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1. INTRODUCTION

Least squares is arguably the most common method for fitting data to a model when

there are errors in the observations. For example, given the data pairs (xi, yi), i =

1, . . . , n, where xi is the independent variable and yi is the dependent variable,

suppose that xi and yi are related by a smooth, possibly nonlinear function f , i.e.,

yi = f(xi; β), (1.1)

where β ∈ Rp is a vector of parameters to be determined. Equation (1.1) is meant

to imply that if there are no errors in either xi or yi and if β is known exactly, then

(1.1) holds exactly. If there are errors in the data, then the true value of β can only

be approximately obtained, unless the number of observations goes to infinity.

In classical least squares, it is assumed that xi is known exactly and yi is observed

with error. Although it is often the case that the xi have errors, these errors can

be safely ignored if they are much smaller than the corresponding errors in the yi.

Thus, taking the error in yi to be given by ǫi, write

yi + ǫi = f(xi; β) (1.2)

and approximate β by solving the classical, or ordinary, least squares problem given

by

min
β

1

2

n
∑

i=1

[f(xi; β)− yi]
2. (OLS)

This, of course, can be interpreted as minimizing the sum of the squares of the

vertical distances from the data points to the curve y = f(x; β).

If, however, the error in xi cannot be ignored and δi denotes the error in xi, then

(1.2) becomes

yi + ǫi = f(xi + δi; β),

and it is reasonable to approximate the parameter β by minimizing the sum of the

squares of the orthogonal distances from the data points to the curve y = f(x, β).

As shown in Boggs et al. [1987] this gives rise to the orthogonal distance regression

problem given by

min
β,δ

1

2

n
∑

i=1

[

(f(xi + δi; β)− yi)
2 + δ2i

]

. (ODR)

Note that (ODR) is easily seen to be equivalent to

min
β,δ,ǫ

1

2

n
∑

i=1

(ǫ2i + δ2i )

subject to

yi + ǫi = f(xi + δi; β), i = 1, . . . , n,

(1.3)
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from which it is easy to see that (ODR) is, indeed, minimizing the sum of the squares

of the orthogonal distances. Note that in general xi and yi + ǫi = fi(xi + δi; β) are

vectors, and the objective function in (1.3) takes the form

min
β,δ,ǫ

1

2

n
∑

i=1

(

ǫtiwǫiǫi + δtiwδiδi
)

, (1.4)

where the weights wǫi and wδi are symmetric positive semidefinite matrices. Also

in general the functional relationships yi + ǫi = fi(xi + δi; β) may vary between

data points, hence the notation fi.

A numerically stable and efficient algorithm for solving (ODR) is given in Boggs

et al. [1987] and a detailed implementation, called ODRPACK, that provides a

number of practical options and statistical output is given in Algorithm 676 [Boggs

et al., 1989]. In Boggs et al. [1987], the authors show that the work per iteration

for their algorithm for solving (ODR) problem is exactly the same as the work

per iteration for solving (OLS). An enhancement of ODRPACK is available from

Netlib [Dongarra and Grosse, 1987]. This is a FORTRAN 77 implementation that

includes the ability to handle a general weighting scheme, allows x to be multidi-

mensional, and contains a version to allow the data to be complex. This code has

been downloaded and used many times by scientists, engineers, and practitioners

around the world; it is described in several textbooks, including Björck [1996] and

Nocedal and Wright [1999]. (ODR) has important statistical applications; in the

statistical literature it often goes by the name “errors in variables” (see, e.g., Fuller

[1987]).

Over the years, there have been occasional requests to implement a version of

ODRPACK that allows explicit bounds on the values of β, but this was not done.

The general form of the bound constrained (ODR) problem can be expressed as

min
β,δ

1

2

n
∑

i=1

[

(f(xi + δi; β)− yi)
2 + δ2i

]

subject to L ≤ β ≤ U, (BC-ODR)

where L and U are vectors of length p that provide the lower and upper bounds on

β, respectively. ODRPACK has some features that could be used to solve a bound

constrained problem, but the resulting algorithm is not very efficient.

This paper has two goals. First, it address the issue of modifying the ODR-

PACK algorithm to handle bounds efficiently, and second, it updates ODRPACK

by rewriting much of it in Fortran 95. The resulting code, called ODRPACK95, is

thus much simpler to use because it takes advantage of Fortran 95 to do dynamic

memory management and to allow much easier passing of parameters.

The paper is organized as follows. Section 2 reviews briefly ODRPACK and the

algorithm given in Boggs et al. [1987]. Also reviewed are some of the features of

ODRPACK that could be used to handle bounds and why these are not efficient.

Section 3 gives the modifications to the algorithm to handle these bounds efficiently.

Sections 4 and 5 are a discussion of testing and performance, respectively. Section

6 describes basic usage of ODRPACK95.
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2. ODRPACK DESCRIPTION

A brief description of the ODRPACK algorithm is provided here. Weights and

multidimensional xi, yi are left out for simplicity and can be added at the ex-

pense of complexity and bookkeeping, but require no fundamental changes in the

algorithm and pseudocode described here. ODRPACK is based on a trust region

Levenberg-Marquardt algorithm with scaling and numeric or analytic derivatives

and is described in detail in Boggs et al. [1987], Boggs et al. [1989], and Boggs et

al. [1992].

Building on the BC-ODR problem described earlier, the partials of the (weighted,

in the general case) errors ǫ and δ are taken with respect to the parameters β and

δ to give the Jacobian matrix

J =
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· · · ∂δn
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.

Note that the appearance of δ in both the errors and the parameters gives a special

and exploitable structure to the Jacobian matrix. The Jacobian matrix can be

divided into four quadrants based on the combinations of ǫ and δ with β and δ,

where all but the upper left quadrant possess special structure. For convenience

the quadrants are labeled

J =

[

G V

Z D

]

.

G is the Jacobian matrix of ǫ with respect to β and has no special properties. V is

the Jacobian matrix of ǫ with respect to δ and is a diagonal matrix. This property

obtains because each ǫi depends only on δi, see Eq. (1.3). Z is the Jacobian matrix

of δ with respect to β and is all zeros because δ is an independent variable. Finally,

D is a diagonal matrix of constants representing the Jacobian matrix of δ with

respect to δ. (In the weighted case D 6= I .) This realization and exploitation of the

structure of the ODR problem make ODRPACK very efficient; the time complexity

with respect to n is reduced from quadratic to linear.

ODRPACK uses a trust region algorithm that minimizes a model of the objective

function in a sufficiently small neighborhood of the current point in which the model

is “trusted”. In the case where a linear model is used, define

E(β, δ) =

(

ǫ

δ

)

=
(

f1(x1 + δ1; β)− y1, . . . ,

fn(xn + δn; β)− yn, δ1, . . . , δn
)T

,

(2.1)
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so that

‖E(β, δ)‖2 =
n
∑

i=1

[

‖fi(xi + δi; β)− yi‖
2
+ ‖δi‖

2
]

, (2.2)

and let (β, δ) denote the current iterate in the code. The step composed of (s, t)

(the increment to (β, δ)) is calculated by solving

min
s,t

∥

∥

∥

∥

E(β, δ) + J(β, δ)

(

s

t

)
∥

∥

∥

∥

2

subject to
∥

∥

∥

∥

(

S 0
0 T

)(

s

t

)
∥

∥

∥

∥

≤ τ,

(2.3)

where J(β, δ) is just the Jacobian matrix of E evaluated at (β, δ), S and T are

diagonal scaling matrices for s and t, respectively, and τ is the trust region radius.

The following pseudocode gives an overview of the algorithm.

do until convergence

Compute G, V , and D as described above.

P = V TV +D2+αT 2 : P is defined here to make the following equations simpler.

α is the Lagrange multiplier for Eq. (2.3) and T is a scaling matrix for t.

Formulate the linear least squares problem (derived from the linearization of the

objective function)

min
s

∥

∥

∥

(

(I − V P−1V T )
1

2Gs
)

− (I − V P−1V T )−
1

2

(

− ǫ+ V P−1(V T ǫ+Dδ)
)

∥

∥

∥

2

,

and solve for s with a QR factorization of the coefficient matrix of s. Note

that Boggs et al. [1987] realized the ODR problem can be solved efficiently

this way instead of solving the normal equations with the full Jacobian matrix

J.

t = −P−1(V T ǫ+Dδ + V TGs);

Use s and t to update β and δ, respectively. The Levenberg-Marquardt method

starts with the steepest decent method and smoothly changes to the Gauss-

Newton method, where s and t are simply added to β and δ, as the solution is

approached. ODRPACK uses a trust region implementation of the Levenberg-

Marquardt method which reduces the step size based on the confidence in a

model of the objective function. See Moré and Wright [1993] for details on

how parameters are updated in the Levenberg-Marquardt algorithm.

end do

ODRPACK has a simple method for handling invalid parameters. The user sup-

plied subroutine that calculates f can indicate invalid parameters by returning a

flag to ODRPACK. ODRPACK then reverts to the last successful point in parame-

ter space and reduces the step size until f can be evaluated. In the case where a user
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wishes parameters to be bound constrained this approach may cause ODRPACK

to stall near a bound even though a valid direction still exists that reduces the

objective function. In this case a user can continue optimization using an active set

strategy, keeping parameters in the active set fixed at their boundary values. This

requires that ODRPACK be restarted with a new active set every time a parameter

hits a boundary.

ODRPACK’s exploitation of the structure of the Jacobian matrix makes it an ef-

ficient algorithm for the unconstrained weighted orthogonal nonlinear least squares

problem. However, for problems where β is physically constrained and interior

barrier functions are physically inappropriate, ODRPACK’s handling of invalid pa-

rameters can be inconvenient and slow [Zwolak et al., 2004]. The next section

describes the changes to ODRPACK, motivated by the need to directly support

simple bound constraints.

3. DIFFERENCES BETWEEN ODRPACK95 AND ODRPACK

The ODRPACK95 code contains the original ODRPACK code wherever possible.

Deviations, rewrites, and additions made to the original code are described in this

section. All changes fall into two major categories: those required to support

bounds, and those required by or made possible by the conversion to Fortran 95.

3.1 Bound Constraints

The most important addition made in ODRPACK95 is the support for bound con-

straints on the parameter vector β: Li ≤ βi ≤ Ui, i = 1, . . . , p. The algorithm used

for bound constraints is the same as that in LANCELOT [Conn et al., 1992], which

calculates the projected step so as to always maintain a feasible β. Furthermore,

when a parameter value is at its bound the corresponding numerical partial deriva-

tive will use a one sided finite difference approximation to avoid calculations with

parameters outside the bounds. Lastly, the initialization in ODRPACK95 requires

function evaluations at feasible parameter values. Thus the ODRPACK initializa-

tion algorithm has been modified to only use feasible β values. ODRPACK95 never

calls the user supplied function with parameters outside the user supplied bounds

and the final solution is guaranteed to be feasible.

The most important change added a restriction on β during each iteration before

any function evaluations are made with β. The restriction ensures that the current

function evaluation is made with feasible β. After β is updated with the step s,

whose direction is a convex combination of the Gauss-Newton direction and the

steepest descent direction, β will be projected into the hyperbox [L, U ], precisely:

βi :=

{

βi, if Li ≤ βi ≤ Ui,
Li, if βi < Li,
Ui, if Ui < βi,

i = 1, . . . , p.

Before β is updated and projected, numerical or analytic derivatives are calcu-

lated. If analytic derivatives are used then no additional function evaluations are

required; the derivatives are calculated at the current β. When forward or backward
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differences are used then the step hi must obey Li ≤ βi + hi ≤ Ui, for i = 1, . . . , p.

The sign of hi is changed if the bounds are violated, namely

hi :=

{

hi, if Li ≤ βi + hi ≤ Ui;
−hi, if Li > βi + hi or βi + hi > Ui,

i = 1, . . . , p.

It is possible that βi+ |hi| > Ui and βi−|hi| < Li for some i. ODRPACK95 avoids

this situation by ensuring that Ui − Li ≥ 2|hi|, for all i, where hi > 0 is chosen

with respect to the initial β during initialization. When central differences are used

then the points where the function is evaluated are shifted together until they are

both within the bounds, precisely

(β−

i , β+
i ) :=







(βi − hi, βi + hi), if Li ≤ βi − |hi| < βi + |hi| ≤ Ui,
(Li, Li + 2|hi|), if Li > βi − |hi|,
(Ui − 2|hi|, Ui), if Ui < βi + |hi|.

This has the affect of shifting the points β−

i and β+
i such that they are always

2hi apart and within the bounds. If, for example, βi is 0.2hi from Ui (such that

βi + 0.2hi = Ui) then Ui and Ui − 2hi are used in the central difference formula

instead of βi + hi and βi − hi. Furthermore, if βi is on a bound (e.g., βi = Li or

βi = Ui) then the modified central difference method used here becomes a forward

or backwards differentiation formula (depending on which bound βi lies on). Again,

ODRPACK95 ensures during initialization that Ui − Li ≥ 2|hi|, for i = 1, . . . , p.

During initialization function evaluations are required for derivative checking, the

initial point, and prediction of the number of reliable digits. The derivative checking

uses the same code as the numerical derivatives to request function evaluations,

and therefore does not evaluate the function outside the bounds. The initial point

is verified to be within the bounds, and if it is not then the code returns with

an appropriate error flag. Finally, prediction of the number of reliable digits in

the objective function must be made. These calculations are similar to derivative

calculations (in fact, they are first and second order derivative approximations with

some additional numerics that estimate how many digits are reliable in the objective

function). These calculations occur centered at the initial β. To ensure that these

calculations occur only at feasible points, the center point used in the calculations

is minimally adjusted from the initial β to be far enough from the bounds for the

calculations to succeed (in a manner similar to that of central differences described

above).

With these changes ODRPACK95 provides the same reliable and efficient op-

timization as ODRPACK, but with simple bound constraints. At no time will

ODRPACK95 evaluate the function outside the bounds, and the final solution will

be a local constrained minimum.
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3.2 Fortran 95

ODRPACK95 conforms to the Fortran 95 specification ISO/IEC 1539-1. The
code was compiled, run, and tested on a DEC Alpha, a Sun Sparc Station, and
an Intel Xeon using the Digital Equipment Corporation, Sun, and Intel compilers,
respectively. The code uses the Fortran 95 fixed format to minimize changes from
(the FORTRAN 77 fixed format code of) ODRPACK and the likelihood of bugs
introduced into the code. The conversion to Fortran 95 facilitates a number of
other significant improvements in ODRPACK95.
Among those improvements are optional arguments, use of Fortran 95 modules,

automatic array allocation, and use of Fortran 95 intrinsic functions for machine
constants. All non-essential arguments to ODRPACK95 are optional; this makes
the ODRPACK95 interface considerably simpler and allows defaults to be set when
arguments are not present. The call to ODRPACK95 was simplified from

CALL DODRC(
+ FCN,
+ N,M,NP,NQ,
+ BETA,
+ Y,LDY,X,LDX,
+ WE,LDWE1,LD2WE1,WD,LDWD1,LD2WD1,
+ IFIXB,IFIXX,LDIFX,
+ JOB,NDIGIT,TAUFAC,
+ SSTOL,PARTOL,MAXIT,
+ IPRINT,LUNERR,LUNRPT,
+ STPB,STPD,LDSTPD,
+ SCLB,SCLD,LDSCLD,
+ WORK,LWMIN,IWORK,LIWMIN,
+ INFO
)

to
CALL ODR(

+ FCN,
+ N,M,NP,NQ,
+ BETA,
+ Y,X,
+ LOWER=L,UPPER=U
)

and there is only one interface to ODRPACK95 while ODRPACK has DODRC,
DODR, SODRC, and SODR. These multiple interfaces to ODRPACK exist to allow
short and long argument lists and single and double precision arithmetic. The user’s
calling program would contain the statement

USE ODRPACK95

giving their code access to the ODRPACK95 interface and aiding in compile time
error checking. The array arguments in the interface will be automatically allocated
if the user does not supply the (optional) argument or does not allocate the provided
argument. The arrays will be deallocated only if the user did not provide an
argument for them to be returned in. Lastly, all the calculations are done using
the machine constants from the Fortran 95 intrinsics, eliminating the former need
to supply a function to return machine constants. These changes all together make
ODRPACK95 a substantial improvement over the original ODRPACK.
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4. ORGANIZATION AND TESTING

The ODRPACK95 distribution contains several Fortran source files (*.f), a

make file (makefile), a user’s guide (guide.ps), a readme file (readme), a change

log (changes), and some input data (data?.dat) for some example problems

(drive?.f). The default make target builds ODRPACK95, compiles the exam-

ple and test problems (test.f), and runs the example and test problems. The files

containing the results of the examples and tests are named like the source files that

generated them with a .out extension. Some BLAS/LAPACK routines are used

by ODRPACK95 and are contained in lpkbls.f in case the user’s system does not

already have the BLAS/LAPACK routines installed. The user or installer must

manually select usage of a local BLAS/LAPACK package or the routines in lp-

kbls.f by editing makefile. Lastly, the file real precision.f contains a Fortran

KIND definition for the real precision to use (IEEE 64-bit arithmetic is the default,

note that changing the REAL KIND will require compatible BLAS and LAPACK).

ODRPACK95 was tested thoroughly with dozens of test cases and test problems.

Some of these are distributed with the code and are described here. The test cases

for ODRPACK are also distributed with ODRPACK95 and are described in Boggs

et al. [1992]. The ODRPACK95 tests can be run with make test.out. The output

file test.out contains the results of the tests and will end with “ALL TESTS AGREE

WITH EXPECTED RESULTS” in the case that all tests passed. This is a way to ensure

a properly installed and functioning ODRPACK95.

The model for the test problem new in ODRPACK95 is specially constructed to

exercise many of the conditions that may arise in bound constrained optimization.

The new test cases are listed below and numbered as they are seen in test.f.

13) Parameters start on a boundary, move away from the boundary, hit a

boundary, move away from the boundary, and stop at a minimum.

14) Parameters start interior to the bounds, never hit a boundary, and stop at

a minimum.

15) Parameters start interior to the bounds and stop on a boundary.

16) Parameters start outside the bounds, and ODRPACK95 returns an error

flag.

17) Bounds are ill defined (Li > Ui for some i), and ODRPACK95 returns an

error flag.

18) Central differences are used. Parameters start on a boundary, move away

from the boundary, hit a boundary, move away from the boundary, and

stop at a minimum.

19) Bounds are well defined but slightly too close for ODRPACK95 to do any

calculations. An error flag is returned.

20) Bounds are well defined and slightly farther apart than the previous case.

They are far enough apart to allow NDIGIT calculations but still too close

for ODRPACK95 to proceed. An error flag is returned.

21) Bounds are well defined and as close as the machine allows, and therefore

too close for finite differences and NDIGIT calculations. ODRPACK95

returns an error flag.
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The model used for all the bound constraint test cases above is

f(x; β) = β1e
β2∗x,

where the global minimum point (used to generate experimental data) is β =

(1, 1)T .

5. PERFORMANCE

The test cases documented in the previous section were also used to benchmark

ODRPACK95. ODRPACK95 performs exactly as ODRPACK when β + s remains

feasible except that an additional IF-statement is executed to check that β + s

is feasible. When a boundary is crossed or reached, ODRPACK95 must execute

many additional statements to ensure all function evaluations are performed with

feasible parameters and that the resulting β is feasible. It is this case of active

bound constraints that this section addresses.

The benchmarks were performed with a modified test.f. Lines were added be-

fore and after the call to ODR that read the time with the Fortran 95 CPU TIME

intrinsic function. In addition, the lower bound for Test Case 18 was modified.

Without this modification Test Case 18 is the same as Test Case 13 except that

central differences are used. This modification adds to the diversity of the bench-

marks. Table 1 shows the setup for the benchmarks and timing results. After these

modifications, the code was compiled, then run with the command

nice -n -20 ./a.out > stdout.txt

on a dual 2GHz Xeon machine running Linux. The nice command ensures the

benchmark gets highest priority of the running processes (no other active processes

were running during the benchmark, but many system processes were sleeping or

waiting for interrupts). No options for the Intel Fortran 95 compiler were used for

the benchmarks.

The number of iterations for the runs (see Table 1) varies significantly. The

variances can be attributed to ODRPACK/ODRPACK95’s response to information

about the objective function along the different paths through parameter space.

(Since each test case took a different path through parameter space, the objective

function will look different on those paths causing ODRPACK/ODRPACK95 to

behave differently.) Reaching a bound increases the number of iterations, but the

work per iteration is roughly the same whether β is on a bound or not.

A notable exception is when central differences are used. The use of central

differences about doubles the work per iteration compared with forward and back-

ward differences. On a boundary, central differences are replaced by forward or

backward differences because the function cannot be evaluated outside the bounds.

This explains the almost double number of function evaluations per iteration seen

in Test Case 18 in Table 1. It is always the case that use of central differences in

ODRPACK95 will be cheaper per iteration when the parameters are on a boundary

than when the parameters are away from all boundaries.
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Table 1. The setup and timing results for benchmarks of ODRPACK95. Included

is the test case number (Test #) as found in test.f; the lower and upper bounds

of β (Lower and Upper); the initial β (β0); the final β (βfinal); the number of

ODRPACK95 iterations while β was on a bound (#itB) and the total number of

iterations (#itT ); the run time measured from when ODR was called to when it

finished (Time (ms)); number of function evaluations (#FEV); and the number of

function evaluations per iteration (#FEV/#i). Case 18 was modified from test.f

by changing its lower bound.

Test # 13 14 15 18

Lower (0.10,0) (0.00,0) (1.10,0) (0.01,0)

Upper (200,5) (400,6) (400,6) (200,5)

β0 (200,5) (200,5) (200,3) (200,5)

βfinal (1.0,1) (1.0,1) (1.1,1) (1.0,1)

#itB/#itT 83/95 0/25 68/68 3/26

Time (ms) 9.765 3.907 5.859 3.907

#FEV 388 108 285 188

#FEV/#itT 4.05 4.2 4.15 7.23

6. USAGE

The usage of ODRPACK95 is greatly simplified from that of ODRPACK. A simple

example can be found in Appendix A and the output of the example in Appendix B.

The most simple form of a call to ODRPACK95 with bounds is
CALL ODR(

+ FCN,
+ N,M,NP,NQ,
+ BETA,
+ Y,X,
+ LOWER=L,UPPER=U
)

There are many more optional arguments detailed in the ODRPACK and ODR-

PACK95 users guide. The required arguments (in the call statement above) and

optional bound arguments are explained here.

FCN The user supplied function that evaluates the model and partial derivatives

of the model.

N The number of experimental data points (xi, yi). Experimental data can

come in vector form.

M The size of the vector for the independent experimental data.

NQ The size of the vector for the dependent experimental data.

NP The number of parameters for the model.

BETA The parameters for the model used as an initial guess. The final solution

(if one) is returned in this variable.

Y N×NQ array of the dependent experimental data.
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X N×M array of the independent experimental data.

LOWER Optional array of lower bounds on BETA.

UPPER Optional array of upper bounds on BETA.

BIBLIOGRAPHY
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APPENDIX A

A simple example of ODRPACK95 usage.

PROGRAM ODRPACK95_EXAMPLE

USE ODRPACK95

USE REAL_PRECISION

REAL (KIND=R8), ALLOCATABLE :: BETA(:),L(:),U(:),X(:,:),Y(:,:)

INTEGER :: NP,N,M,NQ

INTERFACE

SUBROUTINE FCN(N,M,NP,NQ,LDN,LDM,LDNP,BETA,XPLUSD,IFIXB,IFIXX,LDIFX,&

IDEVAL,F,FJACB,FJACD,ISTOP)

USE REAL_PRECISION

INTEGER :: IDEVAL,ISTOP,LDIFX,LDM,LDN,LDNP,M,N,NP,NQ

REAL (KIND=R8) :: BETA(NP),F(LDN,NQ),FJACB(LDN,LDNP,NQ), &

FJACD(LDN,LDM,NQ),XPLUSD(LDN,M)

INTEGER :: IFIXB(NP),IFIXX(LDIFX,M)

END SUBROUTINE FCN

END INTERFACE

NP = 2

N = 4

M = 1

NQ = 1

ALLOCATE(BETA(NP),L(NP),U(NP),X(N,M),Y(N,NQ))

BETA(1:2) = (/ 2.0_R8, 0.5_R8 /)

L(1:2) = (/ 0.0_R8, 0.0_R8 /)

U(1:2) = (/ 10.0_R8, 0.9_R8 /)

X(1:4,1) = (/ 0.982_R8, 1.998_R8, 4.978_R8, 6.01_R8 /)
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Y(1:4,1) = (/ 2.7_R8, 7.4_R8, 148.0_R8, 403.0_R8 /)

CALL ODR(FCN,N,M,NP,NQ,BETA,Y,X,LOWER=L,UPPER=U)

END PROGRAM ODRPACK95_EXAMPLE

SUBROUTINE FCN(N,M,NP,NQ,LDN,LDM,LDNP,BETA,XPLUSD,IFIXB,IFIXX,LDIFX,&

IDEVAL,F,FJACB,FJACD,ISTOP)

USE REAL_PRECISION

INTEGER :: IDEVAL,ISTOP,LDIFX,LDM,LDN,LDNP,M,N,NP,NQ

REAL (KIND=R8) :: BETA(NP),F(LDN,NQ),FJACB(LDN,LDNP,NQ), &

FJACD(LDN,LDM,NQ),XPLUSD(LDN,M)

INTEGER :: IFIXB(NP),IFIXX(LDIFX,M)

ISTOP = 0

! Calculate model.

IF (MOD(IDEVAL,10).NE.0) THEN

DO I=1,N

F(I,1) = BETA(1)*EXP(BETA(2)*XPLUSD(I,1))

END DO

END IF

! Calculate model partials with respect to BETA.

IF (MOD(IDEVAL/10,10).NE.0) THEN

DO I=1,N

FJACB(I,1,1) = EXP(BETA(2)*XPLUSD(I,1))

FJACB(I,2,1) = BETA(1)*XPLUSD(I,1)*EXP(BETA(2)*XPLUSD(I,1))

END DO

END IF

! Calculate model partials with respect to DELTA.

IF (MOD(IDEVAL/100,10).NE.0) THEN

DO I=1,N

FJACD(I,1,1) = BETA(1)*BETA(2)*EXP(BETA(2)*XPLUSD(I,1))

END DO

END IF

END SUBROUTINE FCN

APPENDIX B

The output of the example program from Appendix A.

*********************************************************

* ODRPACK95 VERSION 1.00 OF 07-15-2004 (REAL (KIND=R8)) *

*********************************************************

*** INITIAL SUMMARY FOR FIT BY METHOD OF ODR ***

--- PROBLEM SIZE:

N = 4 (NUMBER WITH NONZERO WEIGHT = 4)

NQ = 1

M = 1

NP = 2 (NUMBER UNFIXED = 2)

--- CONTROL VALUES:

JOB = 00000

= ABCDE, WHERE

A=0 ==> FIT IS NOT A RESTART.
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B=0 ==> DELTAS ARE INITIALIZED TO ZERO.

C=0 ==> COVARIANCE MATRIX WILL BE COMPUTED USING

DERIVATIVES RE-EVALUATED AT THE SOLUTION.

D=0 ==> DERIVATIVES ARE ESTIMATED BY FORWARD DIFFERENCES.

E=0 ==> METHOD IS EXPLICIT ODR.

NDIGIT = 16 (ESTIMATED BY ODRPACK95)

TAUFAC = 1.00E+00

--- STOPPING CRITERIA:

SSTOL = 1.49E-08 (SUM OF SQUARES STOPPING TOLERANCE)

PARTOL = 3.67E-11 (PARAMETER STOPPING TOLERANCE)

MAXIT = 50 (MAXIMUM NUMBER OF ITERATIONS)

--- INITIAL WEIGHTED SUM OF SQUARES = 1.46854548E+05

SUM OF SQUARED WEIGHTED DELTAS = 0.00000000E+00

SUM OF SQUARED WEIGHTED EPSILONS = 1.46854548E+05

--- FUNCTION PARAMETER SUMMARY:

INDEX BETA(K) FIXED SCALE LOWER(K) UPPER(K) DERIVATIVE

STEP SIZE

(K) (IFIXB) (SCLB) (STPB)

1 2.00E+00 NO 5.00E-01 0.00E+000 1.00E+001 1.00000E-10

2 5.00E-01 NO 5.00E-01 0.00E+000 9.00E-001 1.00000E-10

--- EXPLANATORY VARIABLE AND DELTA WEIGHT SUMMARY:

INDEX X(I,J) DELTA(I,J) FIXED SCALE WEIGHT DERIVATIVE

STEP SIZE

(I,J) (IFIXX) (SCLD) (WD) (STPD)

1,1 9.820E-01 0.000E+00 NO 1.66E-01 1.00E+00 1.00000E-10

N,1 6.010E+00 0.000E+00 NO 1.66E-01 1.00E+00 1.00000E-10

--- RESPONSE VARIABLE AND EPSILON ERROR WEIGHT SUMMARY:

INDEX Y(I,L) WEIGHT

(I,L) (WE)

1,1 2.700E+00 1.000E+00

N,1 4.030E+02 1.000E+00

*** FINAL SUMMARY FOR FIT BY METHOD OF ODR ***

--- STOPPING CONDITIONS:

INFO = 1 ==> SUM OF SQUARES CONVERGENCE.

NITER = 25 (NUMBER OF ITERATIONS)

NFEV = 140 (NUMBER OF FUNCTION EVALUATIONS)

IRANK = 0 (RANK DEFICIENCY)

RCOND = 7.68E-02 (INVERSE CONDITION NUMBER)

ISTOP = 0 (RETURNED BY USER FROM SUBROUTINE FCN)

--- FINAL WEIGHTED SUMS OF SQUARES = 2.67368608E-01
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SUM OF SQUARED WEIGHTED DELTAS = 2.46882426E-01

SUM OF SQUARED WEIGHTED EPSILONS = 2.04861824E-02

--- RESIDUAL STANDARD DEVIATION = 3.65628642E-01

DEGREES OF FREEDOM = 2

--- ESTIMATED BETA(J), J = 1, ..., NP:

BETA LOWER UPPER S.D. 95% CONFIDENCE

BETA INTERVAL

1 1.63337057E+00 0.00E+00 1.00E+01 5.02E-01 -5.26E-01 TO 3.79E+00

2 9.00000000E-01 0.00E+00 9.00E-01 7.44E-02 5.80E-01 TO 1.22E+00


