
SimFusion: A Unified Similarity Measurement Algorithm
for Multi-Type Interrelated Web Objects

Wensi Xi
Virginia Tech

Blacksburg, VA, 24061

xwensi@vt.edu

Benyu Zhang
Microsoft Research Asia
Beijing, China, 100080

byzhang@microsoft.com

Edward A. Fox
Virginia Tech

Blacksburg, VA, 24061

fox@vt.edu

ABSTRACT
In this paper, we use a Unified Relationship Matrix (URM) to
represent a set of heterogeneous web objects (e.g., web pages,
queries) and their interrelationships (e.g., hyperlink, user click-
through relationships). We claim that iterative computations over
the URM can help overcome the data sparseness problem (a
common situation in the Web) and detect latent relationships
among heterogeneous web objects, thus, can improve the quality
of various information applications that require the combination
of information from heterogeneous sources. To support our claim,
we further propose a unified similarity-calculating algorithm, the
SimFusion algorithm. By iteratively computing over the URM,
the SimFusion algorithm can effectively integrate relationships
from heterogeneous sources when measuring the similarity of two
web objects. Experiments based on a real search engine query log
and a large real web page collection demonstrate that the
SimFusion algorithm can significantly improve similarity
measurement of web objects over both traditional content based
similarity-calculating algorithms and the cutting edge SimRank
algorithm.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information search
and retrieval; G.2.2 [Discrete Mathematics]: Graph Theory.

General Terms
Algorithms, Experimentation

Keywords
SimFusion, Similarity-calculating algorithms, Information
retrieval, Data fusion, Data mining.

1. PROBLEM CONTEXT
Web pages, users, queries and other entities in the web domain
can be considered as objects containing information. The
information may include the content of objects as well as
relationships, between objects of the same or different types. For
example, we know that users browse web pages and issue queries.
Queries lead to the click-through of web pages. These three
operations (browsing, issuing, and clicking-through) are
relationships that connect different types of objects. We also
know that users are connected by their social relationships, web
pages are connected by hyperlinks, and queries are connected by
their content similarities. These latter connections are all
examples of relationships within the same type of objects.

Modern information applications such as searching, document
clustering, and collaborative filtering, use three traditional

approaches to represent information derived from data objects and
the interrelationships involved:

1. Spaces: Vector and probability spaces implicitly use a pre-
defined set of features from objects, e.g., to locate them in an
n-dimensional space [28][34].

2. Databases: Relational databases operate on dynamically
specified relationships between objects (each represented
using a pre-defined set of attributes) [5][12].

3. Networks: Belief, inference, and spreading activation
networks (e.g., neural net) use nodes and arcs to connect
objects and their attribute values, and to represent pre-defined
sets of relationships [1][25][31].

However, most information applications simply take one of these
three approaches to analyze only one kind of relationship within
the same type of objects (e.g., document clustering) or between
two types of objects (e.g., searching, collaborative filtering).
These applications, as how implemented, will run into problems
when users require more accurate models of reality, wherein the
number of types of objects that must be handled in an integrated
manner expand rapidly (e.g., considering both queries and users
when clustering web pages), and the relationships between
different types of objects (e.g., the reference and browsing
relationships among web pages and between users and web
pages) grow tremendously. More specifically, the problem we are
facing can be described as:

“How can the broad variety of heterogeneous data and
relationships in the Web be effectively integrated to improve the
performance of diverse information applications?”

Our hypothesis is that the quality and utility (e.g., the similarity
value) of information contained in web objects can be improved
by integrating interrelationships of related objects from different
types of sources. Since relationships among data objects often can
be represented as matrices with either binary or real-valued
weights (e.g., a web hyperlink adjacency matrix), such an
integration process can be modeled as calculations over
relationship matrices. Figure 1 illustrates a few examples of such
calculations. Note that as a result of integration calculations, the
matrices in the bottom row, which can be used to explain some
possible information applications, are presumed to be of higher
quality (e.g., with less empty spaces, due to the addition of new
relationships obtained from other matrices). A way to think of
why different matrices of relationships can be used to improve the
quality of information is that a single matrix representation of
relationships is often very sparse, but when reinforced by other
types of relationship matrices, the information it contains may be
more dense and helpful. The underlying assumption is that the
relationship of two data objects can be affected by similar

Copyright is held by the author/owner(s).
WWW 2005, May 10--14, 2005, Chiba, Japan.

relationships of data objects they are related to from among
multiple data spaces, through varied interrelationships.

Figure 1: Matrix representations of relationship integration
In this paper, we tackle the bigger problem of integrating multiple
relationships to improve information applications by analyzing a
specific question: “How can different relationships among data
objects be used to improve the measurement of a specific
relationship, namely the similarity relationship of data objects?”
In this work, we solve this problem by introducing a novel
algorithm, SimFusion, which iteratively integrates relationships
from multiples sources to improve the quality of similarity
calculation over web objects. The effectiveness of the SimFusion
algorithm will be tested on a real web data set.

The rest of this paper is organized as follows. In Section 2 we
explain the background of our research by reviewing some of the
large number of previous works that relate to information
integration. In Section 3 we give the formal definition of the
Unified Relationship Matrix (URM) and explain other
terminology. The underlying assumption and formal description
of the SimFusion algorithm is presented in Section 4. Then, we
give experimental results in Section 5 and conclude in Section 6.

2. LITERATURE REVIEW
In this work, we show that different kinds of relationships can be
integrated to improve the similarity measurement of web objects.
Thus it is helpful to trace the evolution of how relationships are
used to measure the similarity of data objects in various
information applications such as searching and clustering.

Most early research studies considered a single relationship to
measure the similarity of data objects. In the vector space model
[27], terms were used to characterize queries and documents,
creating a document-term relationship matrix where it is
straightforward to compute the similarities between terms and
documents by taking the inner product of the two corresponding
row or column vectors. Dice, Jaccard, and Cosine [23] are
classical methods that use the document-term relationship to
measure the similarity of documents for retrieval and clustering
purposes. Deerwester and Dumais [9][10] demonstrated that a
same concept might be presented by different sets of keywords in
different documents. In their Latent Semantic Indexing work,
instead of directly using the document-term matrix to compute the
similarity of text objects, they first use the Singular Vector
Decomposition to map the document-term matrix into a lower

dimension matrix where each dimension is associated with a set
of keywords and with a “hidden” concept. Then the similarity of
text objects (documents or queries) is measured by their
relationships to these “concepts” rather than the keywords they
contain.

Documents QueriesUsers

Other single type relationships such as reference relationships
among scientific articles also are used to measure the similarity of
data objects. Small [29] measured the similarity of two journals
by counting the number of papers they both cite; this is called co-
citation. Kessler [15] measured the similarity of two papers by
counting the number of papers that cite them both; this is called
bibliographic coupling. Co-citation and bibliographic coupling
have been successfully used to cluster scientific journals [21].
With the advent of the World Wide Web, relationships within
web objects (e.g., hyperlinks) also were used to calculate the
similarity of web objects. Dean [8] and Kleinberg [16] used
hyperlinks in the Web to discover similar web pages. Larson [17]
and Pitkow [20] applied co-citation on the hyperlink structure of
the web to measure the similarity of web pages. In the
Collaborative Filtering [18] and Recommender Systems [24] area,
researchers tried to analyze the similarity of people by examining
the people-document and people-artifact relationships,
respectively. A few examples of applications that make use of
relationships to calculate the similarity of data objects are shown
in Table 1.

Q U U D
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 x

 Table 1. Some relationships in information applications

Information
Application

Modeling Relationship

Information retrieval Term-document relationship
Document clustering Term-document relationship or

Document-document relationship
Collaborative filtering People-document relationship
Recommending People-artifact relationship

The works introduced above only used a single type relationship
to measure the similarity of data objects. However, these
approaches run into serious problems when various information
applications require a more real and accurate similarity measuring
method where multiple types of data objects and their
relationships must be handled in an integrated manner. Thus in
the extended VSM [11], feature vectors of data objects were
lengthened by adding attributes from objects of other related
types via inter-type relationships. By doing so, information from
different sources are directly mapped into an enhanced Vector
Space and similarity computations were obtained by calculating
these enhanced feature vectors. The extended feature vectors were
used for document search and clustering purposes [6]. Following
the same idea, Rocchio [26] and Ide [14] expanded query vectors
using the terms appearing in the top documents retrieved by the
query and improved the search effectiveness. The idea of using
terms found in related documents to extend the query vector is
also referred to as “Query Expansion”. Similarly, Brauen [3]
modified a document vector by adding or deleting the terms in the
queries that relate to it. Changing document vectors by related
query terms is also referred to as the “Dynamic Document Space”
technique [28].

Recently, researchers have tried to calculate the similarity of same
type data objects by measuring their relationships across different
types of data objects. For example, Raghavan and Sever [22] tried
to measure the similarity of two queries by calculating the
similarity relationship of their corresponding search lists.

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 x 0
0 0 0 x 0 0 0

0 x 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

 Collaborative filtering Log based
clustering

D D D
0 0 0 0 0 0 0
0 0 0 x 0 0 0
0 0 0 0 0 0 0
x 0 0 0 0 0 0

U

 Q’ U’ D’ U’
0 0 0 0 0 0 0
0 0 0 x 0 0 0
0 0 0 0 0 x 0
x 0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 x 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 x

x 0 0 0 0 0 0
0 0 0 0 0 x 0
0 0 0 0 0 x 0
0 0 0 x 0 0 0

0 x 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 x 0

D’ U’ D’ D’

User Modeling Cluster based
retrieval

3. REPRESENTATION Beeferman and Berger [2] clustered queries using the similarity of
their clicked web pages and cluster web pages using the similarity
of the queries that lead to them. Wen [32] and Su [30] calculated
the query similarity based on both the query contents similarity
and the similarity of documents retrieved by the queries; they
calculated the similarity of documents in a similar way.

3.1 Terminology
It is important to first give the formal definitions of some key
terms that will be used extensively in the rest of this paper.

Data Type: A data type is defined as a set of characteristic
features (e.g., user is a set of features including name, gender,
age, education, etc.). A data object is an instance of a data type.

Although research works introduced above used inter-type
relationships to help improve the similarity measurement of data
objects, they did not consider the mutual reinforcement effect on
the relationships across multi-type data objects. Wang et al. [33]
proposed an iterative reinforcement clustering algorithm for
multi-type data objects named ReCom. In this algorithm, the
clustering results from one type of data object are used to
reinforce the clustering process of another data type. Their
method was shown to be effective and can be considered as a
variation of the SimFusion algorithm that we introduce later in
this work.

Data Space: A data space is a set of data objects of the same
data type (e.g., the web pages in the internet.).

Homogeneous/Heterogeneous: In this work we assume that each
data space is homogeneous within itself, but heterogeneous with
respect to other data spaces of different data types.

According to their types, relationships among data objects can be
classified into two types: intra-type relationship and inter-type
relationship.

Davidson [7] proposed another related idea. He analyzed multiple
term document relationships by expanding the traditional
document-term matrix into a matrix with term-term, doc-doc,
term-doc, and doc-term sub-matrices in a way that is similar to
the unified relationship matrix (URM) that we define later. He
proposed that the similarities of the search objects (web pages or
terms) in the expanded matrix could be emphasized. With enough
emphasis, the principal eigenvector of the extended matrix will
have the search object on top with the remaining objects ordered
according to their relevance to the search object. Although his
idea is sound, the iterative calculation over the URM for related
web pages would make it prohibitive as an online algorithm.

Intra-type relationship: this kind of relationship connects data
objects within a homogeneous data space (e.g., the hyperlinks in
web pages space can be considered as intra-type relationships).

Inter-type relationship: this kind of relationship connects data
objects across heterogeneous data spaces (e.g., users issue queries
and browse web pages. The issuing and browsing activities can be
regarded as inter-type relationships connecting the user and web
page data spaces, or the user and query data spaces, respectively).

In order to illustrate all the terminologies introduced above, we
give an example with two data types: people and documents.
Authors are data objects in the “people” space. Co-authorship is
an intra-type relationship connecting two authors. Authorship of a
document is an inter-type relationship between an “author” object
and a “document” object. Readers are also objects in the “people”
space, and readers reading papers can be regarded as another
inter-type relationship that connects the “people” space and the
“document” space. Papers in the document space may also relate
to each other via some intra-type relationship (such as reference).

In this work, we introduce the SimFusion algorithm, which
iteratively updates the similarity of data objects via multiple
interrelationships from heterogeneous data spaces. The most
similar work in literature so far is the SimRank algorithm
proposed by Jeh and Widom [13]. In SimRank, the similarity of
data objects was measured according to their structural context.
The basic rationale of SimRank was that the similarity of two
data objects could be affected by the similarities of other data
objects that the two data objects related to. Jeh and Widom
considered all the pair-wise similarities of data objects as nodes in
a general directed graph, and mapped all the contextual
relationship into directed edges in the graph. They then iteratively
updated the similarity of data object pairs in a manner similar to
the PageRank [4] algorithm. Xue et al. applied SimRank on the
web domain to improve the similarity calculation of web pages
and queries [36]. They also tried to calculate the similarities of
queries and web pages and append query contents to most similar
web pages so as to effectively improve search performance [37].

3.2 Unified Relationship Matrix and Examples
Below is the formal definition of the Unified Relationship Matrix
that represents both inter- and intra-type relationships among data
objects from heterogeneous sources in a unified manner.

Suppose we have t different data spaces S1, S2,…St. Data objects
within the same data space are connected via intra-type
relationships Ri⊆Si×Si. Data objects from two different data
spaces are connected via inter-type relationships Rij⊆Si×Sj(i≠j).
The intra-type relationships Ri can be represented as an m×m
adjacency matrix Li (m is the total number of objects in data space
Si), where lxy represents the inter-type relationship from the xth
object to the yth object in the data space Si. The inter-type
relationship Rij can be represented as an m×n adjacency matrix Lij
(m is the total number of objects in Si, and n is the total number of
objects in Sj), where the value of lxy represents the inter-type
relationship from the xth object in Si to the yth object in Sj.

The SimFusion algorithm we propose in this paper arises from
similar rationale as the SimRank algorithm. However, we claim
that the basic assumption of the SimRank algorithm can be
regarded as a special case of the assumption in the SimFusion
algorithm. We further argue that the SimFusion algorithm has a
more solid theoretical foundation, lower time complexity, and is a
more flexible to be adapted into real world scenarios than
SimRank. A detailed comparison of the two algorithms can be
found in Section 4.

To simplify the problem, let’s first consider two data spaces
1 2{ , , }mX x x x= L , and and their

relationships: R
1 2{ , , }nY y y y= L

x, Ry, Rxy, and Ryx. The adjacency matrices Lx and
Ly stand for the intra-type relationship within the data spaces X
and Y, respectively. Lxy and Lyx are the inter-type relationships
from objects in X to objects in Y and inter-type relationships from

objects in Y to objects in X respectively. If data spaces X and Y are
merged into a unified data space U, then, previous inter- and
intra-type relationships are now all part of intra-type relationships
Ru in U. Suppose Lu is the adjacency matrix of Ru, then Lu is a
(m+n)×(m+n) matrix, with lij representing the relationship from
the ith object from X (if i≤m), or the (i-m)th object from Y (if
i>m), to the jth object from X (if i≤m), or the (j-m)th object from
Y (if i>m). The Unified Relationship Matrix Lu is actually a
matrix that combines Lx, Ly, Lxy and Lyx as shown below:

yyx

xyx
u LL

LL
L = (1)

Eq. (1) can easily be extended to the definition of the Unified
Relationship Matrix Lurm for N data spaces, as shown in Eq. (2).

NNN

N

N

urm

LLL

LLL
LLL

L

L

MOMM

L

L

21

2221

1121

=
 (2)

For the rest of this proposal I will use URM to denote the Unified
Relationship Matrix.

The URM can be used to explain many real world information
applications. For example, if we only consider one data space: the
web pages, and one type of intra-type relationship: the hyperlinks,
the URM is reduced to the link adjacency matrix of the web
graph. If we analyze how user-browsing behaviors can affect the
“popularity” of a web page as in [4], we would be actually
analyzing two data spaces: user and web page, as well as one
inter- (browsing) and two intra- (hyperlink, user endorsement)
type relationships.

If we consider two data spaces: documents and terms, the inter-
type relationship is defined when a document contains a term or a
term is contained by a document. A URM can be built as below.

0
0

dt
T

dt
urm L

L
L = (3)

Ldt is the traditional document-term matrix that represents the
Vector Space Model [27]. The 0 sub-matrices in the diagonal
direction indicate that we have no prior knowledge of intra-type
relationships within documents and term space. All the
information applications that manipulate the document-term
matrix can still be used on Lurm. Furthermore, the intra-type
relationship of the document and term space can be obtained by

simply multiplying Lurm with itself: L‘
urm=Lurm×Lurm= t

d
L

L
0

0

,
where Ld and Lt correspond to the document pair wise similarity
matrix and term pair wise similarity matrix obtained by most
traditional Vector Space similarity calculations. By adding L‘

urm
and Lurm, we can have a complete URM for the document and

term spaces: t
t
dt

dtd
LL
LL

. This specific matrix that combines
document pair-wise and term pair-wise relationships with
traditional document-term relationships was first suggested by
Davidson [7] as the “generic augmented matrix”.

The URM introduced in this section has provided a more
generalized way of viewing heterogeneous data objects and their
relationships. In the URM, different types of data objects are

treated as elements of a “unified” data space. Previous inter- and
intra-type relationships are now considered as a generic intra-type
relationship that connects data objects in the “unified” space.
Current information applications that measure data object
information/relationships using a single type relationship matrix
(e.g., document similarity calculation) can be extended and
applied on the URM. If designed properly, these extended
applications would out-perform in effectiveness their traditional
counterparts, because they can use multiple types of relationships
to improve the measure of the target information/relationship.

4. ALGORITHM
4.1 Assumption
In this section, we analyze how different kinds of relationships
among heterogeneous data objects can be used to reinforce a
specific relationship, the similarity relationship of data objects.
The underlying assumption is that: “the similarity between two
data objects can be reinforced by the similarity of related data
objects from the same and different spaces”. It is named
“similarity reinforcement assumption” and is illustrated below:

Figure 2: Illustration of similarity reinforcement assumption

Data
Space

Intra-type
relationship

Inter-type
relationship

Data Object

In Figure 2, the similarity between two data objects (big black
nodes) was reinforced by relationships from the same type of
related data objects (small black nodes) as well as the
relationships (both inbound and outbound) from different types of
data objects (white and gray nodes). Suppose there are n different
data spaces X1, X2,… Xn. Data objects in the same space are
related via intra-type relationships Ri⊆Xi×Xi. Data objects from
different spaces are related via inter-type relationships Rij⊆Xi×Xj
(i≠j). The relationships being considered are similar in nature and
Sij(x,y) is the similarity value between object x from space i and
object y from space j. Rij(x,y) represents the inter- (i=j) or intra-
type (i≠j) relationship from object x in space i to object y in space
j, while a and b are any data objects in any data spaces under the
condition that x is related to a and y is related to b. Then the
similarity reinforcement assumption can be mathematically
presented as:

∑
∀∈∀∀∈∀

+=
lbka

original
kljlik

original
ij

new
ij baSbyRaxRyxSyxS

,
),(),(),(),(),(βα (4)

where, α and β are positive parameters used to adjust the relative
importance of the original similarity of objects x and y with the
importance of the similarity reinforced by inter- and intra-type
relationships during the reinforcement process. If we use a set of
positive parameters λij to represent the relative importance of
similarity reinforced from data space i to data space j, and
consider the amount of original similarity value involved in this
process as the similarity value reinforced via a special intra-type

relationship that leads to the data object itself (indicated in Figure
2), the similarity reinforcement assumption can be represented as:

∑
∀∈∀∀∈∀

+=

lbka

original
kljljlikik

original
ijjjjjiiii

new
ij

baSbyRaxR

yxSyyRxxRyxS

,
),(),(),(

),(),(),(),(

λλ

λλ (5)

Please note that in Eq.(5), a can not be equal to x and b can not
equal to y at the same time in),(),(),(baSbyRaxR kljljlikik λλ . Further,

 can be considered as a special case

of
),(),(),(yxSyyRxxR original

ijjjjjiiii λλ
(),(),(aSbyRaxR kljljlikik),bλλ , where a=x and b=y. Thus, Eq.

(5) can be further reduced to Eq. (6):

 (6) ∑
∀∀

=
ba

original
kljljlikik

new
ij baSbyRaxRyxS

,
),(),(),(),(λλ

Considering one data object’s related objects in other data spaces
as its mappings in those data spaces, the reason that similarity
reinforcement process can better predict the similarity of two data
objects is that the similarity of two data objects is measured in
multiple perspectives (data spaces) instead of single perspective.
Explained in a more easily understood fashion: two men are more
likely to be “good friends” if their wives are good friends too and
their children go to the same school. It should be noted that the
underlying assumption is that relationships are accurate and
additive. Thus, care should be taken to avoid situations where
there are contradictory or ambiguous types of evidence.

4.2 The SimFusion Algorithm
Based on the “similarity reinforcement assumption”, we develop a
unified similarity calculation algorithm over a set of
heterogeneous data spaces, named the “SimFusion” algorithm.
The name indicates that the similarity of two data objects is
calculated using evidence from multiple sources (data spaces). It
is formally described as follows:
Suppose there are N different spaces being considered, and a
URM is developed in a similar way to Eq. (2) to represent the
inter- and intra-type relationships as shown in Eq. (7):

NNNNNNN

NN

NN

urm

LLL

LLL
LLL

L

λλλ

λλλ
λλλ

L

MOMM

L

L

2211

222222121

111212111

=
 (7)

Here Li is the intra-type relationship matrix of data space i and Lij
is the inter-type relationship matrix from data space i to data
space j. The sum of each row from any of the sub-matrices is
normalized to 1. In cases that data object x from space i has no
relationship to any data objects in data space j (all the elements in
the ith row of the matrix Lij are zero), then each element in the ith
row of relationship matrix Lij is set to 1/n, where n is the total
number of elements in space j. This is equivalent to using a
random relationship to represent no-relationship. We also define a
set of parameters λs to adjust the relative importance of different
inter- and intra-type relationships, so that for any i,

. Thus, Eq. (7) is a row-stochastic

matrix and can be rendered as a single step probability
transformation matrix in a Markov Chain [19].

0,1 >∀=∑
∀

ij
j

ij jiand λλ

We also define a Unified Similarity Matrix (USM), Susm, to
represent the similarity values of any data object pairs from same

or different data spaces at the beginning of the algorithm, as
shown in Eq. (8):

1

1
1

21

221

112

L

MOMM

L

L

TT

T

T

usm

ss

ss
ss

S =
 (8)

Each element s(a,b) in Susm represent the similarity value between
data object a and b in the unified space. T is the total number of
objects in the unified space. Since each data object is always
maximally similar to itself, we have sab=1 if a=b, and 0≤sab≤1, if
a≠b. Susm is a symmetric matrix since sab= sba. We also define that
the orders of data objects presented in Susm and Lurm are similar,
that is, if the element lab in Lurm represents the relationship from
object a to object b, then element sab in Susm represents the
similarity value between object a and b. Having URM and USM
defined, the similarity reinforcement assumption can be
represented as:

T
urm

original
usmurm

new
usm LSLS = (9)

Eq. (9) is the basic similarity reinforcement calculation in the
SimFusion algorithm. Eq. (9) be continued in an iterative manner
until the calculation converges or a satisfaction result is obtained,
as shown in Eq. (10).

Tn
urmusm

n
urm

T
urm

n
usmurm

n
usm LSLLSLS)(01 == − (10)

The proof of convergence for Eq. (10) can be found in the
Appendix. It is important to note that the similarity of a data
object to itself (i.e., the values in the diagonal positions of Sn

usm)
derived during the iterative calculation in Eq. (10) may not be
equal to 1 and may even be smaller than the similarity between
two data objects (i.e., values in non-diagonal positions in Sn

usm).
However, we argue that the Susm derived during the iterative
calculation can be rendered more precisely as the confidence of
the similarity of individual or pairs of data objects rather than as
their exact similarity values. For example, if a data object (or two
data objects) is related to a set of less similar data objects, then
the similarity of the data object (or the two data objects) is less
reliable (confident) when used as evidence to reinforce the
similarity of data objects related to it in the next iteration than if
the data object (or two data objects) is related to a set of very
similar data objects. Thus, in Sn

usm the similarity of a data object
to itself may not be equal to 1 and may be even smaller than the
similarity of some object pairs, as is illustrated below:

 (a) (b) (c) (d)
Figure 3: Illustration of similarity confidence for single object

and object pairs
In Figure 3, the white nodes at the bottom represent the object
being considered. The black nodes on the top represent the objects
that the white objects relate to. Arrows between two black nodes
or two white nodes indicate their degree of similarity through
their thickness. According to our discussion, (a) is a high
similarity-confidence object, (b) is a weak similarity-confidence
object, (c) is a high similarity-confidence object pair, and (d) is a
low similarity-confidence object pair.

The SimRank algorithm can be modified slightly so that after
each reinforcement iteration, data objects in some spaces are
grouped into clusters according to some clustering algorithm, and
the corresponding relationship matrices in the URM and
similarity matrices in USM also are reduced to cluster-cluster and
cluster-object relationship/similarity matrices. The modified
URM and USM then can be used in the next iteration of the
similarity reinforcement calculation. The similarity values
calculated are used again to cluster data objects in different data
spaces. This modified iterative reinforcement process can be
considered as an extension of the ReCom algorithm [33] that
iteratively clusters data objects in different data spaces using
interrelationships.

The theoretical foundation, time/space complexity, and extensions
of the SimFusion algorithm will be discussed in the following.

Two Random Walker Model
Since Lurm can be considered as a single step transition matrix of a
Markov Chain, the iterative similarity reinforcement process of
Eq. (10) can be explained in a “two random walker model”.
Suppose two random walkers start at two data objects in the
unified space and they walk from one object to another step by
step. In each step, each of them would choose the next object to
set foot on according to the probability distribution of how the
current data is related to other objects as defined in Lurm. If S0

usm
also can be rendered as an object to object relationship
distribution matrix, then the reinforced similarity between the two
original objects on which the two walkers started their trip, can be
translated into the likelihood that the two walkers meet each
other, after both of them walk n steps according to Lurm, and then,
either one of them takes a final step according to Susm.

4.3 A Comparison with the SimRank Algorithm
Jeh and Widom proposed the SimRank algorithm [13] in 2002.
In SimRank, the similarity of two objects also was measured
according to their contextual structure (relationships to other
objects). The theoretical assumption behind the SimRank
algorithm is similar to that of the SimFusion algorithm: “the
similarity of two data objects can be affected by the similarities of
other data objects that the two data objects are related to”. The
basic similarity reinforcement calculation used in the SimRank is:

Time and Space Complexity
The space complexity of the SimFusion algorithm is O(n2) (n is
the total number of objects in the unified space), because we only
need an nxn matrix to store the URM and another nxn matrix to
store the USM. In each step of the reinforcement process, the
similarity between two data objects x and y is updated exactly
|R(x)|+|R(y)| times, where |R(x)|(|R(y)|) is the number of data
objects that x(y) relates to (note that all 0 elements in the
corresponding columns and rows in the URM and USM can be
pre-excluded from the reinforcement calculation). Suppose d is
the average number of objects that an object relates to, then, the
time complexity of the SimFusion algorithm is O(Kn2d), where K
is the number of iterations. In the worst case that all the data
objects are fully connected (therefore, d=n), the time complexity
would increase to O(Kn3). However, in most real world scenarios,
data objects are sparsely connected to each other and d can be
considered as a constant with respect to n.

∑ ∑
= =

=
)|(|

1

)|(|

1

))(),((
|)(||)(|

),(
aR

i

bR

j
ji bRaRs

bRaR
Cbas

 (12)

where s(a,b) is the similarity value between objects a and b,
|R(a)| and |R(b)| are the total number of objects related to objects
a and b, respectively. Ri(a) represents the ith object related to a. C
is a dampening factor. If we take C=1 and average the value of
relationships from one object to 1/n (n is the total number of
relationships from the object) in the URM, then Eq. (6) can be
considered as a special case of Eq. (12). Different from the
SimFusion algorithm, which uses matrices to represent object
pair-wise similarities and pair-wise relationships, the SimRank
algorithm considered any pair of data objects as the nodes in a
general directed graph, and created a directed edge from node
(a,b) to node (c,d) if there are relationships from a to c and from b
to d. Then, the similarity values of any nodes (pairs of data
objects) are updated according to Eq. (12) in a similar fashion as
in the PageRank algorithm. The procedure discussed above is
equivalent to flattening the nxn USM in the SimFusion algorithm
into a vector of n2 length, and then updating this n2 length vector
by iteratively calculating it over a sparse n2xn2 matrix. Jeh and
Widom interpret their algorithm as a modified random walker
model: “Random Surfer-Pairs Model”.

Extensions of SimFusion Algorithm
The similarity of data objects can not only be reinforced by the
relationships that they lead to, but also can be reinforced by the
relationships that lead to them (e.g., [15]). If we create a URM to
represent all the inbound relationships in a similar way to the
URM for outbound relationships, then Eq. (9) can be expanded to
incorporate the similarity reinforcement from both inbound
relationships and outbound relationships as shown in Eq. (11).

Tin
urm

n
usm

in
urm

Tout
urm

n
usm

out
urm

n
usm LSLLSLS)()1()(11 −− −+= αα (11)

There are several major differences between the SimRank and
SimFusion algorithms:

In Eq. (11), where out
urmL is the URM for all the outbound

relationships, then can be considered as the
forward similarity reinforcement component, where the
similarity between data objects is reinforced by outbound
relationships. is the URM for all the inbound relationships

and can be considered as the reverse
similarity reinforcement component, where the similarity
between data objects is reinforced by the inbound relationships. α
is a nonnegative parameter used to adjust the relative importance
between the forward and the reverse similarity reinforcement
components. The proof of convergence for Eq. (11) also can be
found in the Appendix.

Tout
urm

n
usm LL)(1−α

inL(1

out
urm S

T
urm)

in
urmL

n
usmurmS

−inL)1(−α

First, the similarity of object pair (a,b) is updated |R(a)|x|R(b)|
times during each iteration, which is much more than the number
of updates in the SimFusion algorithm (|R(a)|+|R(b)|). The time
complexity of the SimRank algorithm is O(Kn2d2) where K is the
number of iterations and d is the average number of relationships
a data object has in the unified data space. In the situations where
data objects are heavily connected to each other (e.g., smooth web
linkage relationships [4]), the time complexity of the SimRank
algorithm would grow to O(Kn4).

Second, the SimRank algorithm assumes that all the relationships
are binary, and Eq. (12) can be considered as taking an average of
the similarity values of the object pairs that are related to object
pair (a,b). However, this assumption is too naïve, since in the real

world the relationships among data objects are often unequal
(e.g., a user spending more time reading web page A than web
page B may indicate the user has a preference for A rather than
for B). This kind of prior knowledge can be more easily and
efficiently incorporated into the URM in the SimFusion
algorithm.

Third, the parameter C in the SimRank algorithm is the base of
the “Expected-f Meeting distance” function. It is difficult to
understand the real world affect of C, and it is difficult to select C
by intuition either. However, the parameters λij in the SimFusion
algorithm directly reflect the relative importance of different
kinds of relationships involved in the SimFusion algorithm and
they can be tuned by intuition. The SimFusion algorithm is more
flexible at combining relationships from different sources by
providing a set of parameters λij, than the SimRank algorithm,
which only provides a universal constant parameter C.

Fourth, the SimFusion algorithm can easily be used to model
most existing similarity-calculating algorithms as described in
Section 4.4. However the SimRank algorithm only can be used to
model a few non-iterative similarity-calculating algorithms (e.g.,
[29]). A comparison of the SimFusion and SimRank algorithm is
summarized in the table below:

Table 2. A comparison of the two algorithms
Aspects SimFusion Algorithm SimRank Algorithm

Assumption
Similarity
Reinforcement
Assumption

A special case of
Similarity Reinforcement
Assumption

Theoretical
Foundation

Two random walker
model

Random Surfer-Pairs
Model

Time
Complexity

O(Kn2d); worst case
O(Kn3)

O(Kn2d2); worst case
O(Kn4)

Relationship
Representation

Represented in values
closer to the real world
situations

Binary representation,
naïvely takes the average
of the relationships

Parameter
Selection

Easy to comprehend
and select by intuition

Difficult to select by
intuition

Real World
Examples

Model most existing
iterative /non-iterative
similarity calculating
algorithms

Model only a few non-
iterative similarity-
calculating algorithms

4.4 Real World Examples
Simplified versions of SimFusion that only consider one or two
types of data objects have been validated through varied
experiments. For example, we considered only one data space, the
space of journal articles, and one type of relationship: the
reference relationship between journal articles, and set the initial
Susm as the identity matrix. Eq. (11), if we set α=1, actually
reduces to the co-citation [29] situation, where the similarity of
two articles is determined by the number of articles they both cite.
If we set α=0, the reduction is to the bibliographic coupling [15]
situation, where the similarity of two articles is determined by the
number of articles that cite them both.

Let us consider the URM in Eq. (3), which represents a document
space, term space, and the “containing” relationship of documents
to terms. Suppose we have no prior knowledge about similarity of
any data objects and set Susm to be the identity matrix. Applying
Eq. (9) would result in calculating the pair-wise document
similarity and pair-wise term similarity according to the
traditional Vector Space method. It remains an interesting
problem, whether enriching the URM and USM with some prior

knowledge (e.g., thesaurus, or document references relationships)
and iteratively reinforcing the similarity, would result in better
knowledge of the term similarities, document similarities, and
document-term similarities?

Recently, researchers have tried to use query-web page
relationships to better predict the web object similarities so as to
help improve the effectiveness of web-clustering algorithms such
as [22][32]. Their methods for calculating the similarity of web
objects also can be well modeled by our SimFusion algorithm.
Suppose there are two data spaces: the Web pages space and the
query space. The two spaces are modeled in a URM as shown in
Eq. (7).

webpagequerypage

pagequeryquery
urm LL

LL
L

2221

1211

λλ
λλ

−

−= (13)

where Lquery refers to the query content similarity relationship
matrix and Lwebpage refers to the Web page content similarity
relationship matrix. If Lquery-page refers to the query with its
corresponding search list relationship, and Lusm is the identity
matrix, and λ11=λ22=0, λ12=λ21=1, then applying Eq. (16) on this
URM will result in Raghavan and Sever’s [22] work, in which
they measure the similarity of queries based on corresponding
result document lists. If Lquery-page refers to the web query web
page click-through relationship, and Susm is the identity matrix,
and all the λs remain the same, applying Eq. (16) on this URM
will result in Beeferman and Berger’s[2] clustering method, in
which they measure the similarity of queries using the similarity
of their clicked web pages and calculate the similarity of web
pages using the similarity of the queries that lead to the selection
of the web pages. If we define λ11>0, λ22>0, λ12>0 and λ21>0,
applying this URM in Eq. (16), would result in Wen’s [32] work,
where query similarity is based on both the query contents
similarity and the similarity relationship of the documents that are
selected by users who submitted the queries.

5. EXPERIMENTS
In this section, we explain how SimFusion can be validated on
one real world data set.

5.1 Design
Our experiment is designed around a real user search click-
through log collected from the MSN search engine. The log
contains 62.5 millions of query request records with the URLs of
the corresponding clicked web pages during a 3 hour period in
2003. The log is formatted in such a way that each query is
followed by the URLs of the corresponding clicked web pages
and the number of clicks during a period of time, as shown below:

Query URL clicks URL clicks

Search engine google.com 3452 yahoo.com 2179

We selected the top 10K popular queries in this query log and
crawled all the corresponding clicked web pages (20K in total).
Then, we parsed the hyperlinks in the content of the web pages
and built a hyperlink graph of the web page collection.

• The similarity of two queries can be reinforced by the
similarity of web pages they relate to.

• The similarity of two web pages can be reinforced by the
similarity of the queries as well as the similarity of other web
pages they relate to.

The table shows that SimFusion algorithm achieves a 13.6%
improvement over the SimRank algorithm and a 67%
improvement over the tf*idf algorithm in terms of precision at 10.
A query-by-query breakdown for the improvement of SimFusion
over SimRank is presented in Figure 4. We will also make a case
study by analyzing the top 10 similar queries returned for the
query “pizza hut” by different algorithms as shown in Table 3.

Thus, the web pages and the queries each form a unique data
space. Queries are connected to the web pages via click-through
relationships (inter-type relationship). Web pages are connected
via hyperlinks (intra-type relationship) in the web page space. A
URM for our data set can be built as:

ddq

qdq
urm LL

LL
L

αα
αα

)1(
)1(

−
−

= (14)

-50%

0%

50%

100%

150%

200%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

 Figure 4: Query Breakdown for SimFusion vs. SimRank

where Lq is the query inter-type relationship matrix. Since there is
no intra-type relationship in query space, Lq reduces to an identity
matrix. Ld is the web pages hyperlink adjacency matrix. Lqd and
Lqd are query click-through relationship matrices that connect
queries with the web pages. α is a non-negative parameter that
adjusts the relative importance of the click-through relationship to
the hyper-link relationship during the similarity reinforcement
process. Each sub-matrix in (14) is normalized to a row-stochastic
matrix. A USM also can be created as:

Table 3. Case Study for query “pizza hut”
d

T
qd

qdq
urm SS

SS
S =

 (15)
SimFusion SimRank tf*idf
pizzahut pizza hut pizza hut
pizza hut pizzahut pizza
pizza kfc donatos pizza
franchises jack in the box dominos pizza
franchise dairy queen N/A
kfc kentucky fried chicken N/A
papa johns taco bell N/A
dominos pizza red lobster N/A
dominos burger king N/A

where Sq is the query content similarity matrix, giving similarity
between queries. Sd is the web page content similarity matrix; Sq
and Sd are measured using tf*idf [28]. Sqd is the query web-page
similarity matrix. Since it is not possible to measure the similarity
between queries and web pages at the beginning, Sqd is set to 0.
Then we apply the SimFusion algorithm on (14) and (15) to
iteratively calculate the similarities of queries and web pages. The
performance of the SimFusion algorithm will be compared with
the pure content similarity measurement (e.g., tf*idf) and the
SimRank algorithm.

Bold fond cells indicate similar queries. We can see that the tf*idf
can not provide best results because it can only return content
similar queries (e.g., pizza), on the other hand, SamRank can not
achieve best performance either because it returns too many
semantic “marginal” relevant queries (e.g, kfc, taco bell, burger
king). SimFusion algorithm can be considered as a combination
of the two extreme algorithms and can achieve best performance
by returning both content similar (e.g., dominos pizza) and
semantic similar (e.g., pap johns, dominos) queries in top results.

5.2 Evaluation Metrics
We use Precision to measure the performance of the similarity
calculation algorithm: Given an input object, Precision at N is
defined as the number of similar data objects identified in the top
N objects returned by the algorithm:

N
objectssimiliarofNatprecision #

= (16)

10 human experts were hired to manually identify the similar
objects returned by different algorithms. The final judgment of
relevancy was decided by majority vote.

We also analyze how the number of iterations can affect the
performance of the SimFusion algorithm. We evaluate the
precision of SimFusion at each iteration (1 to 9), and draw the
precision-iteration curve in Figure 5 below:

5.3 Experimental Results
We set α=0.5 and developed the URM as in Eq. (14) and
developed USM as in Eq. (15). Then, we iteratively calculate the
SimFusion algorithm until convergence (9 iterations in our
experiment). Randomly selected sets of queries and URLs are
used to evaluate the effectiveness of the SimFusion algorithm.
The results are reported below:

0.55

0.57

0.59

0.61

0.63

1 2 3 4 5 6 7 8 9

Iteration

Pr
ec

is
io

n

5.3.1 Results on Similar Queries
Since it is difficult to evaluate the similarity of single word
queries to other queries, we randomly chose 30 multi-word
queries from the query log and evaluate the precision at top 10
queries returned by SimFuion, SimRank and tf*idf algorithm for
each of the 30 queries. Then, we compare the average precision at
10 for the three algorithms. The results are shown below:

Figure 5: Precision vs. Iteration curve for SimFusion

 SimFusion SimRank tf*idf
Average Precision at 10 0.640 0.563 0.383

We can see from Figure 5 that SimFusion improve the similarity
measurement faster at the initial iterations than at the latter
iterations. Similar findings had also been reported in [13].

5.3.2 Results on Similar Web pages

0.58

0.59

0.6

0.61

0.62

0.63

0.64

0.65

0.66

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Alpha value

A
ve

ra
ge

 p
re

ci
si

on

 Figure 7: Performance curve for different α values in
SimFusion algorithm

We use the similar evaluation metric used in 5.3.1 to evaluate the
performance of SimFusion algorithm on web pages. We
randomly chose 10 web pages from the log, for each of them we
evaluate the similarity of the top 10 web pages returned by
SimFusion and SimRank algorithms respectively. After
evaluation we found that the average precision for SimFusion
algorithm is 0.8, and is 16% better than the SimRank algorithm,
which achieves an average precision of 0.69. A detailed precision
comparison of the SimFusion and SimRank algorithm for the 10
web pages are shown in Figure 6 below.

We can see from Figure 7 that the SimFusion algorithm achieve
best performance when α=0.3, which indicates that the query web
page click-through relationship is more important than the content
similarity of queries, when used to calculated the similarity of
different queries. When annotating the data, we also found that,
different queries find their best similar queries at different α
values, thus, it will be interested to think whether it is possible to
automatically determine a set of parameters for each data object
being considered in the URM.

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10

Pr
ec

is
io

n

SimFusion

SimRank

Figure 6: SimFusion vs. SimRank on web page similarities
6. CONCLUSION AND FUTURE WORK We also conduct a case study by analyzing the top similar web of

“http://www.imdb.com”, returned by the two algorithms. In this paper, we highlighted the research topic of web
information integration, that is: “How can the broad variety of
heterogeneous data and relationships in the web be effectively
integrated to improve the performance of various information
applications?” In order to better understand this, we introduced
the Unified Relationship Matrix (URM) to represent
heterogeneous data objects and their relationships in a unified
manner. Then, we tackled the information integration problem by
analyzing how different relationships can be used to improve the
similarity measurement of data objects. Next, we introduced the
SimFusion algorithm. By iteratively computing over the URM,
the SimFusion algorithm can effectively integrate relationships
from multiple sources to measure the similarity of data objects.
Experiments based on real world data demostrate that the
SimFusion algorithm can significantly improve the similarity
measurement of data objects over both the traditional content-
based algorithms and the cutting edge SimRank algorithm.

Table 4. Case Study for web page “www.imdb.com”

SimFusion SimRank
http://movies.msn.com/default http://www.imdb.com
http://www.imdb.com http://movies.go.com
http://movies.go.com http://www.ifilm.com
http://www.amazon.com/exec/obi
dos/tg/browse/-/130//

http://www.rame.net/faq/deadporn

http://video.barnesandnoble.com/
home_cds2.asp?pid=1411&sourc

http://www.bbc.co.uk/learning/

http://www.movieclicks.com http://www.bbc.co.uk/radio1
http://movies.channel.aol.com http://www.hollywood.com/inde

x.html
http://www.allmovie.com http://www.absolutepictures.com/l

/lords_traci
http://www.reel.com http://www.bbc.co.uk/radio
http://www.mrqe.com http://www.reel.com In the future, we will use machine-learning technologies to

automatically determine the values of the parameters in the URM,
and to optimize the performance of the SimFusion algorithm. We
also will improve the efficiency of the SimFuion algorithm by
pruning the URM as well as parallelizing the calculation, so that it
can be easily applied to popular applications (i.e., the large scale
mining application used in Google).

Bold fond cells indicate similar queries in the table above. We can
see that the reason the SimFuison algorithm out performances the
SimRank algorithm is that SimFuion has returned more content
similar web pages (e.g., www.movieclicks.com) than the
SimRank algorithm while still keeps some semantic relevant web
pages returned by the SimRank algorithm (e.g., www.reel.com).

7. REFERENCES 5.3.3 Parameter selection
[1] S. Acid, L. M. D. Campos, J. M. Fernandez-Luna, and J. F.

Huete, “An Information Retrieval Model Based on Simple
Bayesian Networks,” International Journal of Intelligent
Systems, vol. 18, pp. 251-265, 2003.

We also investigate how different values of α defined in Eq. (14)
can affect the performance of the SimFusion algorithm. We chose
10 α values from 0 to 1 at the interval of 0.1 and evaluate the
performance of SimFusion on finding similar queries at each α
value and draw the performance curve below: [2] D. Beeferman and A. Berger. “Agglomerative clustering of a

search engine query log”. In Proceedings of the Sixth ACM
SIGKDD International Conference on Knowledge Discovery
and Data Mining, Boston, MA, pp. 407-415, Aug. 2000.

[3] T. L. Brauen, “Document Vector Modification”, in The
Smart Retrieval System-Experiments in Automatic Document
Processing, G. Salton, editor, Prentice-Hall, Inc., Englewood
Cliffs, New Jersey, 1971, Chapter 24.

[4] S. Brin, and L. Page, The Anatomy of a Large-Scale
Hypertextual Web Search Engine. Computer Networks and
ISDN Systems, 30, pp. 107-117, 1998.

[5] P. Calado and B. Ribeiro-Neto, “An Information Retrieval
Approach for Approximate Queries,” IEEE Transactions on
Knowledge and Data Engineering, vol. 15, pp. 236-239,
2003.

[6] S. Chakrabarti, B.E. Dom, S.R. Kumar, P. Raghavan, S.
Rajagopalan, A. Tomkins, D. Gibson, and J. M. Kleinberg,
“Mining the Web's Link Structure”. IEEE Computer, 32 (8).
pp. 60-67, 1999.

[7] B. D. Davison, “Toward a unification of text and link
analysis.” in 26th annual international ACM SIGIR
conference on research and development in information
retrieval, Toronto, Canada, pp. 367-368. 2003.

[8] J. Dean and M.R. Henzinger. “Finding Related Pages in the
World Wide Web”, in Proceedings of the 8th international
conference on World Wide Web, 1999.

[9] S. Deerwester, S. T. Dumais, T. K. Landauer, G. W. Furnas,
and R. A. Harshman, "Indexing by latent semantic analysis."
Journal of the Society for Information Science, 41(6), pp.
391-407， 1987.

[10] S. T. Dumais, G. W. Furnas, T. K. Landauer, and S.
Deerwester, "Using latent semantic analysis to improve
information retrieval." In Proceedings of CHI'88:
Conference on Human Factors in Computing, New York:
ACM, pp. 281-285.

[11] E. Fox. “Extending the Boolean and Vector Space Models of
Information Retrieval with P-Norm Queries and Multiple
Concept Types”. Cornell University Dissertation, Aug. 1983.

[12] N. Fuhr and T. Rolleke, “A Probabilistic Relational Algebra
for the Integration of Information Retrieval and Database
Systems,” ACM Transactions on Information Systems, vol.
15, pp. 32-66, 1997.

[13] J. Jeh and J. Widom. “SimRank: a measure of structural-
context similarity”. In Proceedings of the eighth ACM
SIGKDD international conference on knowledge discovery
and data mining, pp. 538-543. Edmonton, Alberta, Canada,
July 23-26， 2002.

[14] E. Ide. “New experiments in relevance feedback”, in The
SMART Retrieval System, G. Salton, editor, Prentice Hall,
1971, pp. 337-354.

[15] M. M. Kessler. Bibliographic coupling between scientific
papers. American Documentation, 14:10-25, 1963.

[16] J.M. Kleinberg, Authoritative sources in a hyperlinked
environment. Journal of the ACM (JACM), 46 (5), pp. 604-
632.

[17] R.R. Larson. “Bibliometrics of the World-Wide Web: An
exploratory analysis of the intellectual structure of
cyberspace”. In Proceedings of the Annual Meeting of the
American Society for Information Science. Baltimore,
Maryland, October 1996.

[18] J. L. Herlocker, J. A. Konstan, A. Borchers, and J. Riedl,
“An algorithmic framework for performing collaborative
filtering”, in 22nd annual international ACM SIGIR
conference on research and development in information
retrieval, pp. 230-237, Berkeley, California, 1999.

[19] O. Kallenberg, Foundations of Modern Probability. New
York: Springer-Verlag, 1997.

[20] J. Pitkow and P. Pirolli. “Life, death, and lawfulness on the
electronic frontier”. In Proceedings of the Conference on
Human Factors in Computing Systems, Atlanta, Georgia, pp.
383-390, 1997.

[21] A. Popescul, G. Flake, S. Lawrence, L.H. Ungar, and C.L.
Giles. “Clustering and identifying temporal trends in
document database”. In Proceedings of the IEEE Advances
in Digital Libraries, Washington, D.C., May 2000.

[22] V.V. Raghavan and H. Sever. “On the reuse of past optimal
queries”. In Proceedings of the ACM SIGIR Conference on
Research and Development in Information Retrieval, Seattle,
WA. pp. 344-350, July, 1995.

[23] E. Rasmussen. Clustering algorithm. In W. B. Frakes and R.
Baeza-Yates, editors, Information Retrieval: Data Structure
and Algorithms, Chap. 16. Prentice Hall, 1992.

[24] P. Resnick, and H. R. Varian. “Recommender Systems”
(introduction to special section). Communications of the
ACM, 40(3):56-58, March 1997.

[25] B. Ribeiro-Neto and R. Muntz, “A Belief Network Model for
IR,” in Proceedings of the 19th ACM-SIGIR conference on
research and development in information retrieval, pp. 253-
260, Zurich, Switzerland, 1996.

[26] J.J. Rocchio. Relevance feedback in information retrieval. In
G. Salton, editor, The SMART Retrieval System -
Experiments in Automatic Document Processing. Prentice
Hall Inc., Englewood Cliffs, NJ, 1971.

[27] G. Salton, Automatic Information Organization and
Retrieval, McGraw-Hill, 1968.

[28] G. Salton and M. J. McGill. "Introduction to Modern
Information Retrieval". McGraw-Hill Book Co., New York,
1983.

[29] H. Small. Co-citation in the scientific literature: A new
measure of the relationship between two documents.,
24:265-269, 1973.

[30] Z. Su, Q. Yang, H.-J. Zhang, X. Xu, Y. Hu, “Correlation-
based Document Clustering using Web Logs”, in
Proceedings of the 34th Hawaii International Conference on
System Science, Hawaii, U.S.A. 2001.

[31] H. Turtle and W. B. Croft, “Inference networks for document
retrieval,” In Proceedings of the13th Annual International
ACM SIGIR Conference on Research and Development in
Information Retrieval, Brussels, Belgium, 1990.

[32] J. -R.Wen, J.-Y. Nie, and H.-J. Zhang, “Query Clustering
Using User Logs”. ACM Transactions on Information
Systems (TOIS), 20 (1). pp. 59-81.

[33] J. D. Wang, H. J. Zeng, Z. Chen, H. J. Lu, L. Tao, and W.-Y
Ma. “ReCoM: reinforcement clustering of multi-type
interrelated data objects”. In Proceedings of the ACM SIGIR
Conference on Research and Development in Information
Retrieval, Toronto, Canada, pp. 274-281, July 2003.

[34] S. K. M. Wong, W. Ziarko, V. V. Raghavan, and P. C. N.
Wong, “On Modeling of Information Retrieval Concepts in
Vector Space,” ACM Transactions on Database Systems,
vol. 12, pp. 299-321, 1987.

[35] W. Xi, B. Zhang, Z. Chen, Y. Lu, S. Yan, W.Y. Ma, E.A.
Fox. “Link Fusion: A Unified Link Analysis Framework for
Multi-type Inter-related Data Objects”, in Proceedings of the
13th International World Wide Web Conference, WWW2004,
pp. 319-327, New York, U.S.A. May 19-22, 2004.

[36] G. Xue, H.-J. Zeng, Z. Chen, W.-Y. Ma, W. Xi, Y. Yu, E.A.
Fox,“MRSSA: An Iterative Algorithm for Similarity
Spreading over Interrelated Objects”, in Proceedings of the
13th Conference on Information and Knowledge
Management, Washington, D.C. Nov. 8-13, 2004, to appear.

[37] G. Xue, H.-J. Zeng, Z. Chen, W.-Y. Ma, W. Xi, W. Fan, Y.
Yu “Optimizing Web Search Using Web Click-through
Data”, in Proceedings of the 13th Conference on Information
and Knowledge Management, Washington D.C., U.S.A,
Nov. 8-13, 2004, to appear.

APPENDIX
Proof of Convergence for the SimFusion algorithm
We prove the convergence of iterative equation (11). The proof of
convergence for Eq. (10) is similar to that of Eq. (11) if we have

0α = or 1α = . To prove Eq. (11), two definitions are needed
first.

Definition 1: Given matrices m nA R ×∈ , , then their
Kronecker Product

p qB R ×∈

A B⊗ is,

11 12 1

21 22 2

1 2

n

n

m m mn mp nq

a B a B a B
a B a B a B

A B

a B a B a B
×

 
 
 ⊗ = 
  
 

L

L

M M M

L

Definition 2: the Row-First Vectorization of a matrix m nA R ×∈ ,
denoted as A

r
, could be represented as

r
, where

, i are row vectors of A.
1 2(, , ,A a a= L)T

ma
n

ia R∈ 1,= 2, ,L m

Lemma 1: for matrices m nA R ×∈
T

, , the Line-First

Vectorization of matrix

n nB R ×∈

ABA is equal to a vector
2

() mA A B R⊗ ∈
r

.

11 12 1 11

21 22 2 12

1 2

1, 1, ,
1 1

1, 2, ,
1 1

, , ,
1 1 1

()

()

n

n

m m mn nn

m n

i j i j
i j

m n

i j i j T
i j

m n

m i m j i j
i j mm

a A a A a A b
a A a A a A b

A A B

a A a A a A b

a a b

a a b
ABA

a a b

= =

= =

= = ×

 
 
 ⊗ =  
  
 
 
 
 
 
 = = 
 
 
 
   

∑ ∑

∑ ∑

∑ ∑

L

r L

M M M M

L

r

M

 
 
 
 
  
 

)

)

Let matrix , then the

iterative equation (11) can be rewritten as:

() (1)(out out in in
urm urm urm urmH L L L Lα α= ⊗ + − ⊗

usmS 1n n
usmHS −=

r r
. ■

Lemma 2: The matrix is a
non-negative, row-stochastic matrix.

() (1)(out out in in
urm urm urm urmH L L L Lα α= ⊗ + − ⊗)

Proof: Step1, is a non-negative matrix: H
Without loss of generality, both and can be denoted by
(7). It is obvious that (7) is a non-negative matrix since are

non-negative sub-matrices and . From the

definition of Kronecker Product (definition 1), we know that
should be a non-negative matrix. In other words, both

and are non-negative matrices.

Since

in
urmL

ijλ

t
rmL

out
urmL

 1 ,i j> ≤

ijL

0, N≤

urm urmL L⊗
in in
urm urmL L⊗

0

out ou
urm uL ⊗

1α≤ ≤ , must be a non-negative matrix. H
Step2, is a row-stochastic matrix: H
From its definition in Section 4.2 we know that matrix (7) is a
row-stochastic matrix. Since the Kronecker Product of two row-
stochastic matrices is still a row-stochastic matrix,
then should be a row-stochastic matrix. In other

words, both and are row-stochastic

matrices. Moreover, since

urm urmL L⊗
in in
urm urmL L⊗ out out

urm urmL L⊗
0 1α≤ ≤ H, must be a row-

stochastic matrix. ■

Lemma 3: If is non-negative, row-stochastic and reducible,

there exists a permutation matrix P, such that
urmL

1

2

0
0

T H
PHP

H
 

=  
 

.

Here, H1 is a non-negative, row-stochastic, and irreducible matrix.
Proof: Note that from the definition of Kronecker Product,

 shall preserve the symmetry property of . Then
the proof of lemma 3 is the same as the proof of lemma B in the
appendix of [35], if we use to replace L

urm urmL L⊗ urmL

urmL ‘
urm.■

Proof: from definition 1 and definition 2,

Then using lemma 1, the iterative Eq. (11), can be transformed
into

r r r
 1

1

() (1)(

 (() (1) ())

n o u t o u t n in in n
u s m u r m u r m u s m u r m u r m u s m

o u t o u t in in n
u r m u r m u r m u r m u s m

S L L S L L S

L L L L S

α α

α α

−

−

= ⊗ + − ⊗

= ⊗ + − ⊗
r

1−

Proof: From lemma 2 and lemma 3, and lemma C in the
Appendix of [35], we know that if H is irreducible, the iterative

method 1n
usm usmS HS n−=
r r

 converges to the principle eigenvector of
H. Similar to the proof in appendix of [35], if we use H to replace

L ‘urm, and use 1
usmHSn

usmS n −=
r r

 to replace , then the
theorem in the appendix of [35] tells us that iterative method

1

wLw
T

urm
'=

n
usmS n

usmHS −=
r r

 converges to the principle eigenvector of H. ■

Theorem 1: For the unified matrices and defined in

Eq. (11), iterative method

out
urmL

1
usmHS −

in
urmL

n
usmS = n
r r

(in
urmL⊗

 converges to the
principle eigenvector
of . ()out out

urm urmH L L= ⊗ (1) in
urmLα α+ −)

	PROBLEM CONTEXT
	LITERATURE REVIEW
	REPRESENTATION
	Terminology
	Unified Relationship Matrix and Examples

	ALGORITHM
	Assumption
	The SimFusion Algorithm
	A Comparison with the SimRank Algorithm
	Real World Examples

	EXPERIMENTS
	Design
	Evaluation Metrics
	Experimental Results
	Results on Similar Queries
	
	
	
	
	SimFusion
	SimRank

	Results on Similar Web pages
	
	
	
	
	SimFusion
	SimRank

	Parameter selection

	CONCLUSION AND FUTURE WORK
	REFERENCES
	APPENDIX

