
Spiraling Toward Usability: An Integrated Design
Environment and Management System

Jason Chong Lee1, Shahtab Wahid1, C. M. Chewar2, Ben Congleton1, D. Scott McCrickard1

Center for Human-Computer Interaction1

Department of Computer Science
Virginia Polytechnic Institute & State University

Blacksburg, VA 24060-0106
{chonglee, swahid, bconglet, mccricks}@cs.vt.edu

Department of Electrical Engineering and
Computer Science2

United States Military Academy
West Point, NY 10996

christa.chewar@usma.edu

ABSTRACT
Decades of innovation in designing usable (and unusable)
interfaces have resulted in a plethora of guidelines, usability
engineering methods, and other design tools. However,
novice developers often have difficulty selecting and
utilizing theory-based design tools in a coherent design
process. This work introduces an integrated design
environment and knowledge management system, LINK-
UP. The central design record (CDR) module, provides
tools to enable a guided, coherent development process.
The CDR aims to prevent breakdowns occurring between
design and evaluation phases—both within the development
team and during design knowledge reuse processes. We
report on results from three case studies illustrating novice
designers’ use of LINK-UP. A design knowledge IDE
incorporating a CDR can help novice developers craft
interfaces in a methodical fashion, while applying,
verifying, and producing reusable design knowledge.
Although LINK-UP supports a specific design domain, our
IDE approach can transfer to other domains.

Author Keywords
Usability engineering, design tools, knowledge
management, central design record, LINK-UP

INTRODUCTION
Computing systems are becoming increasingly pervasive
and continue to affect and mediate our daily lives in new
ways. Many different usability engineering methodologies
and techniques aim to bring some structure to the design
process and allow developers to develop these systems to
satisfy the needs of end users. However, it is not always
clear how to converge the myriad usability processes and
techniques into a coherent, iterative development process,
particularly for novice or student developers who may have
little to no experience at applying those techniques. This
can lead to breakdowns in the usability engineering process
where developers are unable to relate user requirements or
performance observations back to the design or to arbitrate
design goals or intentions with project stakeholders.

Prior work by usability engineers and HCI researchers have
uncovered places and situations where breakdowns in the
usability engineering process can occur, as well as factors

to consider to prevent breakdowns. In addition, research
and development in HCI and usability engineering
continues without any direct way to leverage this growing
body of design knowledge within a development process.
This motivates our work on LINK-UP, an integrated design
environment (IDE) and knowledge management system.
LINK-UP supports a principled, structured usability
engineering process and provides the guidance needed to
prevent process breakdowns while enabling developers to
access and contribute to an active body of design
knowledge as they carry out design actions. While previous
papers have reported on the design of LINK-UP [3, 14], this
paper introduces the central design record (CDR), a design
representation that makes explicit where and how handoffs
occur in the development process and highlight design
decisions that need reconsideration during the next
development iteration. For instance, the CDR allows
developers to determine links between current practice and
how and why an interface modifies it or relationships
between evaluation data and different aspects of the
interface.

This paper documents a series of three case studies that
illustrate how novice designers used LINK-UP to engineer
interfaces. Building on our experiences with knowledge
repositories and principled process-oriented development,
LINK-UP serves as a culmination and realization of our
previous work. Our results suggest that a design knowledge
IDE that incorporates the processes and principles of the
CDR, can help novice developers apply a design
methodology to develop interfaces in a guided, methodical
fashion and avoid process breakdowns. Furthermore, we
see evidence that, through the use of the CDR, iterative
application and verification of reusable design knowledge is
made practical for novice interface developers.

MOTIVATION
Various methodologies and techniques within HCI have
identified problems and issues that need to be addressed in
a usability engineering process. In this section, we review
some of the foundational ideas that motivate the
development activities supported by LINK-UP and the
central design record.

 1

Norman’s theory of action proposes that the design process
should acknowledge the existence of three critical
components: the design model, user’s model, and system
image [13]. The design model is an intended form of the
design upheld by the designers. The user’s model is based
on the user’s understanding of the system image, the
physical system and its accompanying documentation. The
design model leads to the development of a system image
which is then evaluated by users to produce a user’s model.
Developers work to converge the two models through
iterative development. Critical to this idea is the ability to
gauge the convergence such that designers know when they
have achieved their goals.

The ability to determine the initial goals and gauge efforts
requires an understanding of core concepts behind the
system being designed. Wixon stressed the need to focus on
engineering-relevant criteria to determine design success
both in terms of practice and business [21]. Newman
advocates the use of critical parameters—measures of
performance specific to a class of systems that can
determine overall success of a design—as one way to
address this need [11]. These measures can focus
development efforts on the most important parameters of
success in an iterative development process. Thus,
designers must understand how critical parameters can be
used as targets during evaluations.

Usability engineering is concerned with developing
interfaces that users can use effectively. It encompasses
factors such as learnability, efficiency, memorability, errors
and user satisfaction [12]. Numerous approaches to
usability engineering have been proposed and used that
share many similar characteristics such as user-centeredness
and iterative design coupled with analytic and empirical
evaluations.

One such approach is Rosson and Carroll’s Scenario-Based
Design (SBD), a design process in which scenarios,
narratives describing a particular task, are used in
conjunction with design knowledge components called
claims, which encapsulate the positive and negative effects
of specific design features as a basis for creating interactive
systems [2, 15]. During the process, designers must be
able to know when certain design activities, such as the
design of a particular task, is completed and how they can
test particular aspects of their design. Without such
support, a designer may not be able to judge when a
development iteration should proceed to an evaluation
phase or how the evaluation must be conducted.

The creation of a detailed design representation in SBD is
imperative to the design process, allowing explicit analysis
of the new system in its anticipated context of use. The
designer’s goal is to complete this design representation
with as much detail as possible. With a well-defined design
representation, the reuse of design knowledge can prove to
be immensely helpful as they are more likely to fit into the
structure of the design representation and contribute to the

overall design. Being able to effectively store and reuse
design knowledge is an active area of study for design
domains[6, 9, 17]. For example, software engineering
community has long advocated reuse of both code and
general code architecture solutions through patterns.
Within HCI, Sutcliffe and Carroll worked on a framework
for documenting and organizing claims in a knowledge
repository, although as of yet they have not developed the
actual library or tools to support claims reuse processes
[17].

Another important consideration in usability engineering is
to support communication among the different groups of
stakeholders that may be involved in a development
process. Given the interdisciplinary nature of usability
engineering and HCI, people from different backgrounds
may have no easy way to discuss and reflect on designs.
Borchers advocated the use of formally defined patterns to
support communication among stakeholders [1]. In a
similar vein, Borchers and Erickson have both advocated
the use of patterns and pattern languages as a way to
support cross-disciplinary discourse [1, 5]. Sutcliffe
pointed to structured claims as a way to delivering HCI
research knowledge to practitioners, giving them the ability
to communicate through claims [16].

The emergence and acceptance of the various usability
engineering processes within the research community,
however, does not encourage their acceptance within the
industry. Winograd argues that there is a need for design
environments to support these and other software system
development processes—beyond those provided by
programming environments—to support communication
and activity flow within the design process [20]. Such
systems can allow developers to better use and integrate
usability design processes such as those developed by
Rosson and Carroll.

Key focus points for Design Knowledge IDEs
Based on these prominent ideas and implications emerging
from HCI research, we solidified requirements for LINK-
UP and the CDR. Performing a decomposition of the
overall goal of providing useful support for iterative
application and verification of reusable design knowledge,
we derive the following focus points with respect to the
development of design knowledge IDEs:

1. IDEs must support design goal formation and facilitate
continuous estimation of design progress through
comparison between design goals and resulting design
artifacts.

2. To effectively guide specific, incremental design
improvements, the system should help developers craft
a design representation that is sufficiently detailed to
focus evaluation activities.

3. IDEs should facilitate communication efforts among
stakeholders around the design representation and its
resulting development and evaluation.

 2

4. An interface development support system must be
flexible enough to support design and evaluation
activities.

LINK-UP
To address the concern of providing tool support to
designers and achieve the vision we described in the
previous section, we have developed the LINK-UP system.
(A demo of the system is available at
http://ticker.cs.vt.edu/LinkupDemo) The system supports
the use and reuse of design knowledge and integrates the
notion of critical parameters as a guide to designing and
evaluating systems. We continue our introduction of
LINK-UP with a review of the application domain the
system focuses on as well as a summary of the key
components and features of the LINK-UP system.

Notification Systems

A focus on a particular interface design domain allows us to
increase our depth rather than focusing on the breadth of a
larger domain, an important concern when dealing with
design knowledge. In our case, the LINK-UP system
focuses on the notification systems domain, a growing class
of applications supporting information needs. In such
systems a user acts within a primary task while explicitly or
implicitly monitoring information through a notification
system as a secondary task. Thus, the dual-task nature of
these systems is a defining characteristic of the user
interaction with these interfaces. In this case, the goal of
the notification system is to deliver valued information
without introducing unwanted interruptions to the primary
task [9]. Instant messengers and e-mail alerts are common
examples of such systems. Ambient displays, large screen
information exhibits, and car navigation systems are other
examples of off-the-desktop systems.

The domain can be organized by three critical parameters
that define innate aspects of notification systems—systems
strive to support differing user experiences that can be
abstracted in terms of psychological effects. Each critical
parameter characterizes the prominence of a psychological
effect caused by the design. Interruption (I) is the
reallocation of attention from the primary task to the
notification in the secondary task. A reaction (R) is a
response to the stimuli to determine whether the notification
should be further pursued. Finally, comprehension (C)
describes the process of understanding the notification and
storing the information in long-term memory. Together,
these three critical parameters form the IRC framework [9].
The framework uses IRC values ranging from 0 to 1 for
every critical parameter. Each integer value combination
describes one of eight possible notification systems.
Designers can use these critical parameters as targets for
their notification system as well as usability and
performance metrics for comparison during evaluations.

LINK-UP Development Process

With the four focus points in mind, we aimed to create a
system that will support the design of notification systems
through the use of IRC and SBD’s notion of claims. LINK-
UP consists of a design knowledge repository and modules
in which design activities are carried out. The repository,
or the claims library [14], contains claims related to our
domain. Designers can search for reusable claims
applicable in their own designs by using various searching
or browsing [18] features. This basis, a structured
collection of claims, supports knowledge sharing among
designer communities interested in the domain. Figure 1
shows the key knowledge structures and cyclical iterative
approach designers use in creating interfaces. The
remainder of this section describes the structure and
approach.

The basic structure of a claim consists of a feature and a list
of upside and downside tradeoffs. We extend this structure
with additional information. Each upside and downside is
supported by rationale either summarizing results of an
observational study performed by the designer who created
the claim or providing references to published research
supporting the particular tradeoff. An attached scenario
describes a task in which the claim can come into use. The
scenario allows designers to consider how the claim can be
used within the context of a design. As a whole, the claim
is also assigned an IRC value to depict the effect the claim
will have on a notification system, allowing designers to
discuss how applicable the claim may be to the overall
design goals of their system. Such assignments are critical
to integrating the concept of critical parameters into design,
providing a base upon which claims can be evaluated. The
complete structure of a claim in the library allows designers
to create sufficiently detailed design representations
through collections of claims.

The contents of the library are finite. Designers may not be
able to find information that may contribute to their
designs. Therefore, contributions to the library are allowed
and facilitated through a claims creation process. Users are
guided through a process where they are asked to enter the
information for each part of the claim. While this supports
current design efforts, future design and reuse activities are
also enhanced in the process through such contributions.

The claims library forms the core of the LINK-UP
environment. Upon it lie two different modules: the
requirements analysis module and the central design record
module [7]. The requirements analysis module, where the
designer starts, is an environment in which the designer
determines design goals and establishes the problems that
must be solved. The CDR module is the environment in
which much of the design is created. Both modules support
the reuse and creation of claims.

Within the requirements analysis module, the process of
SBD is initiated by asking designers to create a problem
scenario based on their own analysis. This problem
scenario gives insight into the important problems,

 3

providing motivation for a new design through a portrayal
of current practices. The use of a problem scenario makes
it easy for designers to communicate their understanding of
the problem domain to stakeholders.

To help clarify the goal of a new design, based on the
problem scenario, the designer determines a target IRC
value they would like to achieve through their design. This
situates the new system within the general design space for
the design domain (notification systems). Furthermore, the
processes serve as a formalization of their goals and
provides a method for analytic and empirical comparison of
intended and actual IRC values. Support for the
determination of these system-wide values is provided
through a System IRC tool [3] that asks various questions
regarding the nature of the system they wish to design.

As a step toward creating a detailed design representation,
the problem scenario is decomposed into specific concepts
that can later be associated with claims. Each concept is a
critical part of the scenario that reflects a problem and need
for a solution. The decomposition allows the designer to
divide the scenario by Norman’s Stages of Action [13] and
place concepts within each stage. Such decompositions
help designers understand how users interact with the
existing system and provide a more complete view of user
information processing.

Based on the IRC tool, which the developers use to
determine the system IRC and questions regarding the
desirability of these effects, a stage IRC value is also
generated for each Stage of Action. Like the system IRC,
these critical parameters help designers focus their design
efforts for each stage of action.

As designers progress through this guided decomposition
process, they are eventually presented with a list of
concepts for which claims are needed. In turn, this prompts
the eventual association of design features addressing
specific portions of the problem scenario and claims
elaborating them with tradeoff expressions. The system
facilitates this by offering:

• Access to the claims library to search for reusable
claims representing the problems,

• Facilitation of new claims creation to express novel
problem or solutions,

• Placement of claims within each Stage of Action.

The stage IRC values allow designers to search for claims
that have IRC values close to the required stage IRC values.
The requirements analysis module leaves the designer with
a specified form of their goals and problems. In the next
module, they strive to find solutions to these problems.

Once the requirements analysis is completed, the designer
moves on to the central design record module. The CDR
module is designed to support the activity, information, and
interaction phases of SBD. When a user enters the module,
the problem scenario and claims from the requirements
analysis module are imported.

Requirements
Analysis

System Image
Design

System Image
Redesign

Analytic
Evaluation

Final Product

Empirical
Evaluation

Further Iterations

Requirements
Analysis

System Image
Design

System Image
Redesign

Analytic
Evaluation

Final Product

Empirical
Evaluation

Further Iterations

Figure 1. LINK-UP’s knowledge structures and design
processes. Designers start at the center identifying
requirements and a target IRC goal representation. Design
iterations result in CDRs that include possible design claims,
which are tested through an evaluation, and lead to eventual
convergence of the design model and user’s model.

Designers are first expected to create activity scenarios for
each main task they have identified for their notification
system. An activity scenario describes the high-level
purpose and actions that are to be carried out in a main task.
Once the scenario is written, designers begin a claims
analysis process for the scenario in which they gather
claims for the activity scenario. Support for the scenario in
terms of claims is also broken down by Norman’s Stages of
Action. A claim is identified for each of the stages in the
Gulf of Execution and Gulf of Evaluation. Just as in the
requirements analysis module, the designer can either
search for a claim or create a claim. The process of
gathering claims within the module supports further claims
reuse for designs and encourages the creation of more
claims when none are found. A similar process is again
followed for information scenarios, scenarios depicting the
information a user will encounter during the task, and
interaction scenarios, scenarios describing the specific
actions the user must take.

The nature of the CDR module is very fluid. A specific
process, as opposed to the requirements analysis module, is
not imposed upon the designer. Designers can switch
between working on various parts of their design at any
point in time. One can always choose to start creating a
new task or to continue developing a previous task. This
increases the flexibility of the module and permits the
designer to revisit certain parts for redesign as a result of
evaluation results.

The various portions of the module contribute to a detailed
representation of a design that can be used for evaluation

 4

purposes. For example, the breakdown of tasks in terms of
stages of action gives designers a chance to evaluate when
they are nearing completion of a certain task, but also gives
evaluators another perspective on how a certain task is
being supported within a design. A breakdown of the
design in terms of claims shows the links between
prototype features and their corresponding tradeoffs
encapsulated by the claims. Imposing such structure on the
design in the CDR module forms a gateway to facilitating
communication. Stakeholders can discuss certain parts of
the design with an established common ground that focuses
on specific parts of the module, helping both designers and
evaluators reach consensus.

CASE STUDIES
In this section we present three cases studies of design
projects developed using LINK-UP over several
development iterations. Students in an undergraduate
Human-Computer Interaction course at Virginia Tech used
the IDE in a semester-long project to develop notification
systems. Navigation-assisting notification systems with a
focus on “off-the-desktop” systems was chosen a general
theme for all the projects. Each project group consisted of
4-5 students. Three exemplar systems were chosen among
the groups in the class based on the quality of the feedback
they provided in a series of project reports written at each
stage of development. These reports were designed to elicit
feedback related to both the system they designed and the
process and tools they used to design it. Six reports were
written in total by each group, corresponding to
requirements analysis, an initial design, an analytic
evaluation, a redesign, an empirical evaluation, and a final
concluding report. Specific aspects of LINK-UP and the
process it embodies as well as breakdowns and areas for
improvement are derived from the observations described
in these reports and from the researchers’ personal
observations throughout the duration of the projects.

Case 1: Huckleberry Trail Attraction Notification System
 The first case study documents the development of a
notification system to facilitate general enjoyment of
attractions on and around the Huckleberry Trail, an outdoor
trail. It focused on allowing hikers to discover and learn
about various attractions as they walked along a trail
without interrupting their general enjoyment of their
surroundings. This study illustrates how the CDR can
support principled incremental interface improvement by
linking evaluation results directly to design decisions.

The group conducted an analysis of the trail and its uses
and determined that the trail, built along an old rail line near
Virginia Tech, is visited by many people to enjoy its natural
beauty. Since Virginia Tech hosts many students from
different areas of the world, the developers decided to
develop a PDA-based tourist guide system that could
supply useful information to newcomers about the trail’s
surroundings without disrupting enjoyment.

Based on this initial analysis, the designers developed a
problem scenario illustrating the need for their design.
Using the requirements analysis module, the developers
decomposed their scenario to aid in extracting problem
claims. They also used the embedded target System IRC
estimation tool to estimate the targeted design model IRC
value for their system. The developers found the overall
process to be constraining and tedious, though they were
able to extract problem claims that highlighted the issues
they hoped to address. In addition, the developers found the
IDE’s problem claim recommendation capabilities to be of
little value. An initial design was developed based on the
problem scenario and claims. Many design claims evolved
directly from relationships to problem claims. This
connection between the problem and design space proved
useful in later justifying design decisions when evaluating
their designs.

In the analytic evaluation, one other group in the class acted
as expert evaluators and attempted to identify problems
with the design for the Huckleberry Trail notification
system. The evaluators were given access to both a paper
prototype, which gave a broader user perspective of the
design, and the underlying scenarios, claims, and system
IRC value organized by the CDR module, giving evaluators
access to the design model of the system being developed.
The developers noted that the CDR is not an exhaustive
representation of the design. Comments from the
evaluators uncovered problems that were not considered
and recorded in the CDR. For example, the evaluators
noted that there was no mechanism to support destinations
or sights that were off the trail.

A redesign of the system was focused on mitigating
problems that were identified in the analytic evaluation. A
functioning prototype was then developed based on the
refined CDR. The prototype ran on a laptop, rather than a
PDA, and was displayed next to another laptop that
displayed a slideshow of nature-related images to simulate
traveling through the trail.

In the subsequent empirical evaluation, users were told to
pay as close attention to the images as possible as the
notification system ran in the periphery on the second
laptop. Specific claims in the CDR further guided the
empirical evaluation. The empirical evaluation was meant
to verify untested claims in the CDR and determine whether
the user model IRC value matched the design model IRC
value. In addition, the CDR made the link between
evaluation data and the design rationale explicit. For
example, in the analytic evaluation, the evaluators thought
that highlighting icons on the display may cause too much
interruption for the user. The developers decided to try to
mitigate this issue by using non-highlighted icons on the
system. Both highlighted and non-highlighted icons were
tested in the empirical evaluation, and the developers did
find that the highlighted icons caused too much
interruption. This illustrates the link between design
rationale in the CDR to empirical results and to the system

 5

goal (defined in terms of IRC) made possible by the
persistent representation of the design model that is stored
and maintained through the CDR module.

The case highlights the general success of using critical
parameters to measure the success of the system at
achieving initial goals while using the design model stored
in LINK-UP to direct iterative refinements to achieve them.
We expect that similar successes would become apparent
through further iterations, more refined prototypes and
testing on the actual Huckleberry Trail.

Case 2: Online Dispatcher Notification System
The second case study describes the development of an in-
vehicle navigation device for police officers. This system
allows officers to determine their current location, the
location of fellow officers, the location of the alert, and the
best route to the alert site. This is meant to mitigate the
inefficiency of current radio-based information relaying
between officers. The study highlights the principled,
incremental design improvements made possible through
the CDR and the benefits in initially using a guided process
to steer requirements analysis.

These developers reviewed information related to police
procedures available on the internet and conducted an
interview with an officer at the local police department.
Based on the information, they laid out the high-level goals
of their system and determined that it should have high
interruption to alert officers of people in need of assistance,
high reaction so that officers know how to respond to
different alerts quickly, and moderate comprehension so
officers can maintain awareness of surrounding information
and routes leading to affected areas.

The developers found the problem scenario decomposition
process in the requirements analysis module to be helpful in
separating different features and concerns from which
claims could be derived. However, the developers did not
have a clear understanding of the stage IRC values and did
not use them to find relevant library claims. Similarly, the
System IRC estimation tool was helpful in allowing the
developers to consider overall goals of their system.
Although the group found the overall process to be time-
consuming it ultimately aided in their design because it
allowed them to develop both a top-down and bottom-up
view of their design space.

To minimize disruption to accepted police protocols and
encourage acceptance, the designers considered each aspect
of the defined problem situation to determine which specific
areas to target for design and which to keep the same. For
example, although the system is built as a small display and
will support visual notifications, it will continue to support
audio notifications because officers are already accustomed
to such alerts and know how to react them. This will then
allow officers to draw attention to the display for further
information or interactions.

The analytic evaluation allowed the developers to identify
potential usability concerns. The CDR prompted and
focused discussion among the developers and evaluations
about important aspects of the design, specifically those
related to how interruptive the system is to the officer’s
primary task of driving. In reviewing the CDR, the
evaluators believed that the system may be too distracting
for the officer to interact with while driving. A suggested
way to mitigate this problem is to require the car to be at a
standstill before an officer can interact with the system (e.g.
select an alternate route). The developers ultimately
decided not to mitigate this problem because they believed
the utility tradeoff for the additional safety feature would be
too great. The need for flexibility and control combined
with the training and discipline of their system’s target
users outweighed the need for any kind of safety lock. This
demonstrates how the CDR can serve to encourage
discussion and critical thought revolving around design
features among different stakeholders.

In the empirical evaluation, the dispatcher notification
system prototype ran on a laptop in the approximate
location it would be in a squad car. In the interests of
safety, the driving task was simulated by having the study
participants operate a car in a driving simulation game. The
participants were undergraduate students with several years
of driving experience and average experience using online
map services. The designed tests were derived from design
claims in the CDR and were primarily focused on how
effectively the system could notify drivers without too
much interruption and whether drivers were able to
comprehend the information provided. The results of their
study indicated that their audio notifications seemed to be
too interruptive as they caused participants to crash their
vehicle. In addition, the participants found it too difficult to
follow and understand the map. Despite these setbacks, the
developers determined that they need to focus future
redesign efforts on the information design claims in their
map to support better comprehension and their interruption
claims in their CDR. The group was confident that such
efforts would lead to a design that better matches their
initial goals.

This case study demonstrates how the CDR can support
focused, incremental design improvements through explicit
claims analysis and analysis of evaluation data. It also
demonstrates how LINK-UP can help guide developers in
specifying features and problems to focus on, particularly in
the early stages of design.

Case 3: Motorcycle Navigation Notification System
The third case study documents the design of a vehicle
navigation system for motorcycles. This system was
intended to provide route information, points of interest,
and real-time traffic and weather information. The
challenge of this system was in providing these features
within the unique constraints of an operating motorcycle.
The targeted users of this system were recreational

 6

motorcyclists, who often take back roads and non-optimal
paths to maximize enjoyment of the ride. The developers
determined that this system needs a moderate level of
interruption and a low level of reaction to minimize the risk
of distracting the motorcyclist while still providing useful
information, and a moderate to high level of comprehension
of notified information.

These developers differed from the previous groups in that
after developing their scenarios, they had success in finding
claims in the claims library that relate to their designs. In
the problem scenario, the motorcyclist uses a PDA with a
GPS navigation system to trace a route before getting on his
motorcycle. The scenario decomposition process combined

with the stage IRC values in the requirements analysis
module helped in finding claims in the library. For
example, one reused problem claim describes the benefits
of interacting with a hand-held device. Although originally
used to describe a remote control for an MP3 player, the
developers found the claims were general to be reused to
describe upsides and downsides of their problem scenario.
Similar reuse occurred in the design phase of their project.
In most cases, claims were found in the library that matched
existing ideas for their interface, rather than as a way for
them to explore how to develop their system. This allowed
the developers to access positive and negative effects that
they may not have considered had they themselves created
the claims. This reuse-first design philosophy allowed the

(-) functioning
prototype (outside
LINK-UP) provided
most valued
feedback [case 2,
case 3]
(+) validated
claims can be
updated with
empirical data
[all cases]

(+) Claims format
aided in analyzing
design tradeoffs
[case 1, case 3]

(+) Scenario
breakdown helps to
find claims [case 3]
(-) Requirements
process constraining
& tedious
[case 1, case 2]
(+) Claims search
supported by critical
parameters aids
reuse [case3]

IDE is flexible
enough to
support iterative
design/evaluatio
n activities

(+) Conflicts
uncovered in
analytic evaluation
resolved
[case 1]

(+) System image
provides tangible
design model to
support discussion of
interface between
developers and
evaluators [all cases]

(+) Paper prototype
helped make design
less abstract by
connecting design
rationale to
interface. [case 1,
case 3]

IDE facilitates
communication
among
stakeholders
around design
concerns

(+) link between
design model and
empirical results
guides redesign
[case 1, case 2]
(-)general
feedback not
directly supported
[all cases]

(+) Claims analysis
based on evaluation
results guide redesign
[case 1, case 3]
(+) Untested or
contested solutions can
be deferred until
empirical evaluation
[case 1, case 2]

(+) Redesign efforts
focused on features
defined to be most
important by
developers [case 2,
case 3]

(+) System image
focuses on specific
design features
[all cases]
(+) juxtaposing
problem & design
space allows careful
reflection
[case 1, case 2]

IDE guides
design
representation
development to
support
evaluation
activities

(+) Evaluations
focused on specific
features verify
hypotheses made in
claims [all cases]

(+) IRC parameters
focus redesign efforts
on critical design
features
[case 1, case 2]

(+) Critical (IRC)
parameters focus
evaluation on non-
trivial aspects of
design [case 1, case 2]

(+) Generated IRC
is close to expected
values
[case 2, case 3]

IDE supports
goal formation
and facilitates
design progress
estimation

Empirical
evaluation

RedesignAnalytic evaluationRequirements &
Initial Design

Case Observations by Design PhaseKey focus
points

(-) functioning
prototype (outside
LINK-UP) provided
most valued
feedback [case 2,
case 3]
(+) validated
claims can be
updated with
empirical data
[all cases]

(+) Claims format
aided in analyzing
design tradeoffs
[case 1, case 3]

(+) Scenario
breakdown helps to
find claims [case 3]
(-) Requirements
process constraining
& tedious
[case 1, case 2]
(+) Claims search
supported by critical
parameters aids
reuse [case3]

IDE is flexible
enough to
support iterative
design/evaluatio
n activities

(+) Conflicts
uncovered in
analytic evaluation
resolved
[case 1]

(+) System image
provides tangible
design model to
support discussion of
interface between
developers and
evaluators [all cases]

(+) Paper prototype
helped make design
less abstract by
connecting design
rationale to
interface. [case 1,
case 3]

IDE facilitates
communication
among
stakeholders
around design
concerns

(+) link between
design model and
empirical results
guides redesign
[case 1, case 2]
(-)general
feedback not
directly supported
[all cases]

(+) Claims analysis
based on evaluation
results guide redesign
[case 1, case 3]
(+) Untested or
contested solutions can
be deferred until
empirical evaluation
[case 1, case 2]

(+) Redesign efforts
focused on features
defined to be most
important by
developers [case 2,
case 3]

(+) System image
focuses on specific
design features
[all cases]
(+) juxtaposing
problem & design
space allows careful
reflection
[case 1, case 2]

IDE guides
design
representation
development to
support
evaluation
activities

(+) Evaluations
focused on specific
features verify
hypotheses made in
claims [all cases]

(+) IRC parameters
focus redesign efforts
on critical design
features
[case 1, case 2]

(+) Critical (IRC)
parameters focus
evaluation on non-
trivial aspects of
design [case 1, case 2]

(+) Generated IRC
is close to expected
values
[case 2, case 3]

IDE supports
goal formation
and facilitates
design progress
estimation

Empirical
evaluation

RedesignAnalytic evaluationRequirements &
Initial Design

Case Observations by Design PhaseKey focus
points

Table 1. Summary of positive and negative case observations and relation to focus points.

 7

developers to better consider their design options and
tradeoffs without sacrificing the creative aspects of
interaction design.

The developers did not gain from the analytic evaluation as
the designers in the other case studies did. They noted that
their evaluators did not have an in-depth understanding of
their system and problems they identified were actually
addressed elsewhere in the CDR. For example, the
evaluators thought the system should include a backlight to
maintain visibility of the system at night, but the designers
pointed out that this issue was already addressed by another
claim in the CDR. Though unfortunate, this highlights how
the CDR, with its related scenarios and claims, can act as a
common language through which project stakeholders can
both discuss the design and resolve any misunderstandings
[1].

 The developers also had problems managing the CDR
through LINK-UP in the redesign phase of the project.
They found that the number of scenarios and claims that
had to be managed and updated was daunting. In addition,
since a functioning prototype was not assigned to be
developed until just before the empirical evaluation phase
of the project, the developers were frustrated by working
almost exclusively with the CDR. They noted that the CDR
records the design model of the interface, but it does not
convey how a user actually interacts with it.

Like the previous case study group, the developers ran their
prototype system on a laptop in front of the participant as
he or she attempted to navigate around on a motorcycle in a
driving simulation game. Audio notifications were fed
from the system to the participant through an earpiece.
These developers did not gain as much insight into potential
design improvements as the previous groups in that most of
their participants performed within expected parameters for
the tasks they laid out. In addition, they found that their
system seemed to support moderate levels of interruption
and relatively high comprehension, which were in
agreement with their initial system IRC goals. Overall,
they found the evaluation on the functioning prototype to
have provided the most valuable feedback. In particular,
the open-ended feedback suggested that the system would
be better marketed toward a specific type of motorcyclist
and suggested additional features and aesthetic
improvements.

This case study highlights how reused claims can help in
designing interfaces and how the CDR can support better
communication among stakeholders. It also suggests how
an empirical evaluation module needs to support both
specific design issues related to principled, incremental
design improvements and to broader issues that may be
outside the scope of the IRC framework.

This case study highlights how reused claims can help in
designing interfaces and how the CDR can support better
communication among stakeholders. It also suggests how
an empirical evaluation module needs to support both

specific design issues related to principled, incremental
design improvements and to broader issues that may be
outside the scope of the IRC framework.

DISCUSSION
In this section, we synthesize the results from the case
studies and draw out conclusions about LINK-UP. We
discuss both the strengths of our approach and areas for
improvement, summarized in Table 1, with respect to the
four focus points. These highlight the value of our
approach and areas to focus future efforts.

The critical parameters of the notification systems,
embodied in the system IRC values, proved to be a valuable
guide in supporting the first focus point: IDEs need to
support design goal formation and comparison between
design goals and the resulting design artifacts. Developers
were able to verify specific hypotheses made in newly
created claims and speculate on how they affect the system
IRC value. The case studies demonstrated the value of
integrating critical parameters throughout the development
process. They proved to both guide design activities and
estimate design progress based on evaluation results.

The case studies also suggest the second focus point—IDE
aids in design representation formation to focus evaluation
activities and specific, incremental design improvements—
is also supported. By their nature, scenarios do not
exhaustively detail every aspect of an interface in use.
Subsequent claims extracted from those scenarios are
similarly limited. However, this worked to the advantage
of the developers by focusing evaluation and redesign
activities on specific aspects of the interface—especially
the notification task defined in terms of the target IRC
values. This supported iterative, risk-driven development
by having designers focus on key, high risk aspects of the
system first. The direct relationship between the problem
and design space, captured in the respective scenarios and
claims in the CDR, also encouraged careful consideration
of current practices while developing the new system.
Planning empirical evaluations partly around individual
claims also supported the second focus point. Failures in
the defined tests could be linked directly to design
decisions—expressed in claims. Developers then knew
where to focus prototype redesign efforts. The case studies
demonstrate the value in supporting incremental
improvements through the tight coupling of design
representations with evaluation data. Developers were able
to understand the nature of iterative development and saw
the potential of tightly focused redesign efforts that are
more likely to resolve identified problems and complement
a user’s current work environment.

LINK-UP, and its implementation of the CDR, also
supports the third focus point—an IDE needs to support
communication among stakeholders around the design
representation’s development and evaluation. This work
shows that by acting as a communication point between
developers and evaluators, the CDR encourages discussion

 8

and evaluation of the interface design. The paper prototype
combined with the goal IRC value gives a high-level view
of the system while the CDR encapsulated the design model
of the interface. This allowed analytic evaluators to view
specific aspects of the system from both a designer and user
perspective. In addition, the analytic evaluation helped to
resolve misunderstandings as documented in the
Motorcycle Navigation System group. Thus, a focused
design representation that is encoded in an easily
understandable manner allows different groups to better
reflect on design decisions and can aid in conflict resolution
with respect to the interface design.

As the developers used the LINK-UP system itself,
strengths and limitations of various parts of the IDE became
apparent. Thus, the fourth focus point—IDE is flexible
enough to support iterative design and evaluation
activities—is partially supported. The relatively linear,
guided process in LINK-UP was helpful to novice
developers, particularly in early stages of design, in
identifying problems and claims. However, all groups
found the process to be tedious and restrictive to varying
degrees. Only the Motorcycle Navigation group was able
to leverage the given search features, including the IRC
parameter-based search, to find relevant claims. The other
groups were unable to find claims from the library to reuse.
The Huckleberry Trail group noted that they did not
understand the parameter-based claims search; this
emphasizes the high learning curve needed to use a faceted
search [4]. However, the claim recommendation system,
which was meant to mitigate this problem and was based on
the IRC parameters, did not help that group find claims
either. The fact that one group was able to effectively reuse
claims from the library and a general willingness from the
other groups to reuse point to limited search capabilities as
the limiting factor. This highlights the need for a multi-
dimensional search system that is tightly integrated with an
IDE. Furthermore, several groups noted the difficulty they
had in managing and reviewing the large number of
scenarios and claims through LINK-UP. The size of the
design representation may cause other issues in the design
process such as in analytic evaluations where expert
evaluators may have problems reviewing and making sense
of all of the CDR information.

Overall, the LINK-UP system did guide usability
engineering processes and support knowledge creation
while sacrificing time-efficiency and flexibility in the
design process. We do not feel that these are critical
drawbacks, since LINK-UP is intended for novice
developers. As LINK-UP’s users become more accustomed
to a design process, they can relax process requirements in
favor of efficiency and flexibility. Most groups found the
empirical evaluation with the functioning prototypes to
provide the most useful feedback because end users were
physically interacting with a real system. In addition, all
groups were able to successfully use the CDR while
developing their systems to focus design activities,

carefully consider tradeoffs, communicate design concerns
to stakeholders, and contribute design knowledge into the
claims library.

CONCLUSIONS AND FUTURE WORK
The ever increasing pervasiveness of computing systems in
and around our lives is mirrored by the development of
numerous usability methodologies and techniques to aid in
their development. However, it is not always clear to
novice developers how to use these different processes and
techniques in a coherent design process. We demonstrate
through the case studies that a design knowledge IDE,
centered on the central design record, can help developers
make connections between requirements data, design
representations and evaluation data and better understand
how to leverage that information to incrementally improve
designs in an iterative usability engineering process. We
also show that the use of CDR supports the application and
verification of reusable design knowledge for novice
developers.

Based on our results, we derive the following guidelines for
design knowledge integrated development environments
that incorporate a module patterned on our CDR:

- Persistent design representations should support
multiple or ‘current’ perspectives to direct
development efforts on salient design concerns.

- Design rationale should be tightly coupled to
evaluation data to direct redesign efforts and support
validation of design knowledge for future reuse.

- Design representations need to be easily
understandable, with goal states stated in unambiguous
terms, perhaps through critical parameters, to support
stakeholder collaborations.

- Design knowledge IDEs should support, but not
require, guided processes to aid in knowledge capture,
knowledge use and goal formation.

The current iteration of LINK-UP was developed to support
novice developers. There are tradeoffs inherent in
developing a design knowledge IDE to support these types
of developers. Professional designers would likely find the
current implementation too constraining to apply in an
industrial setting. Future efforts will address the needs of
professional interface and system developers so they can
bring reusable design knowledge to bear in practical design
projects. Nonetheless, the current implementation
demonstrates the potential for a reuse-enabled integrated
design environment in guiding novice developers through
the interface design and evaluation process. Our case
studies, combined with the resulting guidelines can serve as
an important first step towards a dynamic, collaborative
HCI development environment and knowledge repository
that is used and extended by designers from different
disciplines. We hope that our work motivates additional

 9

efforts to develop a principled, scientific approach to
interaction design.

ACKNOWLEDGMENTS
We wish to thank Edwin Bachetti and the other LINK-UP
developers, and the students in the CS 3724 Human-
Computer Interaction course.

REFERENCES
1. Borchers, J. O. A Pattern Approach to Interaction

Design. Proc. DIS 2000, (2000) 369-378.
2. Carroll, J. M. and Kellogg, W. A. Artifact as theory-

nexus: Hermeneutics meets theory-based design. Proc.
CHI 1989, (1989), 7-14.

3. Chewar, C. M., Bachetti, E., McCrickard D. S., and
Booker, J. Automating a Design Reuse Facility with
Critical Parameters: Lessons Learned in Developing the
LINK-UP System." Proc. CADUI 2004, (2004) 236-
247.

4. Chewar, C. M., and McCrickard, D. S. Links for a
Human-Centered Science of Design: Integrated Design
Knowledge Environments for a Software Development
Process. Proc. HICSS 2005, (2005), 10 pgs (CD-ROM).

5. Erickson, T. Lingua Francas for Design: Sacred Places
and Pattern Languages. Proc. DIS 2000, (2000), 357-
368

6. Gamma, E., Helm, R., Johnson, R., and Vlissides, J.
Design Patterns: elements of reusable object-oriented
software. Boston: Addison-Wesley Longman. 1995

7. Lee, J. C., Chewar, C. M., and McCrickard, D. S.
Image is Everything: Advancing HCI Knowledge and
Interface Design Using the System Image. Proc.
ACMSE 2005, (2005), Vol. 2, 376-381.

8. Lee, J. C., Lin, S., Chewar, C. M., McCrickard, D. S.,
Fabian, A., and Jackson, A. From Chaos to
Cooperation: Teaching Analytic Evaluation with LINK-
UP. Proc. E-Learn 2004, (2004), 2755-2762.

9. Majchrzak, L., Cooper, L. P., and Neece, O. E.
Knowledge Reuse for Innovation. Management Science
50(2): 174-188, Feb 2004.

10. McCrickard, D. S., Chewar, C. M., Somervell, J. P., and
Ndiwalana, A. A Model for Notification Systems
Evaluation—Assessing User Goals for Multitasking
Activity. ACM Transactions on Computer-Human
Interaction (TOCHI), Dec ’03, Vol. 10, Issue 4, 312-338

11. Newman, W. M. Better or just different? On the
benefits of designing interactive systems in terms of
critical parameters. Proc. DIS 1997, (1997) 239-245

12. Nielsen, J. Usability Engineering. Morgan Kaufman,
San Diego, CA 1993.

13. Norman, D. A. Cognitive engineering. In D. A.
Norman & S. W. Draper, Eds. User Centered System
Design, Hillsdale, NJ: Erlbaum, 31-62

14. Payne, C., Allgood, C. F., Chewar, C. M., Holbrook, C.,
and McCrickard, D. S. Generalizing Interface Design
Knowledge: Lessons Learned from Developing a
Claims Library. Proc. IRI 2003, (2003), 362-369.

15. Rosson, M. B. and Carroll, J. M. Usability Engineering:
Scenario-Based Development of Human-Computer
Interaction. Morgan Kaufman, New York, NY, 2002.

16. Sutcliffe, A. G. On the Effective Use and Reuse of HCI
Knowledge. ACM Transactions on Computer-Human
Interaction (TOCHI), Jun 2000, Vol. 7, Issue 2, 197-221

17. Sutcliffe, A. G. and Carroll, J. M. Designing Claims for
Reuse in Interactive Systems Design. International
Journal of Human-Computer Studies, Vol. 50, Issue 3,
213-241

18. Wahid, S., Smith, J. L., Berry, B., Chewar, C. M., and
McCrickard, D. S. Visualization of Design Knowledge
Component Relationships to Facilitate Reuse. In Proc.
IRI 2004, (2004), 414-419.

19. Whittaker, S., Terveen, L., and Nardi, B. A. Let's stop
pushing the envelope and start addressing it: A reference
task agenda for HCI. Human-Computer Interaction, 15,
75-106.

20. Winograd, T. From Programming Environments to
Environments for Designing. In Communications of the
ACM (CACM). June 1995, Vol. 38, Issue 6, 65-74

21. Wixon, D. Evaluating usability methods: why the
current literature fails the practitioner. interactions, Vol.
10, no. 4, July+August 2003.

 10

	ABSTRACT
	Author Keywords

	INTRODUCTION
	MOTIVATION
	Key focus points for Design Knowledge IDEs

	LINK-UP
	CASE STUDIES
	Case 1: Huckleberry Trail Attraction Notification System
	Case 2: Online Dispatcher Notification System
	Case 3: Motorcycle Navigation Notification System

	DISCUSSION
	CONCLUSIONS AND FUTURE WORK
	ACKNOWLEDGMENTS
	REFERENCES

