
 1

Designing for Seamless Task Migration in MPUIs: Bridging
Task-Disconnects

Pardha S. Pyla, Jerome Holman, & Manuel A. Pérez-Quiñones
Dept. of Computer Science, Virginia Tech

660 McBryde Hall (0106), Blacksburg, VA 24060
{ppyla, jeholman, perez}@vt.edu

ABSTRACT
Today, the proliferation of mobile computing has changed
the work environment forever. As a consequence, users are
forced to orchestrate a complex interaction between
multiple devices, moving data and information back and
forth, to accomplish their tasks. Users trudge out USB key
drives, remote desktop software, e-mail and network file
storage in an attempt to mitigate this orchestration. We refer
to this break from the task at hand as “task-disconnect.”
Task-disconnect represents the break in continuity that
occurs when a user attempts to accomplish his or her tasks
using more than one device. Our objective is to study how
software can bridge this task-disconnect, enabling users to
seamlessly transition their tasks among their devices. We
present the theory, definition, and discussion of task-
disconnect; our approach towards bridging this disconnect;
and our prototype application that was built to be used
across the desktop computer and the Tablet PC platforms.
We then describe our subjective evaluation to measure the
effectiveness of the prototype in bridging the task-
disconnect. We then conclude with the results and insights
gained from our evaluation.

Author Keywords
Task migration, Multi-Platform User Interfaces, task-
disconnect, task continuity, knowledge continuity.

INTRODUCTION AND MOTIVATION
Today, with the deployment of computing in various forms
and factors, we work in contention. The face of computing
has changed from that of the personal computer world of
the 1980s and 1990s. The proliferation of notebook
computers and other mobile computing devices continues to
change our work environment, driven by the convenience
of portable computing. The massive storage and
computational power of the desktop computer has helped it
to continue to be a central part of our daily work. From our
own surveys, the desktop computer and the notebook

computer are the two primary devices that people
synchronously and simultaneously use to accomplish their
daily work. This usage of multiple devices to accomplish a
single task is the source of contention. Consider the
following scenario.

Scenario
Amy is a graduate student working on a presentation for her
biology class. Amy uses her notebook in the library to
collect images, references, and to take notes from a few
journals in her research area. As she prepares some
spreadsheets and graphs to support her points, she sees a
call for papers deadline in one of the journals coming up in
a few days. She opens the Outlook’s calendar program on
her notebook and makes an entry in it to remind her the
next day to submit an abstract for that journal. After
finishing her work at the library, Amy returns to the office
to her desktop computer to finish the presentation. She
connects a USB key drive to her laptop computer to move
the files that she collected and created at the library to her
desktop; to cut and paste into her presentation. As she
creates the presentation she remembers a paper she read a
few weeks ago that could provide some background
information for her topic. She tries to remember where she
saved that paper. She starts looking in her files on the
desktop and realizing it is not there, she looks for it on the
notebook computer. She finally locates that file and uses the
USB key drive again to transfer it to her desktop. She
resumes working on the presentation and after a couple of
hours, finally finishes it. While she is working, she makes
some changes to the spreadsheet she created in the library.
Because the version of the spreadsheet on her notebook is
now “out of date”, she uses her USB drive again to update
that file on her notebook. She leaves for home happy that
she is done with the presentation, completely forgetting
about the call for papers calendar event on her notebook.

Why must Amy be forced to manage this interaction
herself? The amount of duplicate effort in this scenario
clearly shows that the burden of transferring information
and accomplishing a task using multiple devices jointly is
being placed on the user. The point in which Amy is forced
to drag through the plethora of devices, moving files back
and forth, opening and closing applications and repeatedly
copying and pasting information is what we describe as
task-disconnect.

 2

BACKGROUND AND THEORY
Before formally defining task-disconnect, we first describe
tasks and the various parameters of tasks. A task can be
defined as “a goal to be attained in given conditions” [1].
These conditions can be expressed using three points of
view: “the states to be covered, the permitted operations,
and the procedure”[2]. At a slightly lower level, tasks can
be said to be composed of activities. An activity is “what
the subject puts into operation (cognitive operations,
behavior) in order to meet task demands” [2]. We also
make use of Leplat’s [2] definition of “elementary units” to
be the “elementary tasks, and elementary states or
operations.” Leplat uses these definitions to describe task
complexity. However, we use the term ‘units’ to further
subdivide activities to their lowest granularity. Hence in our
work, tasks are composed of activities and activities are
further subdivided into units.

For nontrivial tasks (tasks with multiple units), we define
‘procedure’ to be an operation execution sequence of
multiple units. We also associate a parameter required for
the successful execution of a unit: instruction. Instructions
are knowledge directions necessary to execute units. This
knowledge can exist in the user’s knowledge of the world
or it can exist in the aids and artifacts in the task
environment. Another parameter that is fundamental to each
unit is cost. Cost is a multidimensional attribute set that is
incurred during the execution of a unit [2]. These
dimensions could be cognitive, physical, memory intensive,
resource intensive or a combination depending on the
nature of the unit and the expertise of the user. In other
words a cost intensive, multi-activity task for one user
might be a low cost, single activity task for another
depending on the instructions available to that user. It
should be remembered that instructions in this context
could be tacit knowledge or job aids available to the user.

Another important parameter of a task is time. In the words
of Leplat, “every task takes place in time and may be
described by the temporal dimensions of its organization”.
Out of the few temporal dimensions that Leplat describes,
“temporal ruptures” is of particular importance to our work.
We adapt and modify Leplat’s definition of temporal
ruptures to mean interruptions by activities that do not
directly contribute to the successful execution of the task at
hand.

Task-disconnect
In various scenarios such as Amy’s attempt to work with
two platforms, the need to transfer task and information
back and forth between various platforms burdens users
with methods like USB key drives, remote desktop
software, e-mail, network file storage, and many other
means. These attempts to literally orchestrate a migration of
data back and forth between the two devices create a gap in
the task execution. At a high level, we define this gap
between the devices and task as task-disconnect.
Theoretically, we define task-disconnect to be a temporal
task rupture arising due to activities required to manipulate

multiple devices which are used to accomplish the task, but
which do not directly aid in the completion of the task at
hand i.e. which are not directly included in the task
procedure. That is, qualitatively a task-disconnect
represents the break in continuity that occurs due to the
extra actions outside the task at hand, that are necessary
when a user attempts to accomplish a task using more than
one device. This disconnection occurs because moving a
task from one primary device to a secondary device
requires stopping work, opening and loading an assortment
of applications on the secondary device to complement or
replace the applications being used on the primary device,
transferring current data and files to the secondary device,
and then opening the information and data with the
secondary device’s loaded applications to restart work on
the original task.

RESEARCH QUESTIONS AND APPROACH
So what does it mean for a task not to be disconnected? In
other words, how can we maintain task continuity across
multiple devices? Task continuity requires the recovery of
state and activity context. Recovery of activity context
deals with the ability to recover the last actions that were
taking place on one device so that they can be taken into
account on the other. What if Amy’s spreadsheet program
transferred the updated copy of her spreadsheet
automatically from the desktop computer where she
finalized the changes to her notebook when she closed the
program? What if the calendar program automatically
transferred Amy’s reminder to the desktop when she
entered her office?

Our goal in this project is to address these questions and to
understand how we can have a seamless transfer of
information and task across multiple devices to prevent
task-disconnects. We define a seamless transition of task
between multiple devices to occur if there exist no
additional costs; incurred due to activities dealing with
temporal task ruptures outside the total costs associated
with all the activities required to complete the task at hand.

We characterize such seamless migration to be dependent
on knowledge continuity and task continuity [3].
Knowledge continuity requires visual continuity, both
graphical and textual, successful partitioning of data and
functionality, and procedural consistency. Visual continuity
identifies the fact that small change in a program’s visual
features, the way things are laid out, the wording that an
application uses, and the spatial orientation of various
pieces of information, has an effect on the usability of that
program. Poor usability implies that time to transfer
productivity between the devices will be affected.
Partitioning of data and functionality deals with how a
program divides what functions and what data is most
appropriate on each device. Having a desktop calendar
application show the entire month as a first view with
overview information for each day put on the screen
simultaneously is reasonable. On a PDA, a small monthly

 3

calendar with the ability to select a day and see the
information for that day is more appropriate. This is an
example of data partitioning.

With the theory and background described above, we state
our research question: How can we construct a seamless
transition for a user attempting to complete a task with
more than one device, bridging the task-disconnect that
occurs during the transition?

To explore this question, we constructed a prototype that
specifically accounts for knowledge and task continuity to
seamlessly bridge task-disconnect and subjectively measure
the perceived efficiency between using the prototype and
traditional disconnected applications when attempting to
accomplish a task across multiple devices. We describe the
process, prototype, and evaluation in later sections of this
paper.

RELATED WORK
Our work has a strong parallel to the traditional Computer
Supported Cooperative Work (CSCW) discipline [4].
Whereas, CSCW researchers focus on and attempt to have a
seamless interaction between multiple users across space,
time, distance and location in a collaborative setting, our
objective is to provide a seamless interaction between
multiple devices for a single user in the context of an
execution of a task across time and distance.

A review of the MPUI literature shows a few studies that
have tried to address the problem of ‘migrating’ tasks or
applications over multiple platforms. However, most of
these studies have focused primarily on the technological
aspects of this problem. For example, Chu et al. take the
approach of migrating an entire application to support
seamless task roaming [5]. They describe Roam, a
‘seamless application framework’ that can help developers
build ‘resource-aware’ applications capable of adapting to
the constraints of various platforms at runtime. However,
this approach has considerable latency during migration
(interrupting the user’s tasks sequence) and does not discuss
the implications on the user’s tasks and goals.

Similarly, Bandelloni and Paterno talk about user
interaction with an application while moving from one
device to another [6]. They describe three levels of
migration: total, partial and mixed. The criterion the authors
use to distinguish these three levels is based on whether
user interaction (control part) or the information
presentation (visualization part) is moved between the
various platforms. Chhatpar and Pérez-Quiñones call this
migration “dialogue mobility” and propose a requirement
for the application data and logic to be separate from the
user interface [7]. They then describe an architecture for
enabling “dialogue mobility” in applications. They do not
take the task perspective we propose in this paper.

Florins and Vanderdonckt describe rules and
transformations that attempt to provide “graceful
degradation” of user interfaces as the application is

migrated from one platform to another [8]. The objective of
their work is to maintain “continuity” between devices from
an interaction perspective. Even though, their work is based
on the same principle of continuity, their focus is on the
user interface generation and not on task migration.
Similarly, Johanson et al. describe a multibrowsing
framework using which users can share the visualization of
content on their web browsers across multiple displays in
an ad hoc computing environment [9].

Biehl and Bailey introduce ARIS, a similar window
management framework to “relocate” running applications
from one display to another [10]. On a slightly different
note, Mori et al. describe a tool called TERESA that helps
in designing and developing model-based ‘nomadic’
applications [11]. They claim that a lack of such automatic
tool support is the main reason for the limited deployment
of such nomadic applications. Toolkits and tools such as
TERESA have utility in rapidly deploying applications that
can be migrated over multiple platforms but do not address
the task semantics the users wrestle with while trying to
interact with an MPUI.

Denis and Karsenty provide a conceptual framework for
“inter-usability” of multiple devices [3]. They provide an
analysis of different cognitive processes in inter-device
transitions and postulate two dimensions required for
seamless interaction: knowledge continuity and task
continuity. We base our work on this requirement for
seamlessness. We take this task centered approach to
solving this problem and we provide a definition,
description, parameters, requirements, and prototype to
demonstrate a seamless interaction over multiple platforms
without task-disconnects.

SAMPLE APPLICATION DOMAIN
We targeted a specific application domain with sufficient
complexity to allow us to observe clearly the different
parameters responsible for task-disconnects. Because of the
software engineering background of the team members, our
choice of application domains was software development.
Most specifically, we chose to build a prototype to support
the preliminary design phase of software engineering where
developers must collect customer requirements and
generate initial design prototypes, diagrams, and models.
We chose this application domain because of the need to
use several tools such as text editors, drawing packages,
scheduling programs, etc. when accomplishing a task, and
because the nature of the task requires the use of multiple
devices (interacting with customers and sketching requires
some level of mobility). The other advantage of this
application domain is that we have immediate access to
qualified participant pool in this domain to evaluate our
work.

USER SURVEYS AND INFORMAL INTERVIEWS
We used informal interviews and user surveys to gather
insights into an example task of prototyping and the

 4

existence of disconnects when using multiple devices to
prototype. One of our team members traveled to Microsoft
Campus to talk to software developers and conduct
informal interviews. We interviewed a total of six people
with experience in software development and prototyping
tasks. The process of interviewing was made informal and
was more of a discussion between volunteers and our team
members. We asked open ended questions targeting the
technologies and devices they used to prototype and any
insights into disconnects arising due to the mediation by
these technologies.

We also developed an online questionnaire and hosted it on
http://survey.vt.edu. We distributed the survey link to our
target audience of software developers, graduate students
with software development experience, and researchers in
HCI who are familiar with computing and do prototyping
tasks. We had a total of 32 responses to our survey. We
analyzed these responses and the results of that analysis are
summarized in the Survey Results section.

Survey Results
Our first group of questions was targeted at determining the
usage patterns and platform preferences of users in the day
to day tasks. For both personal and work related usage, the
desktop overwhelmingly turned out to be the primary
device of choice (27 out of the 32 surveyed said they use
desktops for their work related activities). Notebooks were
the most popular complementary devices other than the
desktop (22 out of the 32 surveyed used notebooks for
work). This leads us to infer that the computing paradigm
today is still geared towards power, mobility and a
combination of the two.

Our next group of questions addressed the comfort level,
proficiency, and the common practices the users had in a
sample application of software prototyping. We asked
specific questions regarding the number of prototypes the
participants built per project on average, the devices they
used to prototype, the task sequence they employed for
prototyping (e.g. how often they interacted with clients,
how they transferred the artifacts generated in this task
between multiple places and stakeholders, etc.), and what
factors contributed to any task-disconnects while in this
task sequence.

The two devices that are used most for prototyping tasks
seem to be the ‘pen and paper’ and a notebook (27 out of 32
surveyed said they used pen and paper, 11 out of 32 said
they used notebooks). The obvious inference here is that
people use multiple devices such as ‘pen and paper’ and
notebooks when they have to perform a task being away
from their desktop. Because of the collaborative and
distributed nature of prototyping tasks, we were interested
in the types of devices people commonly used to
collaborate and distribute the artifacts generated after the
prototype sessions with clients. Out of the 32 surveyed, 19
answered that they share the pen and paper sketches
physically, whereas 18 said they used notebooks and 17

said they used desktops to share. We infer that a big group
of users actually digitize their sketches as they are (scan
paper documents) or into hi-fi prototypes (use drawing tools
such as MS Visio) if they have to transfer and share as they
selected desktop and notebooks as the devices for sharing.
Another question that supported this inference is about the
common software technology used to share the prototype
artifacts. A majority of 24 people answered email and 11
people used network file sharing, both of which require
converting paper and pen artifacts into digital documents.

The next set of questions we asked focused on the
parameters of the current method of prototyping tasks that
contributed to task-disconnects. People complained that
transferring or sharing information required many
intermediate steps that broke the overall prototyping task.
But the harder contention for the task-disconnect is the
problem of switching between the physical and digital
worlds because of the pen and paper use. They pointed out
that paper and pen paradigm also restricted rapid
reproduction, edition, undoing and other manipulations of
prototype artifacts. Moreover, people claimed they used
different media such as images, papers, text, etc in their
prototyping tasks and that their interaction was
disconnected because of the need to use devices such as
USB drives and CDROMS to transfer this media from their
laptops to desktops and vice a versa. One technology that
we think can bridge the disconnect due to the digitization
aspects of the pen and paper paradigm is the Tablet PC.
This is because of the elimination of the need to use paper
and pen but still have the flexibility to use the pen on the
Tablet to have free form drawings.

DESIGN IMPLICATIONS
From the survey results, we can conclude that the desktop
and the laptop are the primary computing devices that
people use today to accomplish their work. We also
discovered that pen and paper is an extremely important
device in the area of software prototyping that we are
investigating. Because of these collected facts and because
the only means which we have for prototyping a solution
for task-disconnect is software, the Tablet PC and the
desktop computer are the perfect platforms for exploring
our research question. The Tablet PC which is both a
notebook computer and an electronic pen based system,
enables us to not only explore how to seamlessly bridge
task-disconnect between a notebook and a desktop
computer, but it also allows us to explore task-disconnect
between the pen and paper and a desktop computer by
digitizing the pen and paper with the Tablet PC. The most
outstanding design implication that we can take from our
survey results is that the network is an acceptable means of
transferring information back and forth between devices.
E-mail and network storage were popular means of
transferring information and files back and forth between
multiple devices, and we feel that this justifies using the
network as a primary medium for information migration.

 5

PROTOTYPE DESCRIPTION
We constructed an MPUI application prototype for the
desktop and Tablet PC devices. We developed the
prototype using the Microsoft .NET framework. The goal in
the design of the prototype was to build a user interface that
would encompass the values of knowledge continuity and
task continuity needed to provide a seamless MPUI user
experience. By doing so, we wanted to establish the use of
an MPUI for task migration, bridging task-disconnect
between the desktop and the Tablet PC.

The desktop component of the application consists mainly
of what we named the Task Explorer. The Task Explorer is
the central interface created to help the user establish his or
her tasks and related information. To understand whether or
not we could seamlessly migrate task between two devices,
we needed a means for actually identifying task. Therefore
we created an environment around task, and called it the
Task Explorer. The Task Explorer, shown in figure 1,
allows the user to create a task, track the activities he or she
has to do in an included to-do list tool, and provides a
constant visual feedback on the status of the connected
devices in range.

Opening a task in the Task Explorer launches the Task
Viewer (shown in figure 2). Within the Task Viewer, the
user can see all the related documents and files that
correspond to a task. In our prototype application domain,
the Task Viewer shows requirement documents, diagrams
and prototypes, e-mail addresses, and people related to the
project in a unified view. Each task is uniquely color coded
to establish a visual identity with the task. Opening a
document like a requirements specification launches that
file in Microsoft Word where the user can edit and save
changes to the document. Clicking the plus button adds a
new Microsoft Word document with a name selected by the
user. Opening a prototype diagram launches our custom
developed modeling tool (shown in figure 3). Using this
tool, a user can draw and create prototypes and diagrams

related to the development task.

The key feature in our prototype is the seamless transition
from the desktop user experience to the Tablet PC. As
stated above, the Task Explorer and the Task Viewer show
any devices that are in range of the desktop computer. You
can see in both screenshots of our prototype windows that
the Tablet PC is connected to the desktop. When the user
takes the Tablet PC and walks out of range of the desktop
computer, the Tablet PC opens the Tablet prototyping tool
automatically with a view of any tasks that were opened on
the desktop computer. The user can also push tasks to the
tablet by dragging and dropping their tasks from the Task
Explorer to the Tablet PC. In doing this, the user “migrates”
their task to the Tablet PC in a seamless manner.

The Tablet PC interface leverages spatial organization,
shape, color, partitioning of data and function, recovery of
state of data and recovery of activity context on its user
interface. For every task “migrated” to the Tablet either
automatically by the application because the task was open
or through manual dragging and dropping from the desktop,
a full screen window is shown on the Tablet PC with the
name of the task and the same unique color gradient per
task used to uniquely identify the task on the desktop. By
having the name and gradient color in the same location and
of similar size, we use shape, color, and spatial organization
as much as possible to ease the migration of task to the
Tablet PC.

The Tablet PC’s Task window provides a similar toolbar
that is available on the desktop PC. This again leverages
spatial organization and shape to provide continuity and to
make the transition between the desktop and the Tablet PC
seamless. The drawing area is automatically loaded with the
last drawing that was being assessed on the desktop
computer. This is done to automatically recover the state of
the data on the desktop, helping maintain task continuity.
This also recovers activity context because what is seen is

Figure 1: Task Explorer Figure 2: Task Viewer

 6

what was last worked on.

If the drawing on the interface is cleared and another
drawing is created, the new diagram is created and synched
automatically with the desktop. This removes the need for
opening and saving a document, making the Tablet PC
more like paper. As artifacts are being generated, they are
populated into the task tree on the right side of the screen.
This task tree also brings together the requirements
documents, people, to-do list, and e-mails to the Tablet PC
that were related to the task on the desktop computer.

Using shape and iconic continuity with similar graphics and
layout, (but with shortened titles and a more logical data
organization), the application leverages the concepts of
partitioning of data and function to take into account the
rather limited space on a Tablet. This is done by removing
the word requirements from requirement documents’
names, and organizing e-mails under people’s names
instead of providing both lists independently. Opening a
document from the task tree opens the document in a
simplified window that again takes advantage of
partitioning of functions to provide a simpler interface for
the Tablet PC. For example, the text editor on the Tablet PC
is scaled down from the ‘heavy’ Microsoft Word
application as shown in figure 4.

This simplification of filing on the Tablet PC somewhat
resembles the “removal or hiding” (from the user’s
perspective) of the file system on the PalmTM based
handheld computers and iApps from AppleTM. In these
systems, the user is shielded from the intricacies and
operations of file handling and storage. The user only has a
few file classification capabilities and the data is mostly
provided as a service when required. We believe this
simplification is one of the important reasons for the
success of these platforms.

Our key objective with this prototype application was to
create an environment that promoted knowledge continuity
and task continuity in an attempt to bridge task-disconnect.

By recovering state and activity and providing an
environment that retains the information related to the task
at hand; establishing activity context and partitioning that
data and functionality in a way that promotes task
migration, we feel that we have achieved a first step toward
creating an interface that bridges task-disconnect.

EVALUATION
The prototype was evaluated with a group of graduate
students with software engineering background. We used a
total of six subjects for the study. Three of the six subjects
were used as a control group where they were given tasks
that required switching between a Tablet PC and a desktop
computer. The other three subjects comprised our test group
and were asked to perform the same tasks using our
prototype. Each participant was given a total of seven tasks.
Each task required drawing simple low-fidelity user
interface prototypes using our custom made drawing tool;
updating requirement specifications using a text editor or a
combination of these two activities. The subjects were
provided with a background scenario to provide them with
the context of a software development project for a
fictitious client and the need to transfer documents between
Tablet PC and the desktop. The subjects were asked to use a
Tablet PC to “meet with the client” and their interaction
with the client was scripted in the scenario provided. The
participants were asked to think aloud while they are
working and the evaluator prompted the users when they
stopped talking during a task. All participants were
provided training in using a Tablet PC, the prototype
drawing tool, and were given the background about our
research questions. The test group participants were
provided training with our prototype tool before starting the
evaluation session.

Tasks
The first task required the participant to make changes to an
existing requirements document based on the fictitious
client’s new insights into the project at the client’s location

Figure 3: Custom prototyping tool Figure 4: Scaled down text editor for the Tablet PC

 7

(i.e. using a Tablet PC). The second task required the
subject to prepare a low-fidelity prototype for the new
requirements specification on the desktop. The third task
asked the client to “visit the client” to demo the prototype
that was created on the desktop at the subject’s “office”.
The fourth task required the subject to work on the desktop
and to add more description to some requirements based on
“client’s feedback”. The subjects were asked to imagine
being at home for the fifth task (meaning they were to use a
Tablet PC) when they think of a design feature. They were
to quickly create a new prototype with that insight to demo
to the client the next day. The sixth task asked the subject to
“visit the client” and demo the new prototype and get
feedback. The feedback required changing the prototype
and the requirement specification. The last task was set to
take place at the subject’s office where they were asked to
update their desktop files with the latest prototype and
requirements specifications.

These tasks were designed with the obvious goal of making
the subjects transfer information between the two devices as
they progress through the tasks. In the test group, this
transfer was ‘automatic’ because the subjects used our
prototype. In the control group, the subjects had to move
the files themselves using their choice of a USB pen drive,
email, or other server based technologies. The control group
participants were provided with the Tablet PC and the
desktop that were connected to the Internet. They were
given one task at a time with the associated scenario to
provide the context of the interaction. At the end of the
session, all the subjects were asked to fill out a subjective
questionnaire.

OBSERVATIONS, INSIGHTS AND CONCLUSIONS

Control Group
For task two, where the subjects were required to create
prototypes based on the requirements specification
document, all the three subjects in the control group
preferred using the Tablet PC as an information display.
They opened the specification document in the Tablet and
were referring to it as they drew the prototype on the
desktop. When asked about this they said having the
information on a secondary display is good as it did not
make them switch between different windows on one
platform. This might mean that MPUIs should leverage the
capabilities of the various devices even when they are co-
located. Also, migrating all the information, data and
functions into a single device might not be the best way to
bridge a task-disconnect. We were surprised with this
behavior and we believe that this parameter of using
devices as additional displays requires further investigation.

For task three in the control group one of the subjects forgot
to copy the files from the desktop to the Tablet PC before
“visiting the client”. When provided with the description
for task four where the subject realized she had forgotten to
get the updated files, she remarked “wow! In real life this
would mean I have to go back to my office to get my

updated files or redo the prototype that I did in the last
task!” During the course of the evaluation, another user
commented “I go through this hassle everyday with my
laptop and my desktop. I am always moving files to keep
my information up-to-date! It is so frustrating” The third
participant commented “This is very annoying. But it
(something that) has to be done (because there is no other
way)” [words in parenthesis ours]. We claim this validates
our hypothesis that there is a task-disconnect due to the use
of multiple devices to get everyday tasks done. We also
believe that using approaches like ours in designing
applications for multiple devices will change the practice of
doing something “annoying” because there was no other
way.

One common complaint from the participants was that they
have to remember file locations and the state of the file in
each platform. As one subject put it “this version control is
getting irritating”. Remembering such extraneous
information increases the short term memory costs for this
activity tremendously. This combined with the fact that
short term memory of humans is very leaky, one can draw
an inference that if the temporal ruptures for a task take
place over a long period of time, it is almost impossible for
the user to remember which device has the latest version of
the data. In such situations there is a need for external
instructions (described in the Background and Theory
section) for successful completion of a task (e.g. the last
modified date on each of the platforms, etc.). This is
another observation that directly supports our hypothesis
that transferring activity context is important.

Another interesting observation that one subject made was:
“this (migrating data) almost makes me use the Tablet alone
for all the tasks and forget about my desktop if I had the
choice”. When asked if she would do that even if the task at
hand requires more processing power (such as available in a
desktop), she responded yes. This hints that task-
disconnects almost force the users to use a single device
alone that is mobile and completely keep away from other
devices even if those devices are more suitable for a
particular task. In an informal discussion of the findings
from this evaluation with our colleagues, we found out that
one of the professors in the CS department has actually
given up on using a desktop and a notebook combination
because of this very reason and only works with a notebook
computer.

In the subjective questionnaire, all three control group
subjects answered they had a constant fear of making errors
due to the overheads associated with migrating data and
information across the devices. They also felt it was not
easy to keep track of version information for the
documents. One participant commented that the real world
scenarios such as the ones used in the evaluation session
would be worse because of the bigger temporal ruptures for
tasks in everyday life (in the evaluation the subjects were
performing the tasks immediately after on another). On the
question about the percentage of time spent on activities

 8

that were not directly related to the task at hand (i.e. the
overhead in getting the tasks done), all three subjects
answered that about 30% was spent on task overheads. We
believe that to be a reasonable and representative amount of
overhead in a complex task such as software requirements
gathering and prototyping.

Test Group
For the second group of three participants, we gave them
our MPUI environment and tool to perform the tasks
described above. We introduced the group to the tool,
allowing them to explore the interface and understand the
limitations and the capabilities of our prototype application.
After they were familiarized with the environment, we
asked them to accomplish the same tasks on both devices,
the desktop and the Tablet PC with our application. We
then observed, asking them to speak out loud as they used
the tool, and we recorded our observations.

One thing that was definitely apparent is that having an
environment built upon task enabled them to easily
understand where they needed to go to get information. We
observed that they were able to instantly find where the
document was and get the information they needed or
update and modify it in the way they needed to accomplish
the task. When switching from device to device, we found
that having the environment loaded with the information
automatically allowed them to immediately restart their task
and be productive. Because the tool on the Tablet PC was
loaded from the start, there was no time delay in switching
between devices. The user was immediately able to find
their place and keep moving. Because information was
redisplayed using less screen real estate, users were
immediately able to focus on their work while keeping their
related information in their peripheral vision. The only
limitation of the system was that users spent time moving
and resizing the requirements window to enable them to
easily see both and work between them.

After they were done with the experiment tasks, we asked
them to answer the same questionnaire as administered to
the control group. One immediate observation is the
decrease in the fear of making errors. Almost unanimously,
our participants felt less likely to have errors accomplishing
the tasks. Also because file state and application state were
transferred automatically, the only thing that the users had
to worry about was finding the appropriate location in the
UI to begin work again. As for the other questions, users
found it easier to track their progress and information
compared with the control group. There were comments by
users that it would be nice to have a better view of all the
files related to a project, but creating a new file system view
was not the purpose of our prototype. Overall, participants
of the test group responded that the application was
satisfying, interesting, stimulating, and easy to use with the
highest ratings on the Likert scale. They also responded
(and we observed) that little to no time was used in
transferring files and loading applications allowing all of

the users to finish the tasks more quickly and with higher
quality because they could focus their energy on the task at
hand and not the overheads.

In conclusion, we explored the question of how we can
construct a seamless transition for a user attempting to
complete a task with more than one device, bridging the
task-disconnect that occurs during the transition. We
accomplished this by more specifically isolating our scope
to identifying task performance while using two platforms,
a desktop computer and a Tablet PC, for a specific
application domain of requirements gathering and
prototyping. We constructed a prototype that adheres to the
principles of knowledge continuity and task continuity in an
attempt to create a seamless software bridge over task-
disconnect. To understand its effectiveness, we subjectively
measured user performance while accomplishing a set of
requirements gathering and prototyping tasks with software
engineering professionals and students while using our
prototype and compared the results to that of the same users
accomplishing the same tasks using traditional application
tools like Microsoft Word. Even though we do not claim
statistical significance, our evaluation showed that our
approach of bridging the task-disconnect is a promising step
in resolving the contention arising due to the everyday use
of the multitude of devices that surround us.

REFERENCES
1. Leontiev, A. Le Developpement du Psychisme. Editions

Sociales, Paris, 1972.
2. Leplat, J. Task complexity in work situations. in Goodstein,

L.P., Andersen, H.B. and Olsen, S.E. eds. Tasks, Errors
and Mental Models, Taylor & Francis, Philadelphia,
(1988), 105-115.

3. Denis, C. and Karsenty, L. Inter-Usability of Multi-Device
Systems - A Conceptual Framework. in Seffah, A. and
Javahery, H. eds. Multiple User Interfaces: Cross-Platform
Applications and Context-Aware Interfaces, John Wiley &
Sons, (2004), 373-384.

4. Olson, G.M. and Olson, J.S. Groupware and computer-
supported cooperative work. in Jacko, J.A. and Sears, A.
eds. The Human-Computer Interaction Handbook:
Fundamentals, Evolving Technologies and Emerging
Applications, Lawrence Erlbaum Associates, Inc., (2003),
583-595.

5. Chu, H.-h., Song, H., Wong, C., Kurakake, S. and Katagiri,
M. Roam, a seamless application framework. The Journal
of Systems and Software, 69, (2004), 209-226.

6. Bandelloni, R. and Paterno, F., Flexible Interface
Migration. Proc. 9th International conference on intelligent
user interface (IUI), (2004), 148-155.

7. Chhatpar, C. and Pérez-Quiñones, M.A., Dialogue mobility
across devices. Proc. ACM Southeast Conference
(ACMSE), (2003).

8. Florins, M. and Vanderdonckt, J., Graceful degradation of
user interfaces as a design method for multiplatform
systems. Proc. 9th international conference on Intelligent
user interface, (2004), 140-147.

 9

9. Johanson, B., Ponnekanti, S., Sengupta, C. and Fox, A.,
Multibrowsing: Moving web content across multiple
displays. Proc. 3rd international conference on ubiquitous
computing, (2001), 346-353.

10. Biehl, J.T. and Bailey, B.P., ARIS: An interface for
application relocation in an interactive space. Proc. 2004
conference on graphics interface, (2004), 107-116.

11. Mori, G., Paterno, F. and Santoro, C., Tool support for
designing nomadic applications. Proc. 8th international
conference on intelligent user interfaces (IUI), (2003), 141-
148.

The columns on the last page should be of approximately equal length.

