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Abstract

The problem of feature selection in supervised learning situations is
considered, where all features are drawn from a common domain and are
best interpreted via ordinal comparisons with other features, rather than
as numerical values. In particular, each instance is a member of a space
of ranked features. This problem is pertinent in electoral, financial, and
bioinformatics contexts, where features denote assessments in terms of
counts, ratings, or rankings. Four algorithms for feature selection in such
rank-order spaces are presented; two are information-theoretic, and two
are order-theoretic. These algorithms are empirically evaluated against
both synthetic and real world datasets. The main results of this paper
are (i) characterization of relationships and equivalences between different
feature selection strategies with respect to the spaces in which they oper-
ate, and the distributions they seek to approximate; (ii) identification of
computationally simple and efficient strategies that perform surprisingly
well; and (iii) a feasibility study of order-theoretic feature selection for
large scale datasets.

1 Introduction

A number of important economic, financial, and scientific domains present sit-
uations where features are best interpreted via ordinal comparisons with other
features, rather than as absolute values. This is especially the case when the
features represent counts, ratings, rankings, or otherwise dimensionless quanti-
ties.

For instance, consider a financial analyst interested in assessing the outlook
of the stock market (bear-vs-bull) by analyzing the proceedings of a trading day.
Instances are hence trading days and the (binary) outlook forecasts constitute
the classes. Each instance is described by, say, the average percentage change
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experienced by stocks in various market indices, e.g., HANG SENG, NIKKEI,
S&P, and DOW. For instance, a given trading day would be qualified using
the features HANG SENG ↑ 2.5%, NIKKEI ↑ 4.8%, S&P ↓ 2.8%, DOW ↑ 1.3%.
However, it is not meaningful to work directly with the percentage changes in
an attribute-value sense; instead we rank the features and henceforth think of a
trading day in terms of an order (total or partial) over the features. The above
example would then be represented as: NIKKEI > HANG SENG > DOW >
S&P. The goal of supervised learning in this setting is to infer a mapping from
such orders to given classifications. For instance, we might learn that ‘if DOW
is ranked higher than S&P but ranked lower than NIKKEI, then the outlook
is bullish.’ Feature selection in such rank-order datasets is important for the
same reasons it is in regular feature spaces, namely, reducing the complexity
of induction, removing irrelevant information from a dataset, and improving
prediction performance. For instance, the relative ordering of the HANG SENG
index among the other indices might not be informative toward the goal of
outlook prediction, and hence the feature can be safely eliminated.

There are many applications that highlight the importance of feature selec-
tion in rank-order datasets. In biomedical instrumentation, the desire is to select
a subset of electrodes from an EEG dataset and use profiles of relative signal
strength as indicators of patient health [29]. Here the instances are the patients,
the classes are the diagnoses, and the features denote signal strength as mea-
sured using different electrodes. In large-scale gene expression assays [1, 27], one
possible aim is to classify an experimental condition using expression changes
only across a ‘salient’ subset of genes. For instance, by observing a handful
of genes (features) and ranking them by their expression levels, it is possible
to qualitatively characterize the cellular transcriptional state (class) for a given
condition (instance). In decision-making referendums, one goal is to identify key
voting indicators to infer political biases of constituencies. Here, the instances
are the constituencies, the classes denote political party strongholds, and the
features could be socio-economic indicators. On a lighter vein, it appears pos-
sible to classify a movie as an art film or a mass market flick by ranking critics!
Given such a widespread prevalence of applications where rank order is perti-
nent [21], it is surprising that this feature selection problem has received little
attention.

The formulation is made precise in Section 2, but, informally, we posit a
setting where the features can be ordered within an instance (and thus, must
come from the same domain). This is starkly different from the more traditional
settings where the instances or classes are ordered, or where the feature values
are ranked across instances. These other formulations are pertinent in applica-
tions such as recommender systems or information retrieval [4, 11], where the
goal is to learn and mine a ranking or to infer total orders from given preference
information. In this paper, we assume the existence of a supervised learning
algorithm that learns predictive mappings from orders to classes and the focus
is on feature selection as a preprocessing step to such an algorithm.

The specific focus is on identifying a subset of ordinal features (i.e., projec-
tions of the given set of features) that exhibit sufficient relationships to model
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feature-conditional class distributions for use in supervised learning. The result
is a ‘best subset’ of ordinal features, not a ‘best ordering’ of the features; ag-
gregating orderings by consolidating given ranking information is the purview
of subjects such as social choice theory [24] (an area rich in impossibility re-
sults [2]).

In the remaining sections, some definitions are provided, four algorithms for
feature selection are introduced, and theoretical intuitions as well as experimen-
tal results on synthetic and real datasets are presented.

2 Definitions

Definition 1. Let F = {F1, F2, . . . , Fn} be a set of features, and let Di be the
domain of feature Fi. Let D = D1 ×D2 × · · · ×Dn be the cartesian product of
the feature domains. A feature instance is a tuple f = (f1, f2, . . . , fn) ∈ D. Let
C = {C1, C2, . . . , Cn} be a set of classes. A dataset T is a nonempty multiset
of pairs (f , c), where f ∈ D and c ∈ C. Let |T | be the multiset cardinality of T .
Each dataset T implies a probability distribution P on D× C as follows:

P (f , c) =
|{(f , c) ∈ T}|

|T | .

Furthermore, if feature instance f occurs in at least one pair of T , then the
conditional probability

P (c | f) =
P (f , c)

P (f)

is defined, for all c ∈ C. When we want to refer to the conditional probability
distribution over C, we shall use the term P (C | f).

Numerous criteria can be applied in a reduction of F to a subset F′ ⊂ F,
including improved accuracy of predictive modeling, smaller description length
for learned mappings, or preservation of as much of the relationship between
class distributions and features as possible. This latter criterion is the motiva-
tion for the classical work of Koller and Sahami [15]. For f ∈ F, let fF′ be the
projection of f onto the features in F′. For a dataset T , let TF′ = {fF′ | f ∈ F}
be the projection of T using the F′ feature set. The goal advanced by Koller
and Sahami is to approximate P (C | f) with P (C | fF′). A popular approach to
characterizing the difference between two distributions is the (non-symmetric)
KL-divergence [5].

Definition 2. Let P and Q be probability distributions on the sample space X.

The KL-divergence between P and Q is KL(P,Q) =
∑

x∈X P (x) log P (x)
Q(x) , where

0 log 0
Q(x) = 0 and P (x) log P (x)

0 =∞ whenever P (x) > 0.

Typically, P is the true distribution, and Q the approximation; KL(P,Q)
captures the number of extra bits required if we encoded data arising from the
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distribution P using a code designed using distribution Q. Koller and Sahami
use KL-divergence to define two feature subset divergence quantities, δF′ and
∆F′ .

Definition 3. (Koller and Sahami) Let F′ ⊂ F. Let T ⊂ D× C be a dataset.
For each feature instance f in T , define its divergence to be

δF′(f) = KL(P (C | f), P (C | fF′)).

Define the feature subset divergence of F′ to be

∆F′ =
∑

f

P (f)δF′ (f),

where P (f) is taken from the distribution of feature instances in T .

Two ways to utilize the feature subset divergence are (1) to define a diver-
gence threshold and seek a smallest subset F′ such that ∆F′ is at most that
threshold; and (2) to seek among all F′ ⊂ F of a fixed size one that minimizes
∆F′ .

For simplicity in incorporating orders into feature space, we assume that all
feature domains are identical and that a total order is defined on that single
domain. Any feature instance f = (f1, f2, . . . , fn) defines an order on the fea-
tures in F by the rule Fi < Fj if fi < fj . In this case, we can recast the given
dataset into one whose features are boolean values that capture the relative
order between pairs of feature values of an instance.

Definition 4. Let F = {F1, F2, . . . , Fn} be a feature set, where D is the common
domain of Fi. Define the boolean order feature set for F to be

B = {Bi,j | 1 ≤ i < j ≤ n},

where the domain of each Bi,j is {true, false}. Let f = (f1, f2, . . . , fn) be a
feature instance. Then the boolean order features for f have values given by

bi,j =

{
true if fi < fj ;
false otherwise.

There are
(
n
2

)
boolean order features. The vector comprised of the boolean order

feature values bi,j of f is referred to as b. If T ⊂ D× C is a dataset, then the
corresponding boolean order dataset is the multiset TB = {(b, c) | (f , c) ∈ T}.

Boolean order datasets suffer greater space complexity than traditional data-
sets due to the

(
n
2

)
boolean order features. This drawback can be ameliorated

with the use of ranks.

Definition 5. Let F = {F1, F2, . . . , Fn} be a feature set, where D is the common
domain of Fi. Define the rank-order feature set for F to be

R = {R1, R2, . . . , Rn},
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where the domain of each Ri is {1, 2, . . . , n}. Let f = (f1, f2, . . . , fn) be a feature
instance, and let πf : {1, 2, . . . , n} → {1, 2, . . . , n} be a permutation that sorts
f into non-decreasing order. (If two features have the same value, then choose
πf arbitrarily from the permutations that satisfy the above condition.) Then the
rank-order features for f have values given by

ri = πf (i).

The vector comprised of the rank-order feature values ri of f is referred to as r
(note that r is also a permutation of {1, 2, . . . , n}). If T ⊂ D× C is a dataset,
then the corresponding rank dataset is the multiset TR = {(r, c) | (f , c) ∈ T}.

Notice that the transformation to boolean order features provided in Defi-
nition 4 applies even if we begin with a rank-order dataset. Figure 1 illustrates
Definitions 1, 4, and 5. Difficulties arise in Definitions 4 and 5 if any fea-
ture instance contains two identical feature values, resulting in rank ambiguity.
However, rank ambiguity can be addressed in boolean order datasets by set-
ting the domain to {true, false,=}, instead of just {true, false}. In fact, setting
the domain to {true, false,=, unknown}, allows us to address partial orders in
general. For rank-ordered datasets, there is a corresponding method to address
rank ambiguity; addressing partial orders, however, is not straightforward in
this context.

For simplicity, we assume total orders and that rank ambiguity does not
occur. However, with additional labor, it is possible to relax the rank-ambiguity
restriction and apply most of the statements and conclusions in this paper in
the relaxed case; exceptions will be noted when appropriate. Since there is no
rank ambiguity in f , the permutation πf is uniquely defined; call it the feature
order of f .

The update required if a feature is removed in the context of boolean order
or rank-order datasets is more complicated than in the unranked context, as
the projection onto a smaller feature space requires additional effort. If feature
Fi is removed in a boolean order context where there are n original features
and

(
n
2

)
boolean order features, then there are n − 1 boolean order features of

the form Bi,j or Bj,i that must be eliminated. If feature Fi is removed in a
rank-order context where there are n original features, then rank-order feature
Ri must be eliminated, and the remaining n−1 rank-order features must be re-
indexed and their rank values updated, For example, projecting the rank-order
feature instance r = (3, 1, 4, 2) onto the first three (rank) features results in the
rank-order feature instance (2, 1, 3), not (3, 1, 4).

Let T ⊂ D × C be a dataset, and let TR be the corresponding rank-order
dataset. Let (f , c) ∈ T be a feature instance, and let (r, c) ∈ TR be its corre-
sponding rank-order feature instance. It is possible that P (C | f) 6= P (C | r).
This is because information (specifically, information that is not order-specific)
is lost in the transformation from T to TR. On the other hand, order-specific
information is now available in TR, presumably not considered in the original
dataset. We provide some results illustrating this point in Section 3.
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F1 F2 F3 F4 class

20 40 65 33 a
20 40 65 33 a
50 25 55 99 b
88 76 10 60 a

B1,2 B1,3 B1,4 B2,3 B2,4 B3,4 class

true true true true false false a
true true true true false false a
false true true true true true b
false false false false false true a

R1 R2 R3 R4 class

1 3 4 2 a
1 3 4 2 a
2 1 3 4 b
4 3 1 2 a

Figure 1: Dataset T (top table) with its corresponding boolean order dataset
TB and rank-order dataset TR (bottom tables). Note that T is a multiset, due
to the first and second feature instances.

Since, in the context of a rank-order dataset, an instance (as well as its
implied feature order) is a permutation, we require methods to measure differ-
ences between permutations. We present two established approaches for defining
a distance function between two permutations, one that works with (rank) in-
stances, and another that works with feature orders. The first distance function
is Spearman’s distance [26].

Definition 6.

sd(πi, πj) =

n∑

k=1

(πi(k)− πj(k))2

Let P be a set of permutations. The center ctr(P ) of P is a permutation πc
(not necessarily in P ) that minimizes

∑

π∈P
(sd(π, πc)).

Algorithmically, we can compute the permutation ctr(P ) by summing the
ranks in each position, across all permutations, and deriving ctr(P ) from the
order of the resulting sums (if there are duplicate sums, ties are broken arbi-
trarily).
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πi = F3 F2 F4 F5 F1 F6

F3 F2 F5 F4 F1 F6 swap(F4,F5)
F3 F5 F2 F4 F1 F6 swap(F2,F5)
F3 F5 F2 F1 F4 F6 swap(F4,F1)

πj = F3 F5 F2 F1 F4 F6

Figure 2: Three interchanges are required to transform πi to πj .

In the context of feature selection, every classCj for which Pj = {r | (r, Cj) ∈
TR} is nonempty, ctr(Pj) is a permutation at the center of a smallest hyper-
sphere containing all the permutations of Pj . If Ci and Cj are distinct classes,
then ctr(Pi) and ctr(Pj) are representatives of the two classes that can be used
to define a distance between the two classes. A feature removal algorithm might
choose to remove a feature that yields distances that are closest to the original
distances.

A second distance function between permutations is based on swaps.

Definition 7. A permutation π : {1, 2, . . . , n} → {1, 2, . . . , n} is an adjacent
swap if there exists an i, where 1 ≤ i ≤ n− 1, such that

π(j) =





j + 1 if j = i;
j − 1 if j = i+ 1;
j otherwise.

The function kd(π, π′) is the minimum number of adjacent swaps required to
transform π to π′.

Figure 2 provides an example transformation of πi = F3 F2 F4 F5 F1 F6 to
πj = F3 F5 F2 F1 F4 F6 in three adjacent swaps, showing the three intermediate
permutations. The minimum number of swaps of adjacent pairs is exactly the
same as Knuth’s inversion count [14]. If πi(x) < πi(y) and πj(x) > πj(y) then
the pair (x, y) is an inversion, where πi(x) is the x’th element of permutation
πi.

Instead of using centers based on Kendall’s distance (the decision problem
for determining such centers is in fact NP-complete [8]), we propose a differ-
ent notion for feature removal that uses inversions. Consider the feature orders
of two instances in rank-order space. In a transformation from one permuta-
tion to the other using inversions, each inversion involves two features. Let
inv(Ri, πa, πb) represent the number of inversions that a feature Ri is involved
in, when going from πa to πb (for the example in Figure 2, inv(F2, πi, πj) = 1
while inv(F5, πi, πj) = 2).

Definition 8. (Spoiler Count of a feature for a set of orders) Let I be a multiset
of feature orders. The spoiler count sp(Ri, I) of feature Ri with respect to I is

sp(Ri, I) =
∑

πa,πb∈I
inv(Ri, πa, πb).
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Suppose I is the multiset of feature orders of instances associated with a
single class in TR. Since the instances belong to the same class and order
is presumably indicative of class membership, these permutations ought to be
similar in order. The feature that has the highest spoiler count contributes most
to the differences in order and is therefore a good candidate for removal.

Definition 9. (Spoiler Count of a feature for a dataset) For each class c ∈ C,
let TR(c) represent the set of feature orders of instances associated to c in TR.
The total spoiler count tsp(Ri) of rank-order feature Ri is

tsp(Ri) =
∑

c∈C
sp(Ri, T

R(c)).

A feature selection algorithm might choose to remove the feature that has
the highest total spoiler count.

3 Comparing Feature Spaces

In this section, we investigate relationships among feature spaces, boolean order
spaces, and rank-order spaces. We first identify examples where order matters
more than value and vice-versa.

Let Fk be a feature in F, Rk the corresponding feature in R, F′ = F−{Fk},
and R′ = R − {Rk}. We say that Fk is a removable feature if ∆F′ = 0. We
now examine the relationship between ∆F′ and ∆R′ . The next two conjectures
and their counterexamples illustrate that the relationship is not simple or easily
exploitable.

Conjecture 1. Let T be a dataset with feature set F and suppose Fk is a feature
such that ∆F−{Fk} = 0. Then, ∆R−{Rk} = 0 in TR,

Counterexample: Figure 3 provides an example of a dataset T and cor-
responding rank-order dataset TR. Here, F1 is a removable feature in dataset T
(values assigned to F1 are the same for all instances). This means ∆F−{Fk} = 0.
However, for ∆R−{R1} 6= 0 in TR, because there is at least one instance r (such
as r = (3, 1, 2)) such that δR′(r) 6= 0.

Conjecture 2. Let T be a dataset with feature set F, and let TR with feature
set R be its corresponding rank-order dataset. Suppose Rk is a feature such that
∆R′ = 0. Then, ∆F′ = 0 in T .

Counterexample: Figure 4 provides an example of a dataset T and cor-
responding rank-order dataset TR. Here, R1 can be removed (as can any single
feature) while retaining the same capacity to classify so that ∆R′ = 0 in TR,
where R′ = R− {R1}. However, ∆F′ 6= 0 for F′ = F− {F1} since F1 is in fact
the feature that distinguishes the two instances in the dataset (δF′(f) 6= 0 for
both instances).
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F1 F2 F3 class

3 4 5 a
3 4 1 b
3 1 2 c
3 2 5 d

R1 R2 R3 class

1 2 3 a
2 3 1 b
3 1 2 c
2 1 3 d

Figure 3: Datasets T (top) and TR (bottom) where a removable feature in T
does not apply in TR.

F1 F2 F3 class

1 4 5 a
2 4 5 b

R1 R2 R3 class

1 2 3 a
1 2 3 b

Figure 4: Datasets T (top) and TR (bottom) where a removable feature in TR

does not apply in T .

On the other hand, the following result demonstrates that rank-order data-
sets and boolean order datasets contain the same order-theoretic information
with respect to feature selection.

Lemma 1. Let TR be a rank-order dataset with feature set R, and let TB

with feature set B be its corresponding boolean order dataset. Furthermore, let
R′ ⊂ R. Define B′ ⊂ B to be the set of all features Bi,j such that Ri, Rj ∈ R′.
Then, ∆R′ = ∆B′ .

Proof. From Definition 4, it suffices to show that P (r) = P (b) and δR′(r) =
δB′(b), for all instances r. The equality P (r) = P (b) follows directly from how
the boolean order set was constructed since there is a one-to-one correspondence
between rank-order instances (r) and boolean order instances (b). We obtain
that

δR′(r) = KL(P (C | r), P (C | rR′)),
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and
δB′(b) = KL(P (C | b), P (C | bB′))

are equal by the observation that the projections performed on each of the data-
sets are essentially equivalent. For a given r, P (C | r) and P (C | b) obviously
yield the same distributions, again because of the one-to-one transformation.
For the distributions P (C | rR′) and P (C | bB′), on the other hand, we note
that a projection in rank-order space preserves the relative order of the features
even with the (possible) update in rank values. This in turn corresponds to
the boolean order features that are projected in boolean order space. Thus,
P (C | rR′) = P (C | bB′), and the result follows.

Lemma 1 suggests that it is sufficient to consider selection strategies on rank-
order datasets and that analogous strategies using boolean order datasets will
yield the same results.

4 Feature Selection Strategies

We present four feature selection strategies (two taking an information-theoretic
approach and two motivated by the discrete mathematics concepts introduced in
Section 2), all of which follow the standard backward stepwise selection frame-
work [10].

F0 ← F; i← 0
while cond(Fi)

Fk ← h(Fi)
Fi+1 ← Fi − {Fk}
i← i+ 1

end while
return Fi

In this meta-algorithm, the boolean function cond(Fi) either monitors subset
size or subset divergence. The function h(Fi) is the feature selection function
for this selection strategy. This function returns a feature from Fi in regular
feature space but uses rank order space in its selection process. Recall that F,
Fk, and Fi correspond to R, Rk, and Ri in rank-order space, as these terms
may be used in the definition of h(Fi). The four selection strategies are KL,
KS, CDV, and Spoilers.

Greedy KL Use rank-order space and greedily choose the feature that yields
the minimum feature subset divergence when compared against R. That
is, choose h(Fi) = Fk that minimizes ∆Ri−{Rk} with respect to R.

KS Adapt the Koller-Sahami algorithm [15] for use in rank-order space. First,
find (approximate) Markov blankets for all features, in the Bayesian net-
work of rank-order features (and class) implied by TR. A Markov blanket
for a set of features F′ is another set of features G whose values, if known,
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render F′ independent of all others (i.e., F − F′ −G). This term arises
from the graphical models literature where a network encodes conditional
independencies, and random variables satisfying the above definition form
a ‘blanket’ around the given set of features. In the Koller-Sahami ap-
proach, we remove the feature Fk whose Markov blanket Mk (in rank-
order space) yields the minimum feature subset divergence when compared
against Mk ∪ Rk. That is, h(Fi) = Fk that minimizes ∆Mk

with respect
to Mk ∪Rk.

To approximate the computation of a Markov blanket Mk for a feature
Rk, of a given size κ, the approach suggested in [15] is to pick the top
κ features that, singly, yield minimum feature subset divergence when
pair-wise unioned with Rk.

CDV (Center Distance Vector) Use rank-order space and, for each class, com-
pute centers (ctr) of all permutations for that class given in the dataset.
For each pair of classes, compute the Spearman’s distances between the
centers, obtaining a

(|C|
2

)
-vector. For each feature, remove it, and recom-

pute this vector of distances. h(Fi) = Fk where Rk is the feature in
Ri that yields the minimum Euclidean distance between the recomputed
vector and the original vector (computed from R).

Spoilers Use rank-order space (feature orders) and remove the feature with
the highest spoiler count. That is, h(Fi) = Fk that maximizes tsp(Rk).

Table 1 identifies the time complexities per step for each of the four algo-
rithms, in terms of n, c, and m, which represent the number of features, classes,
and instances, respectively.

The KL algorithm is dominated by the computation of feature subset di-
vergence (∆). Computing this quantity entails projecting each instance in a
dataset and grouping identical instances for δ and Pr computation. The pro-
jection operation takes O(n) time and is carried out for all instances in each
class. The computation of ∆ thus takes O(nm) time, since the total number of
instances is m. Finally, since ∆ is computed for each feature, the KL algorithm
takes O(n2m) time per iteration.

The KS algorithm takes O(n4cmκ) time per iteration, where κ is the pre-
determined blanket size. This is different from the standard Koller and Sahami

Time Complexity
Strategy Metric Utilized Per Iteration

Greedy KL Low feature subset divergence O(n2m)
KS Availability of Markov blanket O(n4cmκ)

CDV Low Spearman’s distances O(n2(m + c2))
Spoilers High spoiler count O((n log n)m2)

Table 1: Details of the four feature selection strategies considered in this paper.
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algorithm since the table for the cross-entropy of the class distribution for the
given pairs of features (γij) needs to be recomputed at each step and not just
once at the beginning.

Computing ctr entails scanning each rank in each instance (O(nm)), and
computing the distances between each of the

(
c
2

)
pairs of centers (O(c2n)). Each

of these computations are done O(n) times. Therefore the time complexity is
O(n2(m + c2)) per iteration for the CDV algorithm. Kendall [13] shows how
the ctr is computed in O(nm). Essentially, the center rank is the rank of the
features as ordered by the sum of their ranks for each feature.

Finally, using the spoiler count requires processing all pairs of instances in
a class. There can be no more than

(
m
2

)
= O(m2) such pairs across all classes,

since the sum of all class sizes equals m. Determining spoiler counts for each
of these pairs takes O(n log n) time. The Spoilers algorithm therefore runs in
O((n log n)m2) time per iteration. The spoiler count between two instances can
be computed in O(n log n) time through a modification of merge sort. Essen-
tially a merge sort is performed to sort one permutation to be in the same order
as the other. During the merge phase, as an item is merged from the right hand
list, its spoiler count is incremented by the number of items remaining in the
left hand list. As an item is merged from the left hand list, its spoiler count is
incremented by the number of items from the right hand list that have preceded
it.

5 Experimental Results

We now present experimental results with the above feature selection strategies,
including descriptions of datasets, the experimental results, and discussion.

5.1 Datasets

The four heuristics described in Section 4 are tested against both synthetic and
real world datasets. There are numerous ways of generating synthetic datasets,
two of which were chosen as representative of the range of possibilities. The
first method uses a minimal, known exact answer for each class as a seed for
generating the rest of the data. The second method generates random orders
for each class that are concordant without knowing the exact minimal answer a
priori.

The first set of synthetic datasets is generated as follows. Select c, the num-
ber of classes in the dataset, and build a dataset starting with no features where
no is the smallest integer such that no! ≥ c. Generate c different feature orders,
one order for each class. Each of these orders determine an (r, c) instance-class
pair. Select i, and generate i identical instances per class so that m = ic is
the total number of pairs in the dataset. Select e and r, the number of ex-
traneous and redundant features to be added to the dataset, respectively. An
extraneous feature is incorporated into the dataset by considering each instance
separately and by uniformly randomly inserting the new feature into the exist-
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Ranks
Class Orders a b c d e f

C1 a f e c b d 1 5 4 6 3 2
C1 a f b c e d 1 3 4 6 5 2
C1 a f e b d c 1 4 6 5 3 2
C2 f d c b e a 6 4 3 5 2 1
C2 b f c e d a 6 1 3 5 4 2
C2 f d c e a b 5 6 3 2 4 1
C3 c b e f d a 6 2 1 5 3 4
C3 e c f d b a 6 5 2 4 1 3
C3 e c f d b a 6 5 2 4 1 3

Figure 5: Generated dataset, with n0=(a,f,e), e=(d,b), and r=(c) where c is
redundant with e.

ing order implied in the instance. A redundant feature is incorporated into the
dataset by uniformly randomly selecting an existing feature and then for each
instance, inserting the new feature either to the left or the right of the selected
feature. This way, the new feature and the selected feature have exactly the
same relative-order relationships with the other features.

In effect, a dataset with n = n0 + e+ r features and m = ic instances are
generated given c, i, e and r. Figure 5 provides an example of a generated data-
set for c = 3, i = 3, e = 2, and r = 1. The example starts with n0 = 3 features,
since 3! ≥ 4 and 3 is the smallest such value that satisfies the expression.

The second method of generating datasets uses the idea of concordance.
For example, Kendall’s distance measures concordance between a pair of rank
orders. There is a corresponding method for computing the concordance of a
set of rank orders, as shown in Figure 6. The τ concordance provides a measure
of how close the order of each permutation is to every other permutation within
the set. The range of the τ concordance is from 0 to 1. If the concordance is
1, then every permutation has the exact same order; if 0, they are as different
from each other as they can possibly be. The complexity of the algorithm is
O(n2m).

This measure of concordance is used to construct synthetic datasets to test
the feature selection strategies. To begin, a random set of ranks is generated
containing c instances. The concordance of this set must be below some thresh-
old Cmax. Each instance of this set forms the basis of a class. New randomly
generated instances are added to each class as long as the concordance of that
class remains above some threshold Cmin.

The real world datasets we use come from large scale gene expression data
derived from DNA microarray experiments. Here, the instances are the mi-
croarray experiments, each feature corresponds to a given gene, and the feature
values denote expression levels. Classes denote some classification of the exper-
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TauConcordance(Π).
INPUT: A set of permutations Π = {π1 . . . πm},

each of length n
OUTPUT: The τ concordance.

1 S ← 0
2 for i← (1 : n− 1)
3 for j ← (i+ 1 : n)
4 sub ← 0
5 for k ← (1 : m)
6 π ← Π(k)
7 if π(i) < π(j) then
8 sub ← sub + 1
9 else
10 sub ← sub - 1
11 S ← S+ sub2

12 return (2× S/(n2 − n)(m2 −m))− 1/(m− 1)

Figure 6: Algorithm for computing the τ concordance for a set of rank orders.

imental conditions. We explore the possibility of considering the relative order
between gene expression levels instead of their absolute values. This is because
different experiments have different basal levels of expression and hence iden-
tifying which genes are more expressed than which other genes reveals greater
insight into variabilities and similarities across experiments.

The life cycle of Drosophila melanogaster provides the first dataset from
Arbeitman, et al. [1]. They examine the life cycle using 74 individual microarray
experiments. The expression levels of 3107 genes were examined during the
embryotic, larval, pupal, adult male and adult female stages. For our purposes,
the classes are hence the life cycle stages. The intent is to identify those genes
that are most important to the life cycle.

The second dataset is available from the Whitehead Institute Center for
Genome Research at http://www.broad.mit.edu/cancer. This dataset is used
to examine the leukemia type of a cell. This data was also used by Zhang,
Yu, and Singer [28] to test their prediction method which uses a deterministic
procedure to form forests of classification trees. There are 72 instances of 7,129
genes, 25 of which have acute myeloid leukemia (AML), 38 instances with B
cell acute lymphoblastic leukemia (B-ALL), and 9 instances with T cell acute
lymphoblastic leukemia (T-ALL). The dataset was tested in two ways, once with
the 2 classes (ALL and AML), and again with all three classes (AML, B-ALL,
T-ALL).
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5.2 Results

The synthetic datasets we use in our experiments have c = 7 (n0 = 4) and i =
20. We used different combinations of values for e and r, where e ∈ {0, 2, 4, 6, 8}
and r ∈ {0, 2, 4, 6, 8}. Five samples for each combination were generated. Each
of the four algorithms were carried out against the different datasets and feature
subset divergence was measured at each iteration. Figure 7 displays plots of
the extremes of the combinations. The number of features removed versus
subset divergence (average across the 5 samples) for each heuristic are shown.
The results suggest that the KS algorithm performs poorly with these datasets,
whereas there is little distinction between the performance of the other three
algorithms. Anecdotal evidence from our early experiments on the KS algorithm
have shown that, for rank-order datasets, a small value of i performed marginally
better than a larger value. Therefore, for these experiments, i was arbitrarily
chosen to be 5.

We also measured Naive Bayes accuracy [22] at each iteration with 5-fold
cross validation and a subset of the results are presented in Figure 8. The Naive
Bayes classification method and 5-fold cross validation were performed using
the Orange data mining system [6] using the equivalent boolean order dataset.
The results also show the KS algorithm performing poorly. In addition, the
charts suggest that the heuristics based on centers and spoilers perform better
than the Greedy KL heuristic, particularly as the number of redundant features
in the dataset increases. On the other hand, the Greedy KL heuristic performs
slightly better than the other two heuristics when only extraneous features are
added to the dataset.

For synthetic datasets generated using concordance methods, different com-
binations of Cmin and Cmax were tried. Figures 9 and 10 show two extremes.
Both charts show the average of five samples, where n = 25, i = 100, and
c = 5. Figure 9 has Cmin = 0.1 and Cmax = 0.9 so the classes are coherent and
distinct. With these conditions, every feature selection strategy does well since
almost any feature can be removed with ill effects. Figure 10 has Cmin = 0.9
and Cmax = 0.1 so the classes are ill defined and indistinct. In this case, the
features need to be selected in a more intelligent manner. Spoilers do better
than CDV with in turn does better than Greedy KL.

Figure 11 shows the results for the CDV algorithm and the Spoilers algorithm
on the Drosophilia melanogaster dataset. The first 3097 features removed by the
Spoilers algorithm and the first 3098 features removed by the CDV algorithm
maintain a KL divergence of zero. The Naive Bayes accuracies using five-fold
cross validation for the last 80 features for both algorithms are approximately the
same, and both do better than the average results from uniformly chosen random
sets of features. Random sets of size n, where n = (2 . . . 30) were selected 100
times for each n and their average Naive Bayes accuracy was calculated to
provide the baseline comparison. The CDV algorithm found a set of 13 genes
that get a 93.3% accuracy as shown in Table 2 while the Spoilers algorithm
found a set of 6 genes that get a 93.3% accuracy as shown in Table 3.

For the cancer datasets using both two and three classes, shown in Fig-
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Figure 7: KL divergence for synthetic datasets showing the effects of redundant
and/or extra features for different feature selection methods.

ures 12 and 13 respectively, the CDV algorithm performed markedly better
than the Spoilers algorithm. The Spoilers algorithm did no better than the
average random sample. The CDV algorithm found a set of 25 genes, shown in
Table 4, for two classes that had a Naive Bayes five-fold cross validation accu-
racy of 93% and a set of 16 genes, shown in Table 5, that had an accuracy of
97% for three classes. This is reflected in the KL divergences which the CDV
algorithm maintains to be zero longer than the Spoilers algorithm manages to
do.

The results for the cancer datasets differ from Zhang et al. in the gene subsets
that are considered important for classification. There are several differences
in the goals of the algorithms. Our method performs feature selection only,
while the Zhang et al. algorithm does both feature selection and classification.
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Figure 8: Naive Bayes five-fold cross validation accuracies for synthetic data-
sets showing the effects of redundant and/or extra features for different feature
selection methods.

The Zhang et al. method is based upon the absolute values which are more
variable under different experimental conditions than comparing relative values.
As Tables 4 and 5 reveal, not withstanding that they have only two genes in
common, many pertinent features have been picked by the CDV algorithm (e.g.,
a serine kinase, a cell cycle controller, a proto-oncogene, an oncostatin, all of
which undoubtedly influence the progression of cancer).

5.3 Discussion

The experiments that were carried out suggest that the KS algorithm does
not work well with rank-order spaces. The result is not surprising since the
Koller-Sahami method treats ranks as independent values and do not particu-
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Figure 9: Naive Bayes five-fold cross validation accuracies for an easy synthetic
dataset generated using concordance methods.

larly distinguish between its relationship with ranks of other features.
The experiments also suggest that the CDV algorithm and the Spoilers al-

gorithm generally perform better than methods that directly aim to maintain
low KL-divergence (the Greedy KL algorithm and the KS algorithm). To un-
derstand the success of these methods over the KL-divergence based methods,
examine the dataset shown in Figure 14. For this dataset, features x and y
are consistent across the classes. However, any feature except x may be re-
moved and still maintain a KL divergence of zero. In addition, if y is removed,
then any further feature selection process will not yield the optimal result. For
this dataset, both the CDV algorithm and the Spoilers algorithm will retain y
and correctly choose either w or z because they examine the underlying ordinal
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Figure 10: Naive Bayes five-fold cross validation accuracies for a hard synthetic
dataset generated using concordance methods.

structure of the instances. In particular, the CDV algorithm deliberately ad-
dresses ordinal differences across instances in different classes while the Spoilers
algorithm addresses similarities between instances in a class. On the other hand,
the conditions imposed by the KL algorithm to arrive at a subset divergence of
zero is easily satisfied resulting in a significant number of removable features,
at the onset.

The phenomenon of multiple removable features is illustrated in Figure 15.
The figure shows the KL divergence in greyscale for all of the feature selection
subsets of length 1 through 4 from the original dataset given in Figure 5. The
subset with the higest KL divergence is (a,b,c,e) with a KL divergence of 1.343
and is denoted with black. Those choices that have a zero KL divergence are
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Figure 11: Results of two feature selection methods for the Drosophilia
melanogaster life-cycle experiments.

Gene Annotation
CG10033 foraging, cGMP-dependent protein kinase activity
CG10602 leukotriene-A4 hydrolase
CG12120 unknown function
CG12321 unknown function
CG12699 unknown function
CG14722 apoptotic protease activator activity
CG2019 peroxidase activity
CG2985 structural molecule activity involved in vitellogenesis
CG3991 tripeptidyl-peptidase II activity putatively
CG5940 cyclin-dependent protein kinase regulator activity
CG6483 serine-type endopeptidase activity
CG6933 structural constituent of peritrophic membrane (sensu Insecta)
CG7157 hormone activity involved in sperm storage

Table 2: Subset of 13 genes, chosen by the CDV algorithm, that yield a 93.3%
accuracy using Naive Bayes five-fold cross validation when used to predict the
Drosophilia melanogaster life-cycle.

shown with white and the rest have various shades inbetween based upon their
magnitude. Note that any of the features can be selected at first and still have
a KL divergence of zero. However, of the 17 possible paths leading to 2 features
removed (still with a zero KL divergence), only 12 paths lead to the 2 choices of
3 features removed. A feature selection strategy based upon a greedy selection
minimizing KL divergence at each step would only find one of these 2 best sets
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Gene Annotation
CG10096 unknown function
CG1140 3-oxoacid CoA-transferase activity
CG13841 unknown function
CG3121 putative microtubule binding
CG3333 putative pseudouridylate synthase activity
CG7157 hormone activity involved in sperm storage

Table 3: Subset of 6 genes, chosen by the Spoilers algorithm, that yield a 93.3%
accuracy using Naive Bayes five-fold cross validation when used to predict the
Drosophilia melanogaster life-cycle.

Figure 12: Results for two feature selection methods using the cancer dataset
with two classes.

70% of the time. This ratio decreases as the problem size increases.
Of course, the other feature selection strategies do not guarantee optimal

results either. The KS algorithm chooses (a,b,c) resulting in a KL divergence
of 0.249, the CDV algorithm chooses (b,c,f) which has a KL divergence of 0.313
and the Spoilers algorithm chooses (b,c,e) with a KL divergence of 0.616.

Almost all experiments showed the Spoilers algorithm performing as well as
the CDV algorithm, with the exception of the cancer dataset. For the exper-
iments on the cancer datasets, Spoilers performed no better then the average
random sample. The cancer data contained a large number features (7000+)
and a small set of classes (2 or 3). In this case, the CDV algorithm might
be better at global optimization than the Spoilers algorithm, which may have
been confused by several different local optimal choices early in the feature se-
lection process. However, except for this extreme case, the Spoilers algorithm
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Gene Annotation
D49824 HLA-B null allele mRNA
D70830 mRNA for Doc2 beta
HT2696 cholinesterase-related cell division controller
HT2798 Serine/Threonine Kinase Z25424
L13977 prolylcarboxypeptidase mRNA
M17733 thymosin beta-4 mRNA
M24899 triiodothyronine (ear7) mRNA
M27288 oncostatin M gene, exon 3
M27891 cystatin C (CST3) gene, exon 3
S94421 TCR eta=T cell receptor eta-exon
U06155 chromosome 1q subtelomeric sequence D1S553
U09953 ribosomal protein L9 mRNA
U14969 ribosomal protein L28 mRNA
U15422 protamine 1, protamine 2, and transition protein 2 genes
U28727 pregnancy-associated plasma protein-A preproform (PAPPA)
U33447 putative G-protein-coupled receptor (GPR17) gene
U63717 osteoclast stimulating factor mRNA
U79267 clone 23840 mRNA
U89717 9-cis-retinol specific dehydrogenase mRNA
U89922 lymphotoxin beta isoform variant, alternatively spliced mRNA
X02160 mRNA for insulin receptor precursor
X73460 mRNA for ribosomal protein L3
X79234 mRNA for ribosomal protein L11
X90846 mRNA for mixed lineage kinase 2
Z48579 mRNA for disintegrin-metalloprotease (partial)

Table 4: Subset of 25 genes that yield a 93% accuracy using Naive Bayes five-
fold cross validation when used to predict the leukemia type (2 classes) of a
cell.

performed well, and is much faster than the other algorithms. It is also possible
that the methods of generating artificial rank-order data contained a bias to-
ward feature selection using the Spoilers algorithm, since the generation method
depends upon order.

6 Related Work

The feature selection problem considered in this paper is unique in its formula-
tion although it has similar motivations in existing literature on feature selec-
tion. The importance of removing redundant as well as irrelevant features was
recognized early in machine learning research and several theoretical frameworks
have been put forth [16, 19, 3]. The work by Koller and Sahami, as is our re-
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Figure 13: Results for two feature selection methods using the cancer dataset
with three classes.

Gene Annotation
D13789 mRNA for N-acetylglucosaminyltransferase III
HT26388 Mucin 1, Epithelial
L38941 ribosomal protein L34 (RPL34) mRNA
M17886 acidic ribosomal phosphoprotein P1 mRNA
M24194 MHC protein homologous to chicken B complex protein mRNA
M31606 phosphorylase kinase (PSK-C3) mRNA
M35093 secreted epithelial tumor mucin antigen (MUC1) gene
M84526 adipsin/complement factor D mRNA
M89957 cell surface glycoprotein (IGB) mRNA
U14969 ribosomal protein L28 mRNA
U86358 chemokine (TECK) mRNA
U89922 lymphotoxin beta isoform variant, alternatively spliced mRNA
X00437 mRNA for T-cell specific protein
X52056 mRNA for spi-1 proto-oncogene
X54741 CYPXIB2 gene for aldosterone synthase
X90846 mRNA for mixed lineage kinase 2

Table 5: Subset of 16 genes that yield a 97% accuracy using Naive Bayes five-
fold cross validation when used to predict the leukemia type (3 classes) of a
cell.

search, follows the preprocessing paradigm where feature selection is considered
as preliminary to induction, and hence learning-algorithm-agnostic. The con-
trasting idea is the wrapper-based approach where feature selection is studied

23



Ranks
Class Orders w x y z

C1 w x y z 1 2 3 4
C1 x w z y 2 1 4 3
C2 y x z w 4 2 1 3
C2 w z y x 1 4 3 2

Figure 14: Small rank-order dataset.
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Figure 15: Chart showing the spectrum of KL divergences for all feature se-
lection subsets for the data shown in Figure 5. Black denotes the highest KL
divergence and white has a KL divergence of zero.

in the context of a specific learning algorithm (e.g., kernel machines [9]).
Order theoretic considerations have been introduced in different guises in

machine learning research. Cohen et al. [4] describe how to induce an (approx-
imate) global order from given (partial) rankings or preference information. A
related problem is considered by Mannila and Meek [20] who view partial orders
as generative models of sequential trace data. Kamishima and Akaho [12] extend
the Cohen et al., work in ‘Learning from Order Examples’ by accommodating
problems where inputs are themselves orders. A compelling application con-
text for these ideas is described in Kamishima’s Nantonac collaborative filtering
[11]. More recently, Lebanon and Lafferty [17] present a boosting-like algorithm
to combine multiple rankings by reasoning about probability distributions over
perturbations. This work is extended in [18] into a unifying framework for clas-
sification and ranking. These papers do not directly either address the problem
of feature selection or even a supervised learning scenario from orders to dis-
crete classes. Gionis et al. [7] study ‘fragments of order’ although their setting
posits unlabeled data and the learned orders are actually sets of association
rules summarized as dependencies. Sai et al. [23] describe a scenario closer to
our work where dataset instances are viewed only through ordinal comparisons
across features but their goal is to learn association rules between such ordinal
comparisons, not to predict a class or feature selection. The work presented
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in this paper is different from all the above works either the viewpoint of the
dataset (labeled), the input instance (a total order over features), or the de-
sired output (a reduced set of features suitable for defining relationships from
orders to classes). This context was first motivated in Slotta et al. [25] using a
proteomics application domain.

7 Conclusions

Through considerations of preserving class-conditional distributions, we have
presented four feature selection algorithms for reasoning in rank-order spaces.
Via experiments on both synthetic and real-world datasets, we have identified a
number of conclusions relating the way the heuristics operate, the characteristics
of the datasets, and the performance results.

It appears that KL divergence is not the best measure to use for a feature
selection heuristic, since it is likely that a number of random features may be
removed from rank-order space and still have a KL divergence of zero. Only in
the later stages does the KL divergence become meaningful. Our experiments
show that the Naive Bayes classifier showed adverse effects much sooner for the
KL-divergence based methods, even though the KL divergence was unchanged.
This indicates that these strategies were making incorrect choices, leading them
down a suboptimal path in the feature selection tree. On the other hand, the
CDV algorithm and the Spoilers algorithm tend to make the correct choices as
these algorithms deliberately examine the underlying ordinal structure of the
instances.

This research opens several questions for future exploration. Is there a
method for generating artificial rank-order data that better models real world
datasets? Is there a faster algorithm for CDV so that its speed is favorably com-
parable with the Spoilers algorithm? Is there a better measure of divergence
for rank-orders than KL divergence, one that considers relationships between
features instead of just their values? Finally, are there better classification al-
gorithms for rank-ordered data?
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