments listed in Table 4.6.

WRa WRb1 WRb2 WRc

1 [0.99969,1.0002] [0.95743,1.0413] [0.99193,1.0091] [0.97495,1.0250]
width 5.4685E-5 8.3845E-2 1.7152E-2 5.0023E-2
2 [0.99985, 1.0002] [0.99871,1.0014] [0.99871,1.0014] [0.9959,1.0049]
width 3.2897E-4 2.6460E-3 2.6460E-3 9.7536E-3
3 [0.99972,1.0001] [0.99633,1.0038] [0.99633,1.0038] [0.98213,1.0138]
width 3.8E-4 7.4827E-3 7.4827E-3 3.1646E-2
4 [0.99989,1.0001] [0.99840,1.0017] [0.99841,1.0017] [0.99470,1.0032]
width 2.1E-4 3.2577E-3 3.2576E-3 8.4916E-3
5 [0.99967,1.0005] [0.99476,1.0062] [0.99478,1.0063] [0.98949,1.0104]
width 7.9529E-4 1.1487E-2 1.1488E-2 2.0914E-2
6 [0.99973,1.0001] [0.93170,1.1108] [0.99497,1.0038] [0.98802,1.0072]
width 4.0281E-4 1.7910E-1 8.8312E-3 9.9186E-1
7 [0.99984,1.0001] [0.99898,1.0011] [0.99898,1.0011] [0.99678,1.0035]
width 2.3958E-4 2.0986E-3 2.0986E-3 6.7307E-3

for all workers. Specially for case (b), the workload is also computed based on P/4 processors for

each run instead of considering all P processors for the general normalization. Table 4.8 lists the

normalized workload ranges, where WRb1 was obtained by averaging the workload based on P

processors and WRb2 was obtained by averaging the workload based on P/4 processors.

Figure 4.3 plots the normalized workload among workers for Test Functions 6 and 7 in cases

(a), (b), and (c). Figure 4.3(1)I and II use different ways of normalization for case (b). In all three

pictures of Figure 4.3, case (a) has the best load balancing, i.e., the workload values fluctuate in

the narrowest range around the average value 1.0 as listed in Table 4.8. In Figure 4.3(1)I, case

(b) presents the widest range (WRb1) and an interesting pattern that correlates with the variance

of the number of function evaluations for the four subdomains of Test Function 6. In case (c),

the workload values fall within ranges slightly wider than those in case (a). Nevertheless, if the

average workload is computed separately (based on P/4 processors) for each run of case (b), case

(b)’s thus computed average workload range (WRb2) for Test Function 6 is slightly narrower than

that of case (c), but wider than that of case (a). This explains the timing results for Test Function

6 (Ta < Tb ≈ Tc). Since s2 is 0 for Test Function 7, the workload pattern is regular for all four

runs of case (b) as shown in Figure 4.3(2). Also, the same workload range is obtained by either

averaging the workload of all workers (WRb1) or of the workers within each run (WRb2) of case (b).

Similarly for Test Function 7, the narrower workload range implies shorter parallel execution time.

This experiment concludes that the multiple subdomain search has the best parallel performance in

terms of parallel execution time and load balancing. Multiple subdomain search allows masters from

different subdomains to provide work to the globally shared workers at different times, especially

for subdomains that generate different amounts of work. In comparison, all masters run out of

tasks at the end of each iteration in the single subdomain search. In the latter case, therefore, all

workers will be idle until new tasks are available at the next iteration, a direct consequence of the

DIRECT algorithm’s data dependency.

23

 0.92

 0.94

 0.96

 0.98

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 0 20 40 60 80 100 120 140 160 180 200

N
or

m
al

iz
ed

 w
or

kl
oa

d

Worker PID

WL(c)

WL(a)
WL(b)

I. Normalization based on P processors for case (b).

 0.988

 0.99

 0.992

 0.994

 0.996

 0.998

 1

 1.002

 1.004

 1.006

 1.008

 0 20 40 60 80 100 120 140 160 180 200

N
or

m
al

iz
ed

 w
or

kl
oa

d

Worker PID

WL(a)
WL(b)
WL(c)

II. Normalization based on P/4 processors for case (b).

(1) Test Function 6.

 0.996

 0.997

 0.998

 0.999

 1

 1.001

 1.002

 1.003

 1.004

 0 20 40 60 80 100 120 140 160 180 200

N
or

m
al

iz
ed

 w
or

kl
oa

d

Worker PID

WL(a)

WL(c)
WL(b)

(2) Test Function 7.

Figure 4.3. Comparison of the workload (WL) patterns among workers for cases (a) (circles), (b) (“+”
marks), and (c) (“x” marks).

24

5. Conclusions and future work

This paper describes the pertinent considerations and rationale during the evolution of several

massively parallel DIRECT implementations. Several memory reduction techniques and scalabil-

ity improvements in the parallel scheme have been used in the largest application of DIRECT

known to the authors—solving 143-dimensional optimization problems on up to 320 processors in

parallel. Several design decisions were analyzed and supported by experiments. Future research

in parallel DIRECT may consider the following venues. First, memory reduction techniques that

take advantage of the limit on the number of iterations can be explored further. In particular, one

may consider limits that take several box columns into account. Second, one may try to mitigate

the effect of data dependency by guessing which points DIRECT will sample in the next iteration,

and proactively sampling them when many workers are idle at the end of the current iteration.

Intuitively, several points whose values are yet unknown should not substantially affect the convex

hull, so one may be able to precompute certain objective function values ahead of time (effectively

for free, by using otherwise idle workers), and replace expensive function evaluations with cheap

table lookups later. Third, improving the implementation efficiency of convex hull computation

and memory reduction techniques will likely allow parallel DIRECT to scale to even larger prob-

lems on even larger machines. This is especially important when the objective function is cheap,

and thus the overhead of internal bookkeeping is significant.

Acknowledgment

This work was supported in part by AFRL Grant F30602–01–2–0572 and AFOSR Grant F49620-

02-1-0090.

References

1. M. D. Atkinson, J.-R. Sack, N. Santoro, and T. Strothotte, “Min-max heap and generalized priority queues”,

Communications of the ACM, vol. 29, no. 10, pp. 996–1000, 1986.
2. C. A. Baker, L. T. Watson, B. Grossman, R. T. Haftka, and W. H. Mason, “Parallel global aircraft configuration

design space exploration”, in High Performance Computing Symposium 2000, A. Tentner (Ed.), Soc. for
Computer Simulation Internat, San Diego, CA, 2000, pp. 101–106.

3. M. C. Bartholomew-Biggs, S. C. Parkhurst, and S. P. Wilson, “Global optimization approaches to an aircraft
routing problem”, EUR J. Operational Research, vol. 146, no. 2, pp. 417–431, 2003.

4. W. R. Esposito and C. A. Floudas, “Global optimization in parameter estimation of nonlinear algebraic models
via the Error-In-Variables approach”, Ind Eng. Chemistry and Research, vol. 37, pp. 1841–1858, 1998.

5. J. M. Gablonsky, “Modifications of the DIRECT algorithm”, PhD thesis, Department of Mathematics, North
Carolina State University, Raleigh, NC, 2001.

6. C. Gau and M. A. Stadtherr, “Nonlinear parameter estimation using interval analysis”, in AIchE Symposium,
vol. 94, no. 320, pp 445-450, 1999.

7. A. Grama, A. Gupta, G. Karypis, and V. Kumar, Introduction to Parallel Computing, Pearson Education
Limited, 2nd Edition, 2003.

8. W. Gropp, E. Lusk, and R. Thakur, Using MPI-2: Advanced features of the message-passing interface, The
MIT Press, Cambridge, Massachusetts, London, England, 1999.

9. J. He, A. Verstak, L. T. Watson, T. S. Rappaport, C. R. Anderson, N. Ramakrishnan, C. A. Shaffer, W.
H. Tranter, K. Bae, and J. Jiang, “Global optimization of transmitter placement in wireless communication

systems”, in Proc. High Performance Computing Symposium 2002, A. Tentner (ed.), Soc. for Modeling and
Simulation International, San Diego, CA, pp. 328–333, 2002.

25

10. J. He, M. Sosonkina, C. A. Shaffer, J. J. Tyson, L. T. Watson, and J. W. Zwolak, “A hierarchical parallel
scheme for global parameter estimation in systems biology”, in Proc. 18th Internat. Parallel & Distributed
Processing Symp., CD-ROM, IEEE Computer Soc., Los Alamitos, CA, 2004.

11. J. He, M. Sosonkina, L. T. Watson, A. Verstak, and J. W. Zwolak, “Data-distributed parallelism with dynamic
task allocation for a global search algorithm”, in Proc. High Performance Computing Symposium 2005, M.
Parashar and L. Watson (eds.), Soc. for Modeling and Simulation Internat., San Diego, CA, 2005, pp. 164–172.

12. J. He, L. T. Watson, N. Ramakrishnan, C. A. Shaffer, A. Verstak, J. Jiang, K. Bae, and W. H. Tranter,
“Dynamic data structures for a direct search algorithm”, Computational Optimization and Applications, vol.
23, no. 1, pp. 5–25, 2002.

13. D. R. Jones, C. D. Perttunen, and B. E. Stuckman, “Lipschitzian optimization without the Lipschitz constant”,
J. Optim. Theory Appl., vol. 79, no. 1, pp. 157–181, 1993.

14. D. R. Jones, “The DIRECT global optimization algorithm”, in Encyclopedia of Optimization, vol. 1, Kluwer
Academic Publishers, Boston, 2001, pp. 431–440.

15. C. G. Moles, P. Mendes, and J. R. Banga, “Parameter estimation in biochemical pathways: a comparison of
global optimization methods”, Genome Res., vol. 13, pp. 2467–2474, 2003.

16. J. Nieplocha and B. Carpenter, “ARMCI: A portable remote memory copy library for distributed array libraries
and compiler run-time systems”, in 3rd Workshop on Runtime Systems for Parallel Programming (RTSPP) of
International Parallel Processing Symposium, IPPS/SDP’99, CDROM, 1999.

17. T. D. Panning, L. T. Watson, N. A. Allen, K. C. Chen, C. A. Shaffer, and J. J. Tyson, “Deterministic global
parameter estimation for a model of the budding yeast cell cycle”, J. Global Optim., to appear.

18. K. Parzyszek, J. Nieplocha, and R. A. Kendall, “A generalized portable SHMEM library for high performance
computing”, in 12th IASTED International Conference Parallel and Distributed Computing and Systems
(PDCS), pp. 401–406, 2000.

19. L. T. Watson and C. A. Baker, “A fully-distributed parallel global search algorithm”, Engineering Computa-
tions, vol. 18, no. 1/2, pp. 155–169, 2001.

20. J. Zhou, X. Deng, and P. Dymond, “A 2-D parallel convex hull algorithm with optimal communication phases”,
Parallel Computing, vol. 27, no. 3, pp. 243–255, 2001.

26

