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Abstract

Different sources of uncertainty in CFD simulations are illustrated by a detailed study of

two-dimensional, turbulent, transonic flow in a converging-diverging channel. Runs were

performed with the commercial CFD code GASP using different turbulence models, grid

levels, and flux-limiters to see the effect of each on the CFD simulation uncertainties.

Two flow conditions were studied by changing the exit pressure ratio: the first is a

complex case with a strong shock and a separated flow region, the second is the weak

shock case with no separation. The uncertainty in CFD simulations has been studied in

terms of four contributions: (1) discretization error, (2) error in geometry representation,

(3) turbulence model, and (4) the downstream boundary condition. In this paper, we
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have quantified the relative contribution and the importance of each source of uncertainty

and shown the level of scatter in results that a well informed CFD user may obtain in a

typical design activity. The nozzle efficiency results obtained in this study showed that

the range of variation for the strong shock case was much larger than that observed in the

weak shock case. The discretization errors were up to 6% and the relative uncertainty

originating from the selection of different turbulence models was as large as 9% for

the strong shock case. Furthermore, the results demonstrated that grid convergence is

not achieved with grid levels that have moderate mesh sizes and showed that highly

refined grids are required to obtain solutions with an acceptable level of accuracy in

design problems that involve simulations of complex flow fields. The results illustrated

the interaction of different sources of uncertainty and showed that the magnitudes of

numerical errors are influenced by the physical models used.

Keywords: CFD based design, uncertainty, error, multidisciplinary design optimization

1 INTRODUCTION

Computational fluid dynamics (CFD) has become an important aero/hydrodynamic anal-

ysis and design tool in recent years. CFD simulations with different levels of fidelity,

ranging from linear potential flow solvers to full Navier-Stokes codes, are widely used in

the multidisciplinary design and optimization (MDO) of advanced aerospace and ocean

vehicles [1]. Although low-fidelity CFD tools have low computational cost and are eas-
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ily used, the full viscous equations are needed for the simulation of complex turbulent

separated flows, which occur in many practical cases such as high-angle-of attack flight,

high-lift devices, maneuvering submarines and missiles [2]. Even for cases when there

is no flow separation, the use of high-fidelity CFD simulations is desirable for obtaining

higher accuracy. Due to modeling, discretization, and computation errors, the results

obtained from CFD simulations have a certain level of uncertainty. It is important to

understand the sources of CFD simulation errors and their magnitudes to be able to

assess the magnitude of the uncertainty in the results.

The results presented in the 1st [3, 4] and the 2st AIAA CFD Drag Prediction Work-

shops [5] illustrate the importance of understanding the uncertainty and its sources in

CFD simulations. As an example, in the 1st Drag Prediction Workshop, many of the

performance quantities of interest for the DLR-F4 wing-body configuration (workshop

test case), such as the lift curve slope, the drag polar, or the drag rise Mach number,

obtained from the CFD solutions of 18 different participants using different codes, grid

types, and turbulence models, showed a large variation, which revealed the general issue

of accuracy and credibility in CFD simulations.

The objective of this work is to illustrate different sources of uncertainty and their inter-

actions in CFD simulations, by a careful study of a typical, but complex, fluid dynamics

problem. We compare the magnitude of each source of uncertainty and its importance

for design. It should be noted that this is not a paper on validation or verification.

Such studies have been conducted for the CFD code used here. (See Neel et al. [6] and
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Brown [7].) The experimental results are included only for reference and are not used for

the purpose of code validation. In this study, we (1) quantify the relative contribution

and the importance of each source of uncertainty and show the level of scatter in results

that a well informed CFD user may obtain in a design or analysis activity, (2) illustrate

the interaction of different sources of uncertainty, and (3) show that the complex flow

fields with separated flow regions require highly refined grids to obtain solutions with an

acceptable level of accuracy.

The problem studied in this paper is a two-dimensional, turbulent, transonic flow in a

converging-diverging channel. CFD calculations were done with the General Aerody-

namic Simulation Program (GASP) [8]. Runs were performed with different turbulence

models, grid densities, and flux-limiters to see the effect of each on the CFD simulation

uncertainties. In this paper, we focus on four sources of uncertainty: (1) discretization

error, (2) error in geometry representation, (3) turbulence model, and (4) change in the

downstream boundary condition.

2 UNCERTAINTY SOURCES

To better understand the accuracy of CFD simulations, the main sources of errors and

uncertainties should be identified. Oberkampf and Blottner [9] classified CFD error

sources. In their classification, the error sources are grouped under four main categories:

(1) physical modeling errors, (2) discretization errors, (3) programming errors, and (4)
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solution errors.

Physical modeling errors originate from the inaccuracies in the mathematical models of

the physics. The errors in the partial differential equations (PDEs) describing the flow,

the auxiliary (closure) physical models, and the boundary conditions for all the PDEs are

included in this category. Turbulence models used in viscous calculations are considered

as one of the auxiliary physical models, usually the most important one. They are used

for modeling the additional terms that originate as the result of Reynolds averaging,

which in itself is a physical model.

Oberkampf and Blottner [9] define discretization errors as the errors caused by the nu-

merical replacement of PDEs, the auxiliary physical models and continuum boundary

conditions by algebraic equations. Consistency and the stability of the discretized PDEs,

spatial (grid) and temporal resolution, errors originating from the discretization of the

continuum boundary conditions are listed under this category. The difference between

the exact solution to the discrete equations and the approximate (or computer) solution

is defined as the solution error of the discrete equations. Iterative convergence error of

the steady-state or the transient flow simulations is included in this category. A similar

description of the discretization errors can also be found in Roache [10, 11], and Pelletier

et al. [12].

Since the terms error and uncertainty are commonly used interchangeably in many CFD

studies, it will be useful to give a definition for each. Uncertainty, itself, can be defined in

many forms depending on the application field as listed in DeLaurentis and Mavris [13].
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For computational simulations, Oberkampf et al. [14, 15] described uncertainty as a

potential deficiency in any phase or activity of the modeling process that is due to the

lack of knowledge, whereas error is defined as a recognizable deficiency in any phase or

activity of modeling and simulation.

Considering these definitions, any deficiency in the physical modeling of the CFD activ-

ities can be regarded as uncertainty (such as uncertainty in the accuracy of turbulence

models, uncertainty in the geometry, uncertainty in thermophysical parameters, etc.),

whereas the deficiency associated with the discretization process can be classified as

error [15].

Discretization errors can be quantified by using methods like Richardson extrapolation

or the grid convergence index (GCI), a method developed by Roache [11] for uniform re-

porting of grid convergence studies. However, these methods require fine grid resolution

in the asymptotic range, which may be hard to achieve in the simulation of flow fields

around complex geometries. Also, non-monotonic grid convergence, which may be ob-

served in many flow simulations, prohibits or reduces the applicability of such methods.

That is, it is often difficult to estimate errors in order to separate them from uncertain-

ties. Therefore, for the rest of the paper, the term uncertainty will be used to describe

the inaccuracy in the CFD solution variables originating from discretization, solution, or

physical modeling errors. The combined treatment of CFD simulation uncertainties and

errors was also presented in studies by Roache [16, 11].
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3 TRANSONIC DIFFUSER CASE

3.1 Description of the physical problem

The test case presented in this paper is the simulation of a 2-D, turbulent, transonic

flow in a converging-diverging channel, known as the Sajben Transonic Diffuser in CFD

studies [17]. The exit station is at x/ht = 8.65 for the geometry shown at the top

part of Figure 1, where ht is the throat height. This is the original geometry used in

the computations and a large portion of the results with different solution and physical

modeling parameters are obtained with this version. The exit station is located at x/ht =

14.44 for the other geometry shown in Figure 1. This extended geometry is used to study

the effect of varying the downstream boundary location on the CFD simulation results.

For both geometries, the bottom wall of the channel is flat and the converging-diverging

section of the top wall is described by an analytical function of x/ht defined in Bogar

et al. [18]. In addition to these two geometries, a third version of the same diffuser (the

modified-wall geometry) has been developed for this research and has been used in our

calculations. This version has the same inlet and exit locations as the original geometry,

but the upper wall is described by natural cubic splines fitted to the geometric data

points that were measured in the experimental studies. The upper wall contour obtained

by the analytical equation and the contour described by experimental data points are

slightly different, which may be due the error in fabrication and the measurement of the

fabricated geometry. Note that if there were no measurement errors, the experimental
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data points would be the representative of the “as made” hardware actually used in the

experiment. In our studies, we use the modified-wall geometry to find the effects of

geometric uncertainty on the numerical results.

Despite the relatively simple geometry, the flow has a complex structure. The exit pres-

sure ratio Pe/P0i sets the strength and the location of a shock that appears downstream

of the throat (Figure 2). In our studies, for the original and the modified-wall geometries,

we define Pe/P0i = 0.72 as the strong shock case and Pe/P0i = 0.82 as the weak shock

case. A separated flow region exists just after the shock at Pe/P0i = 0.72. Although

a nominal exit station was defined at x/ht = 8.65 for the diffuser used in the experi-

ments, the physical exit station is located at x/ht = 14.44. The geometry used in the

experiments has a rectangular cross section with the aspect ratio (height/width) of 0.35

at the constant-area region upstream of the throat, 0.25 at the throat, and 0.38 at the

constant-area region downstream of the throat. In the experiments, Pe/P0i was measured

as 0.7468 and 0.8368 for the strong and the weak shock cases respectively at the physical

exit location. Table 1 gives a summary of the different versions of the transonic diffuser

geometry and exit pressure ratios used in our computations.

3.2 Computational modeling

CFD calculations were performed with GASP, a Reynolds-averaged, three-dimensional,

finite-volume, Navier-Stokes code, which is capable of solving steady state (time asymp-
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totic) and time dependent problems. For this problem, the inviscid fluxes were calcu-

lated by an upwind-biased third order spatially accurate Roe flux scheme. The minimum

modulus (Min-Mod) and Van Albada’s flux limiters were used to prevent non-physical

oscillations in the solution. All the viscous terms were included in the solution and two

turbulence models, Spalart-Allmaras [19] (Sp-Al) and k-ω [20] (Wilcox, 1998 version) with

Sarkar’s Compressibility Correction, were used for modeling the viscous terms. Note that

all solutions presented in this paper were obtained with version 4.1.0 of the GASP code

compiled for SGI machines that run IRIX c© 6.5 UNIX c© operating system.

It should be noted that the actual flow in the diffuser geometry is three-dimensional. In

our study, we treat the flow as two-dimensional. Based on this assumption, we study

different uncertainty sources for relative comparison. Since this work is not a validation

study, we do not compare the numerical results with the measurements. However, if

one wants to compare the CFD results with the experiment in a validation study, the

uncertainty due to the two-dimensional modeling of a three-dimensional flow should also

be taken into account, especially in evaluating the accuracy of turbulence models. The

actual geometry used in the experiments has suction slots placed at x/ht = 9.8 on the

bottom and the side walls to limit the growth of the boundary layer. These suction

slots should also be modeled in a validation study if one wants to compare the numerical

results obtained downstream of the slots with the experimental data.

The adiabatic no-slip boundary condition was used on the top and the bottom walls

of the transonic diffuser geometry. At the inlet, a constant total pressure (P0i) and
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temperature (T0i) were specified (subsonic P0i-T0i inflow boundary condition in GASP).

The static pressure was taken from the adjacent interior cell and the other flow variables

were calculated by using isentropic relations. At the exit, the outflow boundary was set

to a constant static pressure (Pe), while the remaining flow variables were extrapolated

from the interior cells. To initialize each CFD solution, inflow conditions were used.

The iterative convergence of each case to a steady-state solution was examined by mon-

itoring the overall residual, which is the sum (over all the cells in the computational

domain) of the L2 norm of all the governing equations solved in each cell. In addition

to this overall residual information, the individual residual of each equation and some of

the output quantities were also monitored.

The sizes and the nomenclature of the grids used in the computations are given in Table 2.

Grid 2 (top) and Grid 2ext (bottom) are shown in Figure 1. The details about the grids

used in the computations can be found in Hosder et al. [21].

4 RESULTS AND DISCUSSION

For the transonic flow in the converging-diverging channel, the uncertainty of the CFD

simulations is investigated by examining the nozzle efficiency (neff ) as a global output

quantity obtained at different Pe/P0i ratios with different grids, flux limiters (Min-Mod

and Van Albada), and turbulence models (Sp-Al and k-ω). The nozzle efficiency is defined
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as

neff =
H0i −He

H0i −Hes

, (1)

where H0i is total enthalpy at the inlet, He the enthalpy at the exit, and Hes the exit

enthalpy at the state that would be reached by isentropic expansion to the actual pres-

sure at the exit. Since the enthalpy distribution at the exit was not uniform, He and Hes

were obtained by integrating the cell-averaged enthalpy values across the exit plane. Fig-

ure 3 shows the nozzle efficiencies obtained with different grid levels, turbulence models,

limiters, geometries, and boundary conditions for the strong and the weak shock cases.

In our studies on the transonic diffuser case, we have focused on five sources of the CFD

simulation uncertainties: (1) iterative convergence error, (2) discretization error, (3) error

in geometry representation, (4) turbulence model, and (5) change in the downstream

boundary condition. In general, (1) and (2) contribute to the numerical uncertainty,

which is the subject of the verification process; (3), (4), and (5) contribute to the physical

modeling uncertainty, which is the concern of the validation process. In this paper,

the iterative convergence error is not included. In our studies, we have seen that the

contribution of the iterative convergence error to the overall uncertainty is negligible.

For a detailed analysis of the iterative convergence error in the transonic diffuser case,

the reader should refer to Hosder et al. [21]. It should be noted again that the current

work is not a validation study. By studying uncertainty sources (3), (4), and (5), we

would like to investigate the relative contribution and the importance of each source of

uncertainty and show the level of scatter in results that a well informed CFD user may
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obtain in a design process. In a proper validation study, measurements from experiments

should be compared to the numerical results to determine the accuracy of physical models,

which requires detailed information about the uncertainties in measurements. For our

test case, the experimental data may contain uncertainties originating from many factors

such as geometric irregularities, difference between the actual Pe/P0i and its intended

value, measurement errors, heat transfer to the fluid, etc. Since such uncertainties for

the current experimental data set are not available, we will not compare our results with

the experiment for the purpose of validation. The experimental results will be included

for reference only.

In our discussion, we will first focus on the discretization errors, then the uncertainties

originating from geometry representation and the change in downstream boundary con-

dition. Finally, we will make relative comparisons of each source of uncertainty. This

will also include the relative uncertainty due to the selection of turbulence models.

4.1 The Discretization Error

The grid level and the flux-limiter affect the magnitude of the discretization error. Grid

level determines the spatial resolution, and the limiter is part of the discretization scheme,

which reduces the spatial accuracy of the method to first order in the vicinity of shock

waves. In this paper, Richardson extrapolation technique has been used to estimate the

magnitude of the discretization error at each grid level for cases that show monotonic
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convergence. This method is based on the assumption that fk, a local or global output

variable obtained at grid level k, can be represented by

fk = fexact + αhp + O(hp+1), (2)

where h is a measure of grid spacing, p the order of the method, and α the pth-order error

coefficient. Note that Equation 2 will be valid when f is smooth and in the asymptotic

grid convergence range. In most cases, the observed order of spatial accuracy is different

than the nominal (theoretical) order of the numerical method due to factors such as the

lack of sufficient grid convergence, existence of discontinuities in the solution domain,

boundary condition implementation, flux-limiters, etc. Therefore, the observed value of

p should be determined and used in the calculations required for approximating fexact and

the discretization error. Calculation of the observed order of accuracy (p̃) needs the solu-

tions from three grid levels, and the estimate of the fexact value requires two grid levels.

The details of the calculations are given in Appendix A. As an alternative to Richardson

extrapolation, some other methods can also be used to asses the solution accuracy of the

CFD simulations. Recently, Vaidyanathan et al. [22] used a least square extrapolation

method to project the numerical solutions of sample Navier-Stokes computations from

multiple, coarser base grids onto a finer grid for improving the solution accuracy by min-

imizing the residual of the discretized governing equations over the projected grid. Their

work on sample problems demonstrated the potential of the least square extrapolation

method as a quantitative measure for accuracy improvement that can also be used for

code verification.
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Table 3 summarizes the discretization error in nozzle efficiency results obtained with the

original geometry. For each case with a different turbulence model, limiter, and exit

pressure ratio, the approximation to the exact value of nozzle efficiency is denoted by

(ñeff )exact and the discretization error at a grid level k is calculated by

error(%) =

∣∣∣∣(neff )k − (ñeff )exact

(ñeff )exact

× 100

∣∣∣∣ . (3)

The following gives a summary of the discretization error results obtained with different

turbulence models and limiters.

4.1.1 Sp-Al model and Van Albada limiter

The grid convergence is monotonic both for the strong and the weak shock cases. At grid

level g2, the discretization error is 4.5% for the strong shock case and 1.5% for the weak

shock case.

4.1.2 Sp-Al model and Min-Mod limiter

The grid convergence is monotonic both for the strong and the weak shock cases. For the

strong shock case, the discretization error is equal to 6.8% at grid level g2, which is the

largest of errors obtained at this grid level. The discretization error is calculated as 3.5%

at the same grid level for the weak shock case. The smallest observed order of accuracy

(p̃ = 1.2) is obtained with this turbulence model and limiter for the strong shock case.

In addition to the results presented in Table 3, the finest grid level (g5) was used only in

14



the discretization error analysis of the strong shock case obtained with this turbulence

model and limiter. Table 6 in Appendix A gives the discretization error results obtained

using grid level g5.

4.1.3 k-ω model and Van Albada limiter

The monotonic grid convergence is observed only for the weak shock case and the dis-

cretization error is equal to 1.5% at grid level g2. The largest observed order of accuracy

(p̃ = 1.98) is obtained with this turbulence model and the limiter.

4.1.4 k-ω model and Min-Mod limiter

The monotonic grid convergence is achieved again only for the weak shock case. A

discretization error of 1.5% is obtained at grid level g2. For the weak shock case, the k-ω

turbulence model gives lower discretization errors compared to the Sp-Al results at the

same grid level, regardless of the limiter used.

4.1.5 General remarks

Figures 4 and 5 give a graphical representation of the results presented in Table 3. In these

figures, the discretization errors are added as error bars over the (ñeff )exact values for each

turbulence model and the limiter at each grid level. One can see that the discretization

error magnitudes are different for cases with different turbulence models when results
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obtained with the same limiter and grid level are compared at each shock condition.

This indicates the effect of the turbulence model on discretization errors and implies

that the magnitudes of numerical errors are influenced by the physical models used.

Figures 4 and 5 also show that only grid levels g3 and g4 make it possible to discriminate

between turbulence models, if one wants to analyze the difference in the results that

come purely from physical modeling uncertainties. Although the discretization errors

originating from spatial resolution and the flux limiter are closely coupled, it can be seen

that the relative uncertainty due to the choice of the limiter is more significant for the

strong shock case. For both pressure ratios, the nozzle efficiency values obtained with

different limiters become closer to each other as the mesh is refined.

The discretization error analysis of nozzle efficiency results also shows that grid conver-

gence is not achieved with grid levels that have moderate mesh sizes, especially for the

strong shock case. When the flow-field includes shocks with substantial flow separation,

highly refined grids, which are beyond the grid levels we use in this study, may be needed

for spatial convergence. Even with the finest mesh level we could afford, achieving asymp-

totic convergence is not certain. Note that a single solution on Grid 5 (640× 400 cells),

the finest mesh used in this study, required approximately 1170 hours of total node CPU

time on a SGI Origin2000 with six processors, when 10000 cycles were run with this grid

in year 2002.

At the same grid level, the discretization errors are smaller for the weak shock cases com-

pared to the strong shock results. This observation indicates the effect of flow structure
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complexity on grid convergence. Besides nozzle efficiency, a global solution parameter,

one can also see this effect by examining local solution quantities. When we look at

the Mach number at two points in the original geometry, one upstream of the shock

(x/ht = −1.5) and the other downstream of the shock (x/ht = 8.65, the exit plane), both

of which are located at the mid point of the local channel heights (Figure 6), we see the

convergence of the Mach number upstream of the shock for all the cases. However, for

the strong shock case, the lack of convergence downstream of the shock at all grid levels

with the k-ω model can be observed. For the Sp-Al case, we see the convergence only at

grid levels g3 and g4. For the weak shock case, downstream of the shock, the convergence

at all grid levels with the k-ω model is also seen. At this pressure ratio, Sp-Al model

results do not seem to converge, although the difference between each grid level is small.

These results again indicate the effect of the complex flow structure downstream of the

shock, especially the separated flow region seen in the strong shock case, on the grid

convergence.

In Table 3, the observed order of accuracy p̃ is smaller than the nominal order of the

scheme and its value is different for each case with a different turbulence model, limiter,

and shock condition. The values of both (ñeff )exact and p̃ also depend on the grid

levels used in their calculations. For example, the p̃ value was calculated as 1.322 and

1.849 for the Sp-Al, Min-Mod, strong shock case with different grid levels (see Appendix

A, Table 6). The difference in p̃ value due to the grid levels used in its calculation

may degrade the accuracy of the discretization error approximation with Richardson
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extrapolation. One should also note the fact that the flow problem studied here contains

a physical discontinuity in the form of a shock wave. Due to flux-limiting, the order

of the method is reduced across the shock and the numerical method can exhibit the

characteristics of a mixed-order scheme. The detailed studies on mixed-order schemes

by Casper and Carpenter [23] and Roy [24] show that such methods may have two

asymptotic regions, each having a different order. On coarser mesh levels one can see the

nominal order of the method in grid convergence, whereas a first-order asymptotic region

can be observed on sufficiently refined meshes. This complex behavior of mixed-order

methods can cause the difference between the observed order and the nominal order of

the method, and also non-monotonic grid convergence in some cases such as the strong

shock, k-ω results obtained in our study (See Figure 3).

Figure 7 shows another effect of the discretization error on design, namely the numerical

noise. In this figure, the noisy behavior of the nozzle efficiency results obtained with

Grid 1 can be seen for both turbulence models. The order of the noise error is much

smaller than the error between each grid level, however, this can be a significant source

of uncertainty if the results of Grid 1 are used in a gradient based optimization.

4.2 Error in the Geometry Representation

The contribution of the error in geometry representation to CFD simulation uncertain-

ties is studied by comparing the results of the modified-wall and the original geometry
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obtained with the same turbulence model, limiter, and grid level. Figure 8 gives the per-

cent error distribution in y/ht (difference from the analytical value) for the upper wall of

the modified-wall geometry at the data points measured in the experiments. A natural

cubic spline interpolating these data points was used to obtain the upper wall contour.

The difference between the upper wall contours of the original and the modified-wall

geometry in the vicinity of the throat location is shown in Figure 9. Note that since

we do not have enough information about the uncertainty in the measured experimental

data, the CFD results obtained with the modified-wall geometry will not be compared

to the experimental data. The experimental wall pressure values will be included in Fig-

ures 10 and 11 only for reference. Here, the modified-wall geometry is created to study

the relative uncertainty in the results due to the error in geometry representation. The

nozzle efficiency values obtained with the modified-wall geometry will be compared to

the original geometry results in Section 4.4.

We can make the following observations about the effect of geometry error on the upper-

wall static pressure. The flow becomes supersonic just after the throat and is very

sensitive to the geometric irregularities for both Pe/P0i = 0.72 and 0.82. From the top

wall pressure distributions shown in Figures 10 and 11, a local expansion/compression

region can be seen around x/ht = 0.5 with the modified-wall geometry. This is due to

the local bumps created by two experimental data points, the third and the fifth ones

from the throat (Figure 9). Since neither the wall pressure results obtained with the

original geometry nor the experimental values have this local expansion/compression,

19



the values of these problematic points may contain some measurement error. The lo-

cations of these two points were modified by moving them in the negative y-direction

halfway between their original value and the analytical equation value obtained at the

corresponding x/ht locations. These modified locations are shown with black circles in

Figure 9. The wall pressure results of the geometry with the modified experimental

points (Figures 10 and 11) show that the local expansion/compression region seems to

be smoothed, although not totally removed.

4.3 Downstream Boundary Condition

The effect of the downstream boundary location variation on the CFD simulation results

of the transonic diffuser case has been investigated using the extended geometry, which

has the physical exit station at the same location as the geometry used in the actual

experiments. The runs were performed only with the Sp-Al model and the Van Albada

limiter. Two Pe/P0i ratios were used for the strong shock case: 0.72 and 0.7468. For the

weak shock case, Pe/P0i ratios were 0.82 and 0.8368. For each case, the second pressure

ratio is the same value measured at the physical exit station of the geometry used in

the experiments. The nozzle efficiency results obtained with the extended geometry and

different Pe/P0i ratios will be compared to the original geometry results in Section 4.4 to

determine the relative uncertainty due to the change in downstream boundary condition.

We can examine the streamline pattern and the wall pressures to study the effect of the
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downstream boundary condition on the flow structure. Figure 12 shows the streamline

patterns of the separated flow region obtained with different geometries and Pe/P0i ratios

in the strong shock case. The comparison of the separation bubble size is given in

Figure 13. The separation bubble obtained with the extended geometry and Pe/P0i =

0.72 is bigger and extends farther in the downstream direction compared to the other

two cases. The separation bubbles obtained with the original geometry (Pe/P0i = 0.72)

and the extended geometry (Pe/P0i = 0.7468) are approximately the same in size. These

results are also consistent with the top wall pressure distributions given in Figure 14.

Here experimental wall static pressures are again shown for reference only.

With the extended geometry and Pe/P0i = 0.72, the flow accelerates more under the

separation bubble, and the pressure is lower compared to the other cases where the

separation bubbles have smaller thickness. Moving the exit location further downstream

increases the strength of the shock and the size of the separation region. As the shock

gets stronger, its location is shifted downstream. On the other hand, increasing Pe/P0i

reduces the strength of the shock, and moves the shock location upstream.

4.4 Relative Comparison of Different Uncertainty Sources

We use nozzle efficiency as a global indicator of the CFD results in the transonic diffuser

case and the scatter in the computed values of this quantity originates from the use of

different grid levels, limiters, turbulence models, geometries, and boundary conditions
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for each shock strength case. A graphical representation of this variation is given in

Figure 3. This figure shows a cloud of results that a reasonably informed user may

obtain from CFD calculations. The numerical value of each point is presented in Table 4.

We will analyze the scatter in nozzle efficiency results starting from grid level 2, since the

coarse Grid 1 will not be used by those that have significant experience in performing

CFD simulations. We will examine the results of grid levels 2, 3, and 4 for the relative

comparison of the uncertainty sources assuming that all these grid levels are used by

different CFD engineers for the design of a transonic diffuser.

For the purpose of determining the variation in nozzle efficiency in terms of a percent

value, we use the g4, Sp-Al, Van-Albada result as the comparator. When we consider

the cases obtained with the original geometry, maximum variation for the strong shock

condition is 9.9% and observed between the results of g2, k-ω, Min-Mod and g4, Sp-Al,

and Van Albada. Maximum difference in the weak shock results is 3.8% and obtained

between the results of g2, k-ω, Van Albada and g4, Sp-Al, and Min-Mod.

For each case with a different turbulence model and limiter, the variation between the

results of g2 and g4 may be used to get an estimate of the uncertainty due to discretization

error. The maximum variation for the strong shock is 5.7% and obtained with Sp-Al

model and the Min-Mod limiter. For the weak shock case, the maximum difference is

3.5% and obtained with the same turbulence model and limiter.

We can approximate the relative uncertainty originating from the selection of different

turbulence models by comparing the nozzle efficiency values obtained with the same
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limiter and the grid level. At grid level 4, the maximum difference between the strong

shock results of Sp-Al and k-ω model is 9.2% and obtained with the Min-Mod limiter.

For the weak shock case, the maximum difference at grid level 2 is 2.2%, and obtained

with the same limiter. It should be noted that, at each grid level, relative uncertainty due

to the turbulence models is different resulting from the interaction of physical modeling

uncertainties with the numerical errors.

For the strong shock case, at each grid level, the difference between nozzle efficiency

values of the original geometry and the results of the modified-wall geometry is much

smaller than the variations originating from the other sources of uncertainty regardless of

the turbulence model and the limiter used. On the other hand, this difference is notable

for the weak shock case and varies between 0.9% and 1.4%.

Nozzle efficiency values of the extended geometry show considerable deviation from the

results of the original geometry at certain grid levels, when 0.7468 and 0.8368 are used as

the exit pressure ratios for the strong and the weak shock cases, respectively. For the exit

pressure ratio of 0.7468, the maximum difference is 1.8% and obtained with grid level

3. The maximum difference for the exit pressure ratio of 0.8368 is 6.9% and observed at

grid level 4. The difference between the results of the original and the extended geometry

is smaller when the exit pressure ratios of 0.72 and 0.82 are used. For the exit pressure

ratio of 0.72, the maximum difference is 0.8% and observed at grid level 3. A maximum

difference of 1.1% is obtained at grid level 2 for the exit pressure ratio of 0.82.

Principal observations on uncertainties in nozzle efficiencies are summarized in Table 5.
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5 CONCLUSIONS

Different sources of uncertainty in CFD simulations were illustrated by examining a 2-D,

turbulent, transonic flow in a converging-diverging channel at various exit pressure ratios

using the commercial CFD code GASP. Runs were performed with different turbulence

models (Sp-Al and k-ω), grid levels, and flux-limiters (Min-Mod and Van Albada). Two

flow conditions were studied by changing the exit pressure ratio: the first one was a com-

plex case with a strong shock and a separated flow region; the second was a weak shock

case with attached flow throughout the entire channel. In this paper, we have focused on

four sources of uncertainty: (1) discretization error, (2) error in geometry representation,

(3) turbulence model, and (4) change in the downstream boundary condition.

Overall, this paper demonstrated that for the simulation of attached flows, informed CFD

users can obtain reasonably accurate results, whereas they are more likely to get large

errors for the cases that have strong shocks with substantial separation.

We have quantified the relative contribution and the importance of each source of un-

certainty and shown the level of scatter in results that a well informed CFD user may

obtain in a typical design activity. In nozzle efficiency results, the range of variation

for the strong shock case was much larger than that observed in the weak shock case.

The discretization errors were up to 6% and the relative uncertainty originating from the

selection of different turbulence models was as large as 9% for the strong shock case. For

the weak shock case, nozzle efficiency values were more sensitive to the exit boundary
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conditions and associated error magnitudes were larger than those from other sources.

The results illustrated the interaction of different sources of uncertainty and showed that

the magnitudes of numerical errors were influenced by the physical (turbulence) models

used.

The results obtained in this study demonstrated that grid convergence is not achieved

with grid levels that have moderate mesh sizes and showed that highly refined grids are

required to obtain solutions with an acceptable level of accuracy in design problems that

involve simulations of complex flow fields. The numerical noise in nozzle efficiency results

observed at coarser grid levels due to the lack of grid convergence showed another impact

of CFD uncertainties in design, since many gradient based optimization methods may

fail to converge when the computed data has significant numerical noise.
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Appendix A. Approximation of the discretization

error by Richardson extrapolation

A detailed description of the traditional grid convergence analysis methods, which include

the formulations given below, are presented in Roy [24]. We can write equation 2 for the

nozzle efficiency results at three grid levels, grid g4, g3, and g2 as

(neff )4 = (neff )exact + αhp
4 + O(hp+1

4 ),

(neff )3 = (neff )exact + αhp
3 + O(hp+1

3 ), (4)

(neff )2 = (neff )exact + αhp
2 + O(hp+1

2 ),

where hk is a measure of grid spacing at grid level k. Since coarser grids were obtained

from the finest grid level by grid halving, we have a constant grid refinement factor

r =
h1

h2

=
h2

h3

=
h3

h4

= 2.0. (5)

By using equations 4 and 5,

rp̃ + 1 =
ε34 + ε23

ε34

(6)

can be determined. Here p̃ is the observed order of the spatial accuracy calculated using

grid levels g2, g3, and g4. The terms ε23 and ε34 are defined as

ε23 = (neff )2 − (neff )3,

ε34 = (neff )3 − (neff )4.
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From equation 6, the observed order of spatial accuracy can be obtained as

p̃ =
ln(ε23/ε34)

ln(r)
. (7)

By using the neff results obtained at grid levels g3 and g4, we can approximate the

(neff )exact as

(ñeff )exact = (neff )4 −
ε34

rp̃ − 1
. (8)

Here (ñeff )exact will generally be (p̃ + 1) order accurate. Note that formulations above

are derived based on the assumption that the discrete solutions obtained from three

grid levels converge monotonically as the mesh size is refined. In case of non-monotonic

convergence, different methods should be used. Roy [24] presented a grid convergence

analysis method and an error estimation technique for mixed-order numerical schemes

which exhibit non-monotonic convergence.

The values of both (ñeff )exact and p̃ depend on the grid levels used in their calculations.

In Table 6, discretization error for the Sp-Al, Min-Mod, strong shock case is presented

at each grid level, including g5. The first row of this table gives the p̃ value calculated

with the results of grids g2, g3, and g4, and the (ñeff )exact value obtained by using the

results of grids g3 and g4. In the second row, the p̃ value is calculated by using the grid

levels g3, g4, and g5, and the (ñeff )exact value is estimated by using the results from grid

levels g4 and g5. The difference in p̃ is significant between each case.
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Table 1: Different versions of the transonic diffuser geometry and exit pressure ratios (Pe/P0i)
used in the computations.

Geometry x/ht at the Pe/P0i
exit station

original 8.65 0.72 and 0.82
modified-wall 8.65 0.72 and 0.82

extended 14.44 0.72, 0.7468
0.82, and 0.8368
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Table 2: Mesh size nomenclature for the transonic diffuser case. In the simulations, five different
grids were used for the original geometry: Grid 1 (g1), Grid 2 (g2), Grid 3 (g3), Grid 4 (g4),
and Grid 5 (g5). The finest mesh is Grid 5 and the other grids are obtained by reducing the
number of divisions by a factor of 2 in both x- and y-directions at each consecutive level (grid
halving). Grid 5 is used only for the case with the Sp-Al turbulence model, Min-Mod limiter,
and Pe/P0i = 0.72. Four grid levels were used for the extended geometry: Grid 1ext (g1ext),
Grid 2ext, (g2ext), Grid 3ext (g3ext), and Grid 4ext (g4ext). The grids for the extended geometry
and the grids generated for the original geometry are essentially the same between the inlet
station and x/ht = 8.65. For the modified-wall geometry, three grid levels were used: Grid 1mw

(g1mw), Grid 2mw (g2mw), and Grid 3mw (g3mw). All the grids have the same mesh distribution
in the y-direction.

Grid x/ht at the mesh size
exit station

g1 8.65 41× 26× 2
g2 8.65 81× 51× 2
g3 8.65 161× 101× 2
g4 8.65 321× 201× 2
g5 8.65 641× 401× 2

g1ext 14.44 46× 26× 2
g2ext 14.44 91× 51× 2
g3ext 14.44 181× 101× 2
g4ext 14.44 361× 201× 2
g1mw 8.65 41× 26× 2
g2mw 8.65 81× 51× 2
g3mw 8.65 161× 101× 2
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Table 3: Discretization error results of the transonic diffuser case obtained with the original
geometry. The cases presented in this table exhibit monotonic convergence with the refinement
of the mesh size. The observed order of accuracy p̃, which is also used in the (ñeff )exact

calculations, has been calculated by using the neff values from grid levels g2, g3, and g4. The
approximate value of (neff )exact has been calculated by using the neff values obtained at grid
levels g3 and g4.

turbulence limiter Pe/P0i p̃ (ñeff )exact
grid discretization

model level error (%)

Sp-Al Van Albada 0.72 1.528 0.71830

g1 9.820
g2 4.505
g3 1.562
g4 0.542

Sp-Al Min-Mod 0.72 1.322 0.71590

g1 14.298
g2 6.790
g3 2.716
g4 1.086

Sp-Al Van Albada 0.82 1.198 0.80958

g1 6.761
g2 3.507
g3 1.528
g4 0.666

Sp-Al Min-Mod 0.82 1.578 0.81086

g1 8.005
g2 3.539
g3 1.185
g4 0.397

k-ω Van Albada 0.82 1.980 0.82962

g1 3.514
g2 1.459
g3 0.370
g4 0.094

k-ω Min-Mod 0.82 1.656 0.82889

g1 4.432
g2 1.452
g3 0.461
g4 0.146

38



Table 4: Nozzle efficiency values obtained with different grid levels, limiters, turbulence models,
geometries, and boundary conditions.

strong shock weak shock 
extended 
geometry 

extended 
geometry 

turbulence 
model limiter 

grid 
level original 

geometry 

modified-
wall 

geometry Pe/P0i 
0.7468 

Pe/P0i 
0.72 

original 
geometry 

modified-
wall 

geometry Pe/P0i 
0.8368 

Pe/P0i 
0.82 

1 0.81113 0.80556   0.86563 0.86158   
2 0.79362 0.79640   0.84093 0.83297   
3 0.78543 0.78886   0.83271 0.82249   

k-ω Min-mod 

4 0.79007    0.83011    
1 0.78820 0.78333   0.85879 0.84477   
2 0.78199 0.78439   0.84174 0.83420   
3 0.78310 0.78661   0.83270 0.82237   

k-ω Van Albada 

4 0.78788    0.83041    
1 0.81827 0.81562   0.87577 0.86931   
2 0.76452 0.76479   0.83956 0.83290   
3 0.73535 0.73402   0.82048 0.81409   

Sp-Al Min-mod 

4 0.72369    0.81408    
1 0.78885 0.78647 0.78855 0.77702 0.86432 0.85336 0.89069 0.85429 
2 0.75067 0.74850 0.75777 0.75072 0.83797 0.83172 0.87461 0.82993 
3 0.72953 0.72569 0.74231 0.73526 0.82195 0.81586 0.86819 0.81664 

Sp-Al Van Albada 

4 0.72220  0.73268 0.72517 0.81497  0.86464 0.81130 
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Table 5: Main observations on the uncertainty in nozzle efficiencies

Shock type Observations on uncertainties

Strong shock
case

The range of variation in nozzle efficiency results is much larger than that
observed in the weak shock case. The maximum variation is about 10% for
the strong shock case, and 4% for the weak shock case, when the results of
the original geometry are compared.

Magnitude of the discretization errors is larger than that of the weak shock
case. The discretization errors at grid level 2 can be up to 6% for the strong
shock case.

Relative uncertainty due to the selection of the turbulence model can be
larger than that due to discretization errors depending upon the grid level
used. This uncertainty can be as large as 9% at grid level 4.

The contribution of the error in geometry representation to the overall un-
certainty is negligible compared to the other sources of uncertainty.

Weak shock
case

For the results obtained with the original geometry, the maximum value of
the discretization error is 3.5%, whereas the maximum value of turbulence
model uncertainty is about 2%.

The nozzle efficiency values are more sensitive to the exit boundary condi-
tions and associated error magnitudes can be larger than from other sources.
The difference between the results from original geometry and the extended
geometry can be as large as 7% when the exit pressure ratio of 0.8368 is
used.

The contribution of the error in geometry representation to the overall un-
certainty can be up to 1.4%.
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Table 6: Discretization errors calculated using the results of different grid levels with the original
geometry, Sp-Al turbulence model, and the Min-Mod limiter.

grid levels p̃ (ñeff )exact
grid error

used level (%)

for p̃ :

1.322 0.71590

g1 14.298
g2, g3, and g4 g2 6.790
for (ñeff )exact : g3 2.716

g3 and g4 g4 1.086
g5 0.634

for p̃ :

1.849 0.71921

g1 13.774
g3, g4, and g5 g2 6.300
for (ñeff )exact : g3 2.245

g4 and g5 g4 0.623
g5 0.173
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Figure 1: Original geometry, Grid 2 (top), and extended geometry, Grid 2ext (bottom), used in
the transonic diffuser computations. The flow is from left to right, in the positive x-direction.
The y-direction is normal to the bottom wall. All dimensions are scaled by the throat height,
ht. The throat section, which is the minimum cross-sectional area of the channel, is located at
x/ht = 0.0. Both geometries have the inlet stations located at x/ht = −4.04.
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Figure 2: Velocity contours, streamlines, and the top wall pressure distributions (P/P0i) of the
weak and the strong shock cases. The CFD results are shown for the original geometry and
obtained with the Sp-Al turbulence model and the Min-Mod limiter at grid level 2.
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 Figure 3: Nozzle efficiencies obtained with different grid levels, turbulence models, limiters,
geometries, and boundary conditions for the strong shock case (A) and the weak shock case
(B).
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Figure 4: Discretization errors and exact values of nozzle efficiencies approximated with Richard-
son extrapolation for different turbulence models and limiters at each grid level for the weak
shock case. The discretization errors are represented with one-sided error bars.
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Figure 5: Discretization errors and exact values of nozzle efficiencies approximated with Richard-
son extrapolation for different turbulence models and limiters at each grid level for the strong
shock case. Only the cases that have monotonic grid convergence are shown, and the discretiza-
tion errors are represented with one-sided error bars.
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Response: A vertical bar is placed between each of the sets of four grid levels in 
Figure 3 (page XX) and Figure 5 (page XX). 
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Figure 6: Mach number values at the upstream of the shock (x/ht = −1.5), and downstream of
the shock (x/ht = 8.65, the exit plane) for different grids obtained with the original geometry,
Sp-Al and k-ω turbulence models, Min-Mod and Van Albada limiters. The values of y/ht

correspond to the mid points of the local channel heights.
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Figure 7: Nozzle efficiency vs. exit pressure ratio for different grids obtained with the original
geometry, Sp-Al and k-ω turbulence models, and the Min-Mod limiter. Note that grid 4 results
are presented only for Pe/P0i = 0.72 and 0.82, and grid 5 result is given only for Pe/P0i = 0.72
and the Sp-Al model.
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  Figure 8: Error distribution in y/ht for the upper wall of the modified-wall diffuser geometry
at the data points measured in the experiments. The maximum error is approximately 7%
and observed upstream of the throat, at x/ht = −1.95. Starting from x/ht = 1.2, the error is
approximately constant with an average value of 0.9%.
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Figure 9: Upper wall contours of the original and the modified-wall diffuser geometry in the
vicinity of the throat location.
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Figure 10: Top wall pressure distributions obtained with the original and the modified-wall
geometry for the strong shock case (the results of the Sp-Al model, Min-Mod limiter, and Grids
g2 and g2mw are shown).
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Figure 11: Top wall pressure distributions obtained with the original and the modified-wall
geometry for the weak shock case (the results of the Sp-Al model, Min-Mod limiter, and Grids
g2 and g2mw are shown).
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Figure 12: Streamline patterns of the separated flow region obtained with different versions of
the diffuser geometry and exit pressure ratios for the strong shock case.
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Figure 13: Comparison of the separation bubbles obtained with different versions of the diffuser
geometry and exit pressure ratios for the strong shock case.
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Figure 14: Top wall pressure distributions obtained with different versions of the diffuser ge-
ometry and exit pressure ratios for the strong shock case (the results of the Sp-Al model, Van
Albada limiter, and Grids g3 and g3ext are shown).
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