
SimFusion: A Unified Similarity Measurement Algorithm 
for Multi-Type Interrelated Web Objects  

Wensi Xi 
Virginia Tech 

Blacksburg, VA, 24061 

xwensi@vt.edu

Benyu Zhang 
Microsoft Research Asia  
Beijing, China, 100080 

byzhang@microsoft.com

Edward A. Fox 
Virginia Tech 

Blacksburg, VA, 24061 

fox@vt.edu 
 

ABSTRACT 
In this paper, we use a Unified Relationship Matrix (URM) to 
represent a set of heterogeneous web objects (e.g., web pages, 
queries) and their interrelationships (e.g., hyperlink, user click-
through relationships). We claim that iterative computations over 
the URM can help overcome the data sparseness problem (a 
common situation in the Web) and detect latent relationships 
among heterogeneous web objects, thus, can improve the quality 
of various information applications that require the combination 
of information from heterogeneous sources. To support our claim, 
we further propose a unified similarity-calculating algorithm, the 
SimFusion algorithm. By iteratively computing over the URM, 
the SimFusion algorithm can effectively integrate relationships 
from heterogeneous sources when measuring the similarity of two 
web objects. Experiments based on a real search engine query log 
and a large real web page collection demonstrate that the 
SimFusion algorithm can significantly improve similarity 
measurement of web objects over both traditional content based 
similarity-calculating algorithms and the cutting edge SimRank 
algorithm. 

Categories and Subject Descriptors 
H.3.3 [Information Storage and Retrieval]: Information search 
and retrieval; G.2.2 [Discrete Mathematics]: Graph Theory. 

General Terms 
Algorithms, Experimentation 

Keywords 
SimFusion, Similarity-calculating algorithms, Information 
retrieval, Data fusion, Data mining. 

1. PROBLEM CONTEXT 
Web pages, users, queries and other entities in the web domain 
can be considered as objects containing information. The 
information may include the content of objects as well as 
relationships, between objects of the same or different types. For 
example, we know that users browse web pages and issue queries. 
Queries lead to the click-through of web pages. These three 
operations (browsing, issuing, and clicking-through) are 
relationships that connect different types of objects. We also 
know that users are connected by their social relationships, web 
pages are connected by hyperlinks, and queries are connected by 
their content similarities. These latter connections are all 
examples of relationships within the same type of objects.  

Modern information applications such as searching, document 
clustering, and collaborative filtering, use three traditional 

approaches to represent information derived from data objects and 
the interrelationships involved: 

1. Spaces: Vector and probability spaces implicitly use a pre-
defined set of features from objects, e.g., to locate them in an 
n-dimensional space [28][34]. 

2. Databases: Relational databases operate on dynamically 
specified relationships between objects (each represented 
using a pre-defined set of attributes) [5][12]. 

3. Networks: Belief, inference, and spreading activation 
networks (e.g., neural net) use nodes and arcs to connect 
objects and their attribute values, and to represent pre-defined 
sets of relationships [1][25][31]. 

However, most information applications simply take one of these 
three approaches to analyze only one kind of relationship within 
the same type of objects (e.g., document clustering) or between 
two types of objects (e.g., searching, collaborative filtering). 
These applications, as how implemented, will run into problems 
when users require more accurate models of reality, wherein the 
number of types of objects that must be handled in an integrated 
manner expand rapidly (e.g., considering both queries and users 
when clustering web pages), and the relationships between 
different types of objects (e.g., the reference and browsing 
relationships among web pages and between users and web 
pages) grow tremendously. More specifically, the problem we are 
facing can be described as: 

“How can the broad variety of heterogeneous data and 
relationships in the Web be effectively integrated to improve the 
performance of diverse information applications?” 

Our hypothesis is that the quality and utility (e.g., the similarity 
value) of information contained in web objects can be improved 
by integrating interrelationships of related objects from different 
types of sources. Since relationships among data objects often can 
be represented as matrices with either binary or real-valued 
weights (e.g., a web hyperlink adjacency matrix), such an 
integration process can be modeled as calculations over 
relationship matrices. Figure 1 illustrates a few examples of such 
calculations. Note that as a result of integration calculations, the 
matrices in the bottom row, which can be used to explain some 
possible information applications, are presumed to be of higher 
quality (e.g., with less empty spaces, due to the addition of new 
relationships obtained from other matrices). A way to think of 
why different matrices of relationships can be used to improve the 
quality of information is that a single matrix representation of 
relationships is often very sparse, but when reinforced by other 
types of relationship matrices, the information it contains may be 
more dense and helpful. The underlying assumption is that the 
relationship of two data objects can be affected by similar 
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relationships of data objects they are related to from among 
multiple data spaces, through varied interrelationships. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Matrix representations of relationship integration 
In this paper, we tackle the bigger problem of integrating multiple 
relationships to improve information applications by analyzing a 
specific question: “How can different relationships among data 
objects be used to improve the measurement of a specific 
relationship, namely the similarity relationship of data objects?” 
In this work, we solve this problem by introducing a novel 
algorithm, SimFusion, which iteratively integrates relationships 
from multiples sources to improve the quality of similarity 
calculation over web objects. The effectiveness of the SimFusion 
algorithm will be tested on a real web data set.  

The rest of this paper is organized as follows. In Section 2 we 
explain the background of our research by reviewing some of the 
large number of previous works that relate to information 
integration. In Section 3 we give the formal definition of the 
Unified Relationship Matrix (URM) and explain other 
terminology. The underlying assumption and formal description 
of the SimFusion algorithm is presented in Section 4. Then, we 
give experimental results in Section 5 and conclude in Section 6. 

2. LITERATURE REVIEW 
In this work, we show that different kinds of relationships can be 
integrated to improve the similarity measurement of web objects. 
Thus it is helpful to trace the evolution of how relationships are 
used to measure the similarity of data objects in various 
information applications such as searching and clustering. 

Most early research studies considered a single relationship to 
measure the similarity of data objects. In the vector space model 
[27], terms were used to characterize queries and documents, 
creating a document-term relationship matrix where it is 
straightforward to compute the similarities between terms and 
documents by taking the inner product of the two corresponding 
row or column vectors. Dice, Jaccard, and Cosine [23] are 
classical methods that use the document-term relationship to 
measure the similarity of documents for retrieval and clustering 
purposes. Deerwester and Dumais [9][10] demonstrated that a 
same concept might be presented by different sets of keywords in 
different documents. In their Latent Semantic Indexing work, 
instead of directly using the document-term matrix to compute the 
similarity of text objects, they first use the Singular Vector 
Decomposition to map the document-term matrix into a lower 

dimension matrix where each dimension is associated with a set 
of keywords and with a “hidden” concept. Then the similarity of 
text objects (documents or queries) is measured by their 
relationships to these “concepts” rather than the keywords they 
contain. 

Documents QueriesUsers 

Other single type relationships such as reference relationships 
among scientific articles also are used to measure the similarity of 
data objects. Small [29] measured the similarity of two journals 
by counting the number of papers they both cite; this is called co-
citation. Kessler [15] measured the similarity of two papers by 
counting the number of papers that cite them both; this is called 
bibliographic coupling. Co-citation and bibliographic coupling 
have been successfully used to cluster scientific journals [21]. 
With the advent of the World Wide Web, relationships within 
web objects (e.g., hyperlinks) also were used to calculate the 
similarity of web objects. Dean [8] and Kleinberg [16] used 
hyperlinks in the Web to discover similar web pages. Larson [17] 
and Pitkow [20] applied co-citation on the hyperlink structure of 
the web to measure the similarity of web pages. In the 
Collaborative Filtering [18] and Recommender Systems [24] area, 
researchers tried to analyze the similarity of people by examining 
the people-document and people-artifact relationships, 
respectively. A few examples of applications that make use of 
relationships to calculate the similarity of data objects are shown 
in Table 1. 

Q U U D 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
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 Table 1. Some relationships in information applications  

Information 
Application 

Modeling Relationship 

Information retrieval Term-document relationship  
Document clustering Term-document relationship or 

Document-document relationship 
Collaborative filtering People-document relationship  
Recommending People-artifact relationship  

The works introduced above only used a single type relationship 
to measure the similarity of data objects. However, these 
approaches run into serious problems when various information 
applications require a more real and accurate similarity measuring 
method where multiple types of data objects and their 
relationships must be handled in an integrated manner. Thus in 
the extended VSM [11], feature vectors of data objects were 
lengthened by adding attributes from objects of other related 
types via inter-type relationships. By doing so, information from 
different sources are directly mapped into an enhanced Vector 
Space and similarity computations were obtained by calculating 
these enhanced feature vectors. The extended feature vectors were 
used for document search and clustering purposes [6]. Following 
the same idea, Rocchio [26] and Ide [14] expanded query vectors 
using the terms appearing in the top documents retrieved by the 
query and improved the search effectiveness. The idea of using 
terms found in related documents to extend the query vector is 
also referred to as “Query Expansion”. Similarly, Brauen [3] 
modified a document vector by adding or deleting the terms in the 
queries that relate to it. Changing document vectors by related 
query terms is also referred to as the “Dynamic Document Space” 
technique [28]. 

Recently, researchers have tried to calculate the similarity of same 
type data objects by measuring their relationships across different 
types of data objects. For example, Raghavan and Sever [22] tried 
to measure the similarity of two queries by calculating the 
similarity relationship of their corresponding search lists. 
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0 0 0 x 0 0 0
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3. REPRESENTATION Beeferman and Berger [2] clustered queries using the similarity of 
their clicked web pages and cluster web pages using the similarity 
of the queries that lead to them. Wen [32] and Su [30] calculated 
the query similarity based on both the query contents similarity 
and the similarity of documents retrieved by the queries; they 
calculated the similarity of documents in a similar way.  

3.1 Terminology 
It is important to first give the formal definitions of some key 
terms that will be used extensively in the rest of this paper. 

Data Type: A data type is defined as a set of characteristic 
features (e.g., user is a set of features including name, gender, 
age, education, etc.). A data object is an instance of a data type. 

Although research works introduced above used inter-type 
relationships to help improve the similarity measurement of data 
objects, they did not consider the mutual reinforcement effect on 
the relationships across multi-type data objects. Wang et al. [33] 
proposed an iterative reinforcement clustering algorithm for 
multi-type data objects named ReCom. In this algorithm, the 
clustering results from one type of data object are used to 
reinforce the clustering process of another data type. Their 
method was shown to be effective and can be considered as a 
variation of the SimFusion algorithm that we introduce later in 
this work.  

Data Space: A data space is a set of data objects of the same 
data type (e.g., the web pages in the internet.). 

Homogeneous/Heterogeneous: In this work we assume that each 
data space is homogeneous within itself, but heterogeneous with 
respect to other data spaces of different data types. 

According to their types, relationships among data objects can be 
classified into two types: intra-type relationship and inter-type 
relationship. 

Davidson [7] proposed another related idea. He analyzed multiple 
term document relationships by expanding the traditional 
document-term matrix into a matrix with term-term, doc-doc, 
term-doc, and doc-term sub-matrices in a way that is similar to 
the unified relationship matrix (URM) that we define later. He 
proposed that the similarities of the search objects (web pages or 
terms) in the expanded matrix could be emphasized. With enough 
emphasis, the principal eigenvector of the extended matrix will 
have the search object on top with the remaining objects ordered 
according to their relevance to the search object. Although his 
idea is sound, the iterative calculation over the URM for related 
web pages would make it prohibitive as an online algorithm. 

Intra-type relationship: this kind of relationship connects data 
objects within a homogeneous data space (e.g., the hyperlinks in 
web pages space can be considered as intra-type relationships). 

Inter-type relationship: this kind of relationship connects data 
objects across heterogeneous data spaces (e.g., users issue queries 
and browse web pages. The issuing and browsing activities can be 
regarded as inter-type relationships connecting the user and web 
page data spaces, or the user and query data spaces, respectively). 

In order to illustrate all the terminologies introduced above, we 
give an example with two data types: people and documents. 
Authors are data objects in the “people” space. Co-authorship is 
an intra-type relationship connecting two authors. Authorship of a 
document is an inter-type relationship between an “author” object 
and a “document” object. Readers are also objects in the “people” 
space, and readers reading papers can be regarded as another 
inter-type relationship that connects the “people” space and the 
“document” space. Papers in the document space may also relate 
to each other via some intra-type relationship (such as reference). 

In this work, we introduce the SimFusion algorithm, which 
iteratively updates the similarity of data objects via multiple 
interrelationships from heterogeneous data spaces. The most 
similar work in literature so far is the SimRank algorithm 
proposed by Jeh and Widom [13]. In SimRank, the similarity of 
data objects was measured according to their structural context. 
The basic rationale of SimRank was that the similarity of two 
data objects could be affected by the similarities of other data 
objects that the two data objects related to. Jeh and Widom 
considered all the pair-wise similarities of data objects as nodes in 
a general directed graph, and mapped all the contextual 
relationship into directed edges in the graph. They then iteratively 
updated the similarity of data object pairs in a manner similar to 
the PageRank [4] algorithm. Xue et al. applied SimRank on the 
web domain to improve the similarity calculation of web pages 
and queries [36]. They also tried to calculate the similarities of 
queries and web pages and append query contents to most similar 
web pages so as to effectively improve search performance [37]. 

3.2 Unified Relationship Matrix and Examples 
Below is the formal definition of the Unified Relationship Matrix 
that represents both inter- and intra-type relationships among data 
objects from heterogeneous sources in a unified manner. 

Suppose we have t different data spaces S1, S2,…St. Data objects 
within the same data space are connected via intra-type 
relationships Ri⊆Si×Si. Data objects from two different data 
spaces are connected via inter-type relationships Rij⊆Si×Sj(i≠j). 
The intra-type relationships Ri can be represented as an m×m 
adjacency matrix Li (m is the total number of objects in data space 
Si), where lxy represents the inter-type relationship from the xth 
object to the yth object in the data space Si. The inter-type 
relationship Rij can be represented as an m×n adjacency matrix Lij 
(m is the total number of objects in Si, and n is the total number of 
objects in Sj), where the value of lxy represents the inter-type 
relationship from the xth object in Si to the yth object in Sj. 

The SimFusion algorithm we propose in this paper arises from 
similar rationale as the SimRank algorithm. However, we claim 
that the basic assumption of the SimRank algorithm can be 
regarded as a special case of the assumption in the SimFusion 
algorithm. We further argue that the SimFusion algorithm has a 
more solid theoretical foundation, lower time complexity, and is a 
more flexible to be adapted into real world scenarios than 
SimRank. A detailed comparison of the two algorithms can be 
found in Section 4. 

To simplify the problem, let’s first consider two data spaces 
1 2{ , , }mX x x x= L , and and their 

relationships: R
1 2{ , , }nY y y y= L

x, Ry, Rxy, and Ryx. The adjacency matrices Lx and 
Ly stand for the intra-type relationship within the data spaces X 
and Y, respectively. Lxy and Lyx are the inter-type relationships 
from objects in X to objects in Y and inter-type relationships from 



objects in Y to objects in X respectively. If data spaces X and Y are 
merged into a unified data space U, then, previous inter- and 
intra-type relationships are now all part of intra-type relationships 
Ru in U. Suppose Lu is the adjacency matrix of Ru, then Lu is a 
(m+n)×(m+n) matrix, with lij representing the relationship from 
the ith object from X (if i≤m), or the (i-m)th object from Y (if 
i>m), to the jth object from X (if i≤m), or the (j-m)th object from 
Y (if i>m). The Unified Relationship Matrix Lu is actually a 
matrix that combines Lx, Ly, Lxy and Lyx as shown below: 

yyx

xyx
u LL

LL
L =                                                                           (1) 

Eq. (1) can easily be extended to the definition of the Unified 
Relationship Matrix Lurm for N data spaces, as shown in Eq. (2). 

NNN

N

N

urm

LLL

LLL
LLL

L

L

MOMM

L

L

21

2221

1121

=
                                                              (2) 

For the rest of this proposal I will use URM to denote the Unified 
Relationship Matrix. 

The URM can be used to explain many real world information 
applications. For example, if we only consider one data space: the 
web pages, and one type of intra-type relationship: the hyperlinks, 
the URM is reduced to the link adjacency matrix of the web 
graph. If we analyze how user-browsing behaviors can affect the 
“popularity” of a web page as in [4], we would be actually 
analyzing two data spaces: user and web page, as well as one 
inter- (browsing) and two intra- (hyperlink, user endorsement) 
type relationships. 

If we consider two data spaces: documents and terms, the inter-
type relationship is defined when a document contains a term or a 
term is contained by a document. A URM can be built as below. 

0
0

dt
T

dt
urm L

L
L =                                                                       (3) 

Ldt is the traditional document-term matrix that represents the 
Vector Space Model [27]. The 0 sub-matrices in the diagonal 
direction indicate that we have no prior knowledge of intra-type 
relationships within documents and term space. All the 
information applications that manipulate the document-term 
matrix can still be used on Lurm. Furthermore, the intra-type 
relationship of the document and term space can be obtained by 

simply multiplying Lurm with itself: L‘
urm=Lurm×Lurm= t

d
L

L
0

0

, 
where Ld and Lt correspond to the document pair wise similarity 
matrix and term pair wise similarity matrix obtained by most 
traditional Vector Space similarity calculations. By adding L‘

urm 
and Lurm, we can have a complete URM for the document and 

term spaces: t
t
dt

dtd
LL
LL

. This specific matrix that combines 
document pair-wise and term pair-wise relationships with 
traditional document-term relationships was first suggested by 
Davidson [7] as the “generic augmented matrix”. 

The URM introduced in this section has provided a more 
generalized way of viewing heterogeneous data objects and their 
relationships. In the URM, different types of data objects are 

treated as elements of a “unified” data space. Previous inter- and 
intra-type relationships are now considered as a generic intra-type 
relationship that connects data objects in the “unified” space. 
Current information applications that measure data object 
information/relationships using a single type relationship matrix 
(e.g., document similarity calculation) can be extended and 
applied on the URM. If designed properly, these extended 
applications would out-perform in effectiveness their traditional 
counterparts, because they can use multiple types of relationships 
to improve the measure of the target information/relationship.  

4. ALGORITHM 
4.1 Assumption 
In this section, we analyze how different kinds of relationships 
among heterogeneous data objects can be used to reinforce a 
specific relationship, the similarity relationship of data objects. 
The underlying assumption is that: “the similarity between two 
data objects can be reinforced by the similarity of related data 
objects from the same and different spaces”. It is named 
“similarity reinforcement assumption” and is illustrated below: 

 
 
 
 
 
 
 
 
Figure 2: Illustration of similarity reinforcement assumption 

Data 
Space 

Intra-type 
relationship

Inter-type 
relationship 

Data Object 

In Figure 2, the similarity between two data objects (big black 
nodes) was reinforced by relationships from the same type of 
related data objects (small black nodes) as well as the 
relationships (both inbound and outbound) from different types of 
data objects (white and gray nodes). Suppose there are n different 
data spaces X1, X2,… Xn. Data objects in the same space are 
related via intra-type relationships Ri⊆Xi×Xi. Data objects from 
different spaces are related via inter-type relationships Rij⊆Xi×Xj 
(i≠j). The relationships being considered are similar in nature and 
Sij(x,y) is the similarity value between object x from space i and 
object y from space j. Rij(x,y) represents the inter- (i=j) or intra- 
type (i≠j) relationship from object x in space i to object y in space 
j, while a and b are any data objects in any data spaces under the 
condition that x is related to a and y is related to b. Then the 
similarity reinforcement assumption can be mathematically 
presented as: 

∑
∀∈∀∀∈∀

+=
lbka

original
kljlik

original
ij

new
ij baSbyRaxRyxSyxS

,
),(),(),(),(),( βα        (4) 

where, α and β are positive parameters used to adjust the relative 
importance of the original similarity of objects x and y with the 
importance of the similarity reinforced by inter- and intra-type 
relationships during the reinforcement process. If we use a set of 
positive parameters λij to represent the relative importance of 
similarity reinforced from data space i to data space j, and 
consider the amount of original similarity value involved in this 
process as the similarity value reinforced via a special intra-type 



relationship that leads to the data object itself (indicated in Figure 
2), the similarity reinforcement assumption can be represented as:  

∑
∀∈∀∀∈∀

+=

lbka

original
kljljlikik

original
ijjjjjiiii

new
ij

baSbyRaxR

yxSyyRxxRyxS

,
),(),(),(

),(),(),(),(

λλ

λλ      (5) 

Please note that in Eq.(5), a can not be equal to x and b can not 
equal to y at the same time in ),(),(),( baSbyRaxR kljljlikik λλ . Further, 

 can be considered as a special case 

of 
),(),(),( yxSyyRxxR original

ijjjjjiiii λλ
(),(),( aSbyRaxR kljljlikik ),bλλ , where a=x and b=y. Thus, Eq. 

(5) can be further reduced to Eq. (6):  

    (6)    ∑
∀∀

=
ba

original
kljljlikik

new
ij baSbyRaxRyxS

,
),(),(),(),( λλ

Considering one data object’s related objects in other data spaces 
as its mappings in those data spaces, the reason that similarity 
reinforcement process can better predict the similarity of two data 
objects is that the similarity of two data objects is measured in 
multiple perspectives (data spaces) instead of single perspective. 
Explained in a more easily understood fashion: two men are more 
likely to be “good friends” if their wives are good friends too and 
their children go to the same school. It should be noted that the 
underlying assumption is that relationships are accurate and 
additive. Thus, care should be taken to avoid situations where 
there are contradictory or ambiguous types of evidence. 

4.2 The SimFusion Algorithm 
Based on the “similarity reinforcement assumption”, we develop a 
unified similarity calculation algorithm over a set of 
heterogeneous data spaces, named the “SimFusion” algorithm. 
The name indicates that the similarity of two data objects is 
calculated using evidence from multiple sources (data spaces). It 
is formally described as follows: 
Suppose there are N different spaces being considered, and a 
URM is developed in a similar way to Eq. (2) to represent the 
inter- and intra-type relationships as shown in Eq. (7): 

NNNNNNN
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NN

urm
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=
                                                      (7) 

Here Li is the intra-type relationship matrix of data space i and Lij 
is the inter-type relationship matrix from data space i to data 
space j. The sum of each row from any of the sub-matrices is 
normalized to 1. In cases that data object x from space i has no 
relationship to any data objects in data space j (all the elements in 
the ith row of the matrix Lij are zero), then each element in the ith 
row of relationship matrix Lij is set to 1/n, where n is the total 
number of elements in space j. This is equivalent to using a 
random relationship to represent no-relationship. We also define a 
set of parameters λs to adjust the relative importance of different 
inter- and intra-type relationships, so that for any i, 

. Thus, Eq. (7) is a row-stochastic 

matrix and can be rendered as a single step probability 
transformation matrix in a Markov Chain [19]. 

0,1 >∀=∑
∀

ij
j

ij jiand λλ

We also define a Unified Similarity Matrix (USM), Susm, to 
represent the similarity values of any data object pairs from same 

or different data spaces at the beginning of the algorithm, as 
shown in Eq. (8): 
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                                                                     (8) 

Each element s(a,b) in Susm represent the similarity value between 
data object a and b in the unified space. T is the total number of 
objects in the unified space. Since each data object is always 
maximally similar to itself, we have sab=1 if a=b, and 0≤sab≤1, if 
a≠b. Susm is a symmetric matrix since sab= sba. We also define that 
the orders of data objects presented in Susm and Lurm are similar, 
that is, if the element lab in Lurm represents the relationship from 
object a to object b, then element sab in Susm represents the 
similarity value between object a and b. Having URM and USM 
defined, the similarity reinforcement assumption can be 
represented as: 

T
urm

original
usmurm

new
usm LSLS =                                                     (9) 

Eq. (9) is the basic similarity reinforcement calculation in the 
SimFusion algorithm. Eq. (9) be continued in an iterative manner 
until the calculation converges or a satisfaction result is obtained, 
as shown in Eq. (10). 

Tn
urmusm

n
urm

T
urm

n
usmurm

n
usm LSLLSLS )(01 == −                    (10) 

The proof of convergence for Eq. (10) can be found in the 
Appendix. It is important to note that the similarity of a data 
object to itself (i.e., the values in the diagonal positions of Sn

usm) 
derived during the iterative calculation in Eq. (10) may not be 
equal to 1 and may even be smaller than the similarity between 
two data objects (i.e., values in non-diagonal positions in Sn

usm). 
However, we argue that the Susm derived during the iterative 
calculation can be rendered more precisely as the confidence of 
the similarity of individual or pairs of data objects rather than as 
their exact similarity values. For example, if a data object (or two 
data objects) is related to a set of less similar data objects, then 
the similarity of the data object (or the two data objects) is less 
reliable (confident) when used as evidence to reinforce the 
similarity of data objects related to it in the next iteration than if 
the data object (or two data objects) is related to a set of very 
similar data objects. Thus, in Sn

usm the similarity of a data object 
to itself may not be equal to 1 and may be even smaller than the 
similarity of some object pairs, as is illustrated below:  
 
 
 
 
         (a)                  (b)               (c)                   (d) 
Figure 3: Illustration of similarity confidence for single object 

and object pairs 
In Figure 3, the white nodes at the bottom represent the object 
being considered. The black nodes on the top represent the objects 
that the white objects relate to. Arrows between two black nodes 
or two white nodes indicate their degree of similarity through 
their thickness. According to our discussion, (a) is a high 
similarity-confidence object, (b) is a weak similarity-confidence 
object, (c) is a high similarity-confidence object pair, and (d) is a 
low similarity-confidence object pair. 



The SimRank algorithm can be modified slightly so that after 
each reinforcement iteration, data objects in some spaces are 
grouped into clusters according to some clustering algorithm, and 
the corresponding relationship matrices in the URM and 
similarity matrices in USM also are reduced to cluster-cluster and 
cluster-object relationship/similarity matrices. The modified 
URM and USM then can be used in the next iteration of the 
similarity reinforcement calculation. The similarity values 
calculated are used again to cluster data objects in different data 
spaces. This modified iterative reinforcement process can be 
considered as an extension of the ReCom algorithm [33] that 
iteratively clusters data objects in different data spaces using 
interrelationships. 

The theoretical foundation, time/space complexity, and extensions 
of the SimFusion algorithm will be discussed in the following. 

Two Random Walker Model 
Since Lurm can be considered as a single step transition matrix of a 
Markov Chain, the iterative similarity reinforcement process of 
Eq. (10) can be explained in a “two random walker model”. 
Suppose two random walkers start at two data objects in the 
unified space and they walk from one object to another step by 
step. In each step, each of them would choose the next object to 
set foot on according to the probability distribution of how the 
current data is related to other objects as defined in Lurm. If S0

usm 
also can be rendered as an object to object relationship 
distribution matrix, then the reinforced similarity between the two 
original objects on which the two walkers started their trip, can be 
translated into the likelihood that the two walkers meet each 
other, after both of them walk n steps according to Lurm, and then, 
either one of them takes a final step according to Susm. 

4.3 A Comparison with the SimRank Algorithm  
Jeh and Widom proposed the SimRank algorithm [13] in 2002.  
In SimRank, the similarity of two objects also was measured 
according to their contextual structure (relationships to other 
objects). The theoretical assumption behind the SimRank 
algorithm is similar to that of the SimFusion algorithm: “the 
similarity of two data objects can be affected by the similarities of 
other data objects that the two data objects are related to”. The 
basic similarity reinforcement calculation used in the SimRank is:  

Time and Space Complexity 
The space complexity of the SimFusion algorithm is O(n2) (n is 
the total number of objects in the unified space), because we only 
need an nxn matrix to store the URM and another nxn matrix to 
store the USM. In each step of the reinforcement process, the 
similarity between two data objects x and y is updated exactly 
|R(x)|+|R(y)| times, where |R(x)|(|R(y)|) is the number of data 
objects that x(y) relates to (note that all 0 elements in the 
corresponding columns and rows in the URM and USM can be 
pre-excluded from the reinforcement calculation). Suppose d is 
the average number of objects that an object relates to, then, the 
time complexity of the SimFusion algorithm is O(Kn2d), where K 
is the number of iterations. In the worst case that all the data 
objects are fully connected (therefore, d=n), the time complexity 
would increase to O(Kn3). However, in most real world scenarios, 
data objects are sparsely connected to each other and d can be 
considered as a constant with respect to n. 
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where s(a,b) is the similarity value between objects a and b,  
|R(a)| and |R(b)| are the total number of objects related to objects 
a and b, respectively. Ri(a) represents the ith object related to a. C 
is a dampening factor. If we take C=1 and average the value of 
relationships from one object to 1/n (n is the total number of 
relationships from the object) in the URM, then Eq. (6) can be 
considered as a special case of Eq. (12). Different from the 
SimFusion algorithm, which uses matrices to represent object 
pair-wise similarities and pair-wise relationships, the SimRank 
algorithm considered any pair of data objects as the nodes in a 
general directed graph, and created a directed edge from node 
(a,b) to node (c,d) if there are relationships from a to c and from b 
to d. Then, the similarity values of any nodes (pairs of data 
objects) are updated according to Eq. (12) in a similar fashion as 
in the PageRank algorithm. The procedure discussed above is 
equivalent to flattening the nxn USM in the SimFusion algorithm 
into a vector of n2 length, and then updating this n2 length vector 
by iteratively calculating it over a sparse n2xn2 matrix. Jeh and 
Widom interpret their algorithm as a modified random walker 
model: “Random Surfer-Pairs Model”. 

Extensions of SimFusion Algorithm 
The similarity of data objects can not only be reinforced by the 
relationships that they lead to, but also can be reinforced by the 
relationships that lead to them (e.g., [15]). If we create a URM to 
represent all the inbound relationships in a similar way to the 
URM for outbound relationships, then Eq. (9) can be expanded to 
incorporate the similarity reinforcement from both inbound 
relationships and outbound relationships as shown in Eq. (11). 
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There are several major differences between the SimRank and 
SimFusion algorithms: 

In Eq. (11), where out
urmL  is the URM for all the outbound 

relationships, then  can be considered as the 
forward similarity reinforcement component, where the 
similarity between data objects is reinforced by outbound 
relationships.  is the URM for all the inbound relationships 

and  can be considered as the reverse 
similarity reinforcement component, where the similarity 
between data objects is reinforced by the inbound relationships. α 
is a nonnegative parameter used to adjust the relative importance 
between the forward and the reverse similarity reinforcement 
components. The proof of convergence for Eq. (11) also can be 
found in the Appendix. 
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First, the similarity of object pair (a,b) is updated |R(a)|x|R(b)| 
times during each iteration, which is much more than the number 
of updates in the SimFusion algorithm (|R(a)|+|R(b)|). The time 
complexity of the SimRank algorithm is O(Kn2d2) where K is the 
number of iterations and d is the average number of relationships 
a data object has in the unified data space. In the situations where 
data objects are heavily connected to each other (e.g., smooth web 
linkage relationships [4]), the time complexity of the SimRank 
algorithm would grow to O(Kn4). 

Second, the SimRank algorithm assumes that all the relationships 
are binary, and Eq. (12) can be considered as taking an average of 
the similarity values of the object pairs that are related to object 
pair (a,b). However, this assumption is too naïve, since in the real 



world the relationships among data objects are often unequal 
(e.g., a user spending more time reading web page A than web 
page B may indicate the user has a preference for A rather than 
for B). This kind of prior knowledge can be more easily and 
efficiently incorporated into the URM in the SimFusion 
algorithm. 

Third, the parameter C in the SimRank algorithm is the base of 
the “Expected-f Meeting distance” function. It is difficult to 
understand the real world affect of C, and it is difficult to select C 
by intuition either. However, the parameters λij in the SimFusion 
algorithm directly reflect the relative importance of different 
kinds of relationships involved in the SimFusion algorithm and 
they can be tuned by intuition. The SimFusion algorithm is more 
flexible at combining relationships from different sources by 
providing a set of parameters λij, than the SimRank algorithm, 
which only provides a universal constant parameter C. 

Fourth, the SimFusion algorithm can easily be used to model 
most existing similarity-calculating algorithms as described in 
Section 4.4. However the SimRank algorithm only can be used to 
model a few non-iterative similarity-calculating algorithms (e.g., 
[29]). A comparison of the SimFusion and SimRank algorithm is 
summarized in the table below: 

Table 2. A comparison of the two algorithms 
Aspects SimFusion Algorithm SimRank Algorithm 

Assumption 
Similarity 
Reinforcement 
Assumption 

A special case of 
Similarity Reinforcement 
Assumption 

Theoretical 
Foundation 

Two random walker 
model 

Random Surfer-Pairs 
Model 

Time 
Complexity 

O(Kn2d); worst case 
O(Kn3) 

O(Kn2d2); worst case 
O(Kn4) 

Relationship 
Representation 

Represented in values 
closer to the real world 
situations 

Binary representation, 
naïvely takes the average 
of the relationships 

Parameter 
Selection 

Easy to comprehend 
and select by intuition 

Difficult to select by 
intuition 

Real World 
Examples 

Model most existing 
iterative /non-iterative 
similarity calculating 
algorithms 

Model only a few non-
iterative similarity-
calculating algorithms 

4.4 Real World Examples 
Simplified versions of SimFusion that only consider one or two 
types of data objects have been validated through varied 
experiments. For example, we considered only one data space, the 
space of journal articles, and one type of relationship: the 
reference relationship between journal articles, and set the initial 
Susm as the identity matrix. Eq. (11), if we set α=1, actually 
reduces to the co-citation [29] situation, where the similarity of 
two articles is determined by the number of articles they both cite. 
If we set α=0, the reduction is to the bibliographic coupling [15] 
situation, where the similarity of two articles is determined by the 
number of articles that cite them both. 

Let us consider the URM in Eq. (3), which represents a document 
space, term space, and the “containing” relationship of documents 
to terms. Suppose we have no prior knowledge about similarity of 
any data objects and set Susm to be the identity matrix. Applying 
Eq. (9) would result in calculating the pair-wise document 
similarity and pair-wise term similarity according to the 
traditional Vector Space method. It remains an interesting 
problem, whether enriching the URM and USM with some prior 

knowledge (e.g., thesaurus, or document references relationships) 
and iteratively reinforcing the similarity, would result in better 
knowledge of the term similarities, document similarities, and 
document-term similarities? 

Recently, researchers have tried to use query-web page 
relationships to better predict the web object similarities so as to 
help improve the effectiveness of web-clustering algorithms such 
as [22][32]. Their methods for calculating the similarity of web 
objects also can be well modeled by our SimFusion algorithm. 
Suppose there are two data spaces: the Web pages space and the 
query space. The two spaces are modeled in a URM as shown in 
Eq. (7). 
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where Lquery refers to the query content similarity relationship 
matrix and Lwebpage refers to the Web page content similarity 
relationship matrix. If Lquery-page refers to the query with its 
corresponding search list relationship, and Lusm is the identity 
matrix, and λ11=λ22=0, λ12=λ21=1, then applying Eq. (16) on this 
URM will result in Raghavan and Sever’s [22] work, in which 
they measure the similarity of queries based on corresponding 
result document lists. If Lquery-page refers to the web query web 
page click-through relationship, and Susm is the identity matrix, 
and all the λs remain the same, applying Eq. (16) on this URM 
will result in Beeferman and Berger’s[2] clustering method, in 
which they measure the similarity of queries using the similarity 
of their clicked web pages and calculate the similarity of web 
pages using the similarity of the queries that lead to the selection 
of the web pages. If we define λ11>0, λ22>0, λ12>0 and λ21>0, 
applying this URM in Eq. (16), would result in Wen’s [32] work, 
where query similarity is based on both the query contents 
similarity and the similarity relationship of the documents that are 
selected by users who submitted the queries. 

5. EXPERIMENTS 
In this section, we explain how SimFusion can be validated on 
one real world data set. 

5.1 Design 
Our experiment is designed around a real user search click-
through log collected from the MSN search engine. The log 
contains 62.5 millions of query request records with the URLs of 
the corresponding clicked web pages during a 3 hour period in 
2003. The log is formatted in such a way that each query is 
followed by the URLs of the corresponding clicked web pages 
and the number of clicks during a period of time, as shown below: 

Query URL clicks URL clicks 

Search engine google.com 3452 yahoo.com 2179 

We selected the top 10K popular queries in this query log and 
crawled all the corresponding clicked web pages (20K in total). 
Then, we parsed the hyperlinks in the content of the web pages 
and built a hyperlink graph of the web page collection.  

• The similarity of two queries can be reinforced by the 
similarity of web pages they relate to. 

• The similarity of two web pages can be reinforced by the 
similarity of the queries as well as the similarity of other web 
pages they relate to. 



The table shows that SimFusion algorithm achieves a 13.6% 
improvement over the SimRank algorithm and a 67% 
improvement over the tf*idf algorithm in terms of precision at 10. 
A query-by-query breakdown for the improvement of SimFusion 
over SimRank is presented in Figure 4. We will also make a case 
study by analyzing the top 10 similar queries returned for the 
query “pizza hut” by different algorithms as shown in Table 3.  

Thus, the web pages and the queries each form a unique data 
space. Queries are connected to the web pages via click-through 
relationships (inter-type relationship). Web pages are connected 
via hyperlinks (intra-type relationship) in the web page space. A 
URM for our data set can be built as: 
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 Figure 4: Query Breakdown for SimFusion vs. SimRank  

where Lq is the query inter-type relationship matrix. Since there is 
no intra-type relationship in query space, Lq reduces to an identity 
matrix. Ld is the web pages hyperlink adjacency matrix. Lqd and 
Lqd are query click-through relationship matrices that connect 
queries with the web pages. α is a non-negative parameter that 
adjusts the relative importance of the click-through relationship to 
the hyper-link relationship during the similarity reinforcement 
process. Each sub-matrix in (14) is normalized to a row-stochastic 
matrix. A USM also can be created as: 

Table 3. Case Study for query “pizza hut” 
d

T
qd

qdq
urm SS

SS
S =

                                                                                 (15) 
SimFusion SimRank tf*idf 
pizzahut  pizza hut  pizza hut  
pizza hut  pizzahut  pizza 
pizza kfc  donatos pizza 
franchises jack in the box  dominos pizza 
franchise  dairy queen  N/A 
kfc kentucky fried chicken N/A 
papa johns taco bell  N/A 
dominos pizza red lobster  N/A 
dominos  burger king  N/A 

where Sq is the query content similarity matrix, giving similarity 
between queries. Sd is the web page content similarity matrix; Sq 
and Sd are measured using tf*idf [28]. Sqd is the query web-page 
similarity matrix. Since it is not possible to measure the similarity 
between queries and web pages at the beginning, Sqd is set to 0. 
Then we apply the SimFusion algorithm on (14) and (15) to 
iteratively calculate the similarities of queries and web pages. The 
performance of the SimFusion algorithm will be compared with 
the pure content similarity measurement (e.g., tf*idf) and the 
SimRank algorithm. 

Bold fond cells indicate similar queries. We can see that the tf*idf 
can not provide best results because it can only return content 
similar queries (e.g., pizza), on the other hand, SamRank can not 
achieve best performance either because it returns too many 
semantic “marginal” relevant queries (e.g, kfc, taco bell, burger 
king). SimFusion algorithm can be considered as a combination 
of the two extreme algorithms and can achieve best performance 
by returning both content similar (e.g., dominos pizza) and 
semantic similar (e.g., pap johns, dominos) queries in top results. 

5.2 Evaluation Metrics 
We use Precision to measure the performance of the similarity 
calculation algorithm: Given an input object, Precision at N is 
defined as the number of similar data objects identified in the top 
N objects returned by the algorithm: 

N
objectssimiliarofNatprecision #

=                             (16)   

10 human experts were hired to manually identify the similar 
objects returned by different algorithms. The final judgment of 
relevancy was decided by majority vote. 

We also analyze how the number of iterations can affect the 
performance of the SimFusion algorithm. We evaluate the 
precision of SimFusion at each iteration (1 to 9), and draw the 
precision-iteration curve in Figure 5 below: 

5.3 Experimental Results 
We set α=0.5 and developed the URM as in Eq. (14) and 
developed USM as in Eq. (15). Then, we iteratively calculate the 
SimFusion algorithm until convergence (9 iterations in our 
experiment). Randomly selected sets of queries and URLs are 
used to evaluate the effectiveness of the SimFusion algorithm. 
The results are reported below: 
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5.3.1 Results on Similar Queries 
Since it is difficult to evaluate the similarity of single word 
queries to other queries, we randomly chose 30 multi-word 
queries from the query log and evaluate the precision at top 10 
queries returned by SimFuion, SimRank and tf*idf algorithm for 
each of the 30 queries. Then, we compare the average precision at 
10 for the three algorithms. The results are shown below: 

Figure 5: Precision vs. Iteration curve for SimFusion  

 SimFusion  SimRank tf*idf 
Average Precision at 10 0.640 0.563 0.383 

We can see from Figure 5 that SimFusion improve the similarity 
measurement faster at the initial iterations than at the latter 
iterations. Similar findings had also been reported in [13]. 



5.3.2 Results on Similar Web pages 
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 Figure 7: Performance curve for different α values in 
SimFusion algorithm 

We use the similar evaluation metric used in 5.3.1 to evaluate the 
performance of SimFusion algorithm on web pages. We 
randomly chose 10 web pages from the log, for each of them we 
evaluate the similarity of the top 10 web pages returned by 
SimFusion and SimRank algorithms respectively. After 
evaluation we found that the average precision for SimFusion 
algorithm is 0.8, and is 16% better than the SimRank algorithm, 
which achieves an average precision of 0.69. A detailed precision 
comparison of the SimFusion and SimRank algorithm for the 10 
web pages are shown in Figure 6 below. 

We can see from Figure 7 that the SimFusion algorithm achieve 
best performance when α=0.3, which indicates that the query web 
page click-through relationship is more important than the content 
similarity of queries, when used to calculated the similarity of 
different queries. When annotating the data, we also found that, 
different queries find their best similar queries at different α 
values, thus, it will be interested to think whether it is possible to 
automatically determine a set of parameters for each data object 
being considered in the URM. 

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10

Pr
ec

is
io

n

SimFusion

 

SimRank

Figure 6: SimFusion vs. SimRank on web page similarities 
6. CONCLUSION AND FUTURE WORK We also conduct a case study by analyzing the top similar web of 

“http://www.imdb.com”, returned by the two algorithms. In this paper, we highlighted the research topic of web 
information integration, that is: “How can the broad variety of 
heterogeneous data and relationships in the web be effectively 
integrated to improve the performance of various information 
applications?” In order to better understand this, we introduced 
the Unified Relationship Matrix (URM) to represent 
heterogeneous data objects and their relationships in a unified 
manner. Then, we tackled the information integration problem by 
analyzing how different relationships can be used to improve the 
similarity measurement of data objects. Next, we introduced the 
SimFusion algorithm. By iteratively computing over the URM, 
the SimFusion algorithm can effectively integrate relationships 
from multiple sources to measure the similarity of data objects. 
Experiments based on real world data demostrate that the 
SimFusion algorithm can significantly improve the similarity 
measurement of data objects over both the traditional content-
based algorithms and the cutting edge SimRank algorithm. 

Table 4. Case Study for web page “www.imdb.com” 

SimFusion SimRank 
http://movies.msn.com/default http://www.imdb.com 
http://www.imdb.com http://movies.go.com 
http://movies.go.com http://www.ifilm.com 
http://www.amazon.com/exec/obi
dos/tg/browse/-/130// 

http://www.rame.net/faq/deadporn 

http://video.barnesandnoble.com/
home_cds2.asp?pid=1411&sourc 

http://www.bbc.co.uk/learning/ 

http://www.movieclicks.com http://www.bbc.co.uk/radio1 
http://movies.channel.aol.com http://www.hollywood.com/inde

x.html 
http://www.allmovie.com http://www.absolutepictures.com/l

/lords_traci 
http://www.reel.com http://www.bbc.co.uk/radio 
http://www.mrqe.com http://www.reel.com In the future, we will use machine-learning technologies to 

automatically determine the values of the parameters in the URM, 
and to optimize the performance of the SimFusion algorithm. We 
also will improve the efficiency of the SimFuion algorithm by 
pruning the URM as well as parallelizing the calculation, so that it 
can be easily applied to popular applications (i.e., the large scale 
mining application used in Google). 

Bold fond cells indicate similar queries in the table above. We can 
see that the reason the SimFuison algorithm out performances the 
SimRank algorithm is that SimFuion has returned more content 
similar web pages (e.g., www.movieclicks.com) than the 
SimRank algorithm while still keeps some semantic relevant web 
pages returned by the SimRank algorithm (e.g., www.reel.com). 
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APPENDIX  
Proof of Convergence for the SimFusion algorithm  
We prove the convergence of iterative equation (11). The proof of 
convergence for Eq. (10) is similar to that of Eq. (11) if we have 

0α =  or 1α = . To prove Eq. (11), two definitions are needed 
first. 

Definition 1: Given matrices m nA R ×∈ , , then their 
Kronecker Product

p qB R ×∈

A B⊗ is, 
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Definition 2: the Row-First Vectorization of a matrix m nA R ×∈ , 
denoted as A

r
, could be represented as

r
, where 

, i  are row vectors of A. 
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Let matrix , then the 

iterative equation (11) can be rewritten as:

( ) (1 )(out out in in
urm urm urm urmH L L L Lα α= ⊗ + − ⊗

usmS 1n n
usmHS −=

r r
. ■ 

Lemma 2: The matrix is a 
non-negative, row-stochastic matrix. 

( ) (1 )(out out in in
urm urm urm urmH L L L Lα α= ⊗ + − ⊗ )

Proof: Step1, is a non-negative matrix: H
Without loss of generality, both and can be denoted by 
(7). It is obvious that (7) is a non-negative matrix since are 

non-negative sub-matrices and . From the 

definition of Kronecker Product (definition 1), we know that 
should be a non-negative matrix. In other words, both 

and are non-negative matrices. 
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in
urmL

ijλ

t
rmL

out
urmL

 1 ,i j> ≤

ijL

0, N≤

urm urmL L⊗
in in
urm urmL L⊗

0

out ou
urm uL ⊗

1α≤ ≤ , must be a non-negative matrix. H
Step2, is a row-stochastic matrix: H
From its definition in Section 4.2 we know that matrix (7) is a 
row-stochastic matrix. Since the Kronecker Product of two row-
stochastic matrices is still a row-stochastic matrix, 
then should be a row-stochastic matrix. In other 

words, both and are row-stochastic 

matrices. Moreover, since

urm urmL L⊗
in in
urm urmL L⊗ out out
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stochastic matrix. ■ 

Lemma 3: If  is non-negative, row-stochastic and reducible, 

there exists a permutation matrix P, such that
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Here, H1 is a non-negative, row-stochastic, and irreducible matrix. 
Proof: Note that from the definition of Kronecker Product, 

 shall preserve the symmetry property of . Then 
the proof of lemma 3 is the same as the proof of lemma B in the 
appendix of [35], if we use  to replace L 

urm urmL L⊗ urmL

urmL ‘
urm.■ 

Proof: from definition 1 and definition 2, 

Then using lemma 1, the iterative Eq. (11), can be transformed 
into 
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Proof: From lemma 2 and lemma 3, and lemma C in the 
Appendix of [35], we know that if H is irreducible, the iterative 

method 1n
usm usmS HS n−=
r r

 converges to the principle eigenvector of 
H. Similar to the proof in appendix of [35], if we use H to replace 

L ‘urm, and use 1
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 to replace , then the 
theorem in the appendix of [35] tells us that iterative method 
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Theorem 1: For the unified matrices  and defined in 

Eq. (11), iterative method 
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