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Abstract
DNA synthesis and nuclear division in the developing frog egg are controlled by fluctuations in the activity
of M-phase promoting factor (MPF). The biochemical mechanism of MPF regulation is most easily studied
in cytoplasmic extracts of frog eggs, for which careful experimental studies of the kinetics of phosphorylation
and dephosphorylation of MPF and its regulators have been made. In 1998 Marlovits et al. used these data
sets to estimate the kinetic rate constants in a mathematical model of the control system originally proposed
by Novak and Tyson. In a recent publication, we showed that a gradient-based optimization algorithm finds
a locally optimal parameter set quite close to the “Marlovits” estimates. In this paper, we combine global
and local optimization strategies to show that the “refined Marlovits” parameter set, with one minor but
significant modification to the Novak-Tyson equations, is the unique, best-fitting solution to the parameter
estimation problem.

Keywords: global optimization, computational biology, network dynamics, ordinary differen-
tial equations, cell cycle, Xenopus

Abbreviations: DIRECT, dividing rectangles; ODE, ordinary differential equation; ODR, or-
thogonal distance regression; WSOS, weighted sum of squares

1. INTRODUCTION
The physiological attributes of a cell, its abilities to move and feed, to respond to external stimuli, to

grow and reproduce, to repair damage, etc., are controlled ultimately by complex networks of interacting
genes, proteins and metabolites ([1], [2]). These mechanisms can be exceedingly complex, with hundreds or
thousands of interacting components [3], and ferreting out the implications of these “wiring diagrams” is
beyond the scope of intuitive biochemical reasoning or reductionistic experimental data collection ([4], [5],
[6]). New theoretical and computational methods are needed to make sense of the data and to gain insights
into the “molecular logic” of intracellular regulatory systems ([7], [8], [9], [10]).

The gold standard of computational modeling in this domain are “bottom-up” models based on detailed
biochemical kinetic descriptions of the underlying control systems, for example ([11], [12], [13], [14], [15], [16],
[17], [18], [19], [20]). These models are usually framed in terms of nonlinear differential equations (ordinary,
partial, or stochastic). When properly formulated, such models have distinct advantages. (1) They are
closely allied to real molecular processes occurring inside cells. (2) They provide quantitatively accurate
accounts of the physiological properties of cells. And (3) they can provide reliable predictions of hitherto
unobserved properties of normal and mutant cells (for example, [21], [22], [23], [24]).

A major drawback of bottom-up models is that they contain many kinetic rate constants whose numerical
values are unknown at the outset of the modeling exercise. The rate constants must be inferred by fitting
simulations of the model to experimental observations. Parameter identification may be done by careful
collection of biochemical data on component reaction steps ([16], [25]), by tedious fitting to a large collection
of qualitative characteristics of cells ([12], [20]), or by rough agreement to a few crucial features of a cell’s
behavior ([26], [17]). When a sufficient amount of quantitatively reliable data is available, a modeler should
estimate rate constants by optimizing the goodness-of-fit of the model equations to the data.

Parameter optimization begins by defining an objective function that measures the distance between
the “model” and the “data”. Generally, this distance is computed as a weighted sum of squares of distances
between observed data points and corresponding simulated points. Once the objective function has been
defined and computed, there are many well-tested algorithms for minimizing the function over the space of
model parameters (rate constants). These algorithms are generally classified as local or global, depending on
the scope of their search. Local optimization algorithms stop at the first sign of a local minimum, i.e., when
the value of the objective function is lower at some point in parameter space than it is at any nearby points.
Local algorithms usually work by identifying “downhill” directions in parameter space and then moving
down hill as fast as possible to a local minimum. Local algorithms are computationally efficient, but they
often fail to find better solutions of the optimization problem (deeper pits of the objective function) in far
away regions of parameter space. Global optimization algorithms have some ability to search beyond local
minima to see if better fits can be found elsewhere in parameter space. Global search algorithms generally
combine an exploration step (which may be quite random or systematic) with a selection step (favoring lower
values of the objective function).
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We have been investigating the parameter optimization problem for a particular example of bottom-up
modeling: the control of cell division in frog eggs. In Zwolak et al. [27], we used local optimization to refine
a set of rate constants originally estimated by Marlovits et al. [28] by rough fitting of a mathematical model
to biochemical data obtained from frog egg extracts. In this paper we apply a global optimization algorithm
to show that our 2004 set of rate constants is indeed a globally optimum set of parameters. As a bonus, we
find that the underlying mathematical model can be simplified somewhat, by replacing a Michaelis-Menten
rate law (two kinetic parameters) with a mass-action rate law (one kinetic parameter).

2. PROBLEM DESCRIPTION
Our goal is to find an optimal parameter set for a mathematical model of the biochemistry underlying

DNA synthesis and nuclear division in frog egg extracts [28]. The model (Fig. 1), proposed originally by
Novak and Tyson [29], consists of a reaction network (protein species interconnected by chemical reactions)
whose dynamics are cast as a set of nonlinear ordinary differential equations (ODEs). We stick with an ODE
representation, because ODEs are easily simulated by computers and they accurately describe the chemical
kinetics of well stirred systems. We may treat the egg extracts as well stirred because diffusion and transport
occur much faster than the chemical reactions under consideration. The experimental data to be fit ([30],
[31], [24], [32]) are often images of “spots” on polyacrylamide gels. The intensity of each spot represents the
abundance of a particular protein species in the cell. We must estimate the relative intensity of a spot (say,
60% of maximum) in order to have numerical results for computer calculations.

2.1 Model

The reaction network in Fig. 1 can be converted into a set of ODEs for the time rates of change of
the concentrations of all the proteins in the reaction mechanism. Before doing so, we make appropriate
simplifications to the mechanism in Marlovits et al. [28]. All the experiments analyzed in this paper are
carried out in frog egg extracts supplemented with cycloheximide, an inhibitor of protein synthesis. Hence
the extract does not synthesize cyclin from its own store of cyclin mRNA, so we set k1 = 0 and ignore
this reaction. The experimenter adds to the extract a known amount of exogenously produced cyclin. In
all cases, the added cyclin protein has been genetically engineered to be resistant to cyclosome-mediated
degradation. Hence k2 = 0, and we can ignore all the degradation steps in the mechanism. Because cyclin
is neither synthesized nor destroyed, the total concentration of cyclin protein in the extract is constant:

[monomeric cyclin] + [MPF] + [preMPF] = [total cyclin] = constant,

where MPF is the active Cdk1:cyclin dimer and preMPF refers to the phosphorylated (low activity) form
of the dimer. Next, we make the assumptions (well supported by experiment) that (1) the binding of
cyclin monomers and Cdk1 monomers is very fast (k3 is large) and (2) [total Cdk1] > [total cyclin]. Hence
[monomeric cyclin] << [total cyclin], and the conservation condition on cyclin subunits becomes

[MPF] + [preMPF] = [total cyclin].

With these simplifications, the mechanism in Fig. 1 can be described by three ODEs

dM

dt
=
(

v′d(1−D) + v′′dD
)

(CT −M)−
(

v′w(1−W ) + v′′wW
)

M, (1)

dD

dt
= vd

(

M(1−D)

Kmd + (1−D)
−

ρdD

Kmdr +D

)

, (2)

dW

dt
= vw

(

−
MW

Kmw +W
+

ρw(1−W )

Kmwr + (1−W )

)

, (3)

where
M = [MPF]/[total Cdk1],
D = [Cdc25P]/[total Cdc25],
W = [Wee1]/[total Wee1],
CT = [total cyclin]/[total Cdk1].
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Fig. 1. The biochemical control system for MPF activation in frog egg extracts from Zwolak et al. [27].
MPF = mitosis-promoting factor = dimer of a cyclin-dependent kinase, Cdk1 (rectangle), and a B-type
cyclin (oval). Rising MPF activity drives an extract through DNA synthesis, nuclear envelope breakdown,
chromosome condensation, and alignment of replicated chromosomes on the mitotic spindle. Falling MPF
activity allows for sister chromatid separation, nuclear reassembly, and licensing of DNA for another round
of replication. Cycles of MPF activation and inactivation are driven by phases of cyclin synthesis and
degradation, and by phases of Cdk1 phosphorylation (by Wee1) and dephosphorylation (by Cdc25). The
newly fertilized egg has a large supply of Cdk1, the enzymes Wee1 and Cdc25, and cyclosomes (the protein
complexes that promote cyclin B degradation in the steps labeled 2). The only missing component is Cyclin
B. As cyclin is synthesized (step 1), it combines rapidly (step 3) with Cdk1 monomers to form active MPF
dimers. The active dimers, however, are rapidly phosphorylated by Wee1 to a less active form. During this
phase of the cycle, cyclins are relatively stable because the cyclosome is inactive. For the extract to enter
mitosis, the inhibitory phosphate groups must be removed from Cdk1 by Cdc25. Activation of MPF is an
autocatalytic process because active MPF activates Cdc25 and inhibits Wee1 (PPase is a phosphatase that
opposes MPF in these reactions). As MPF activity rises, nuclei are driven into mitosis and cyclosomes are
activated. The cyclosomes promote rapid cyclin degradation, which destroys MPF activity and allows nuclei
to finish mitosis and prepare for a new round of DNA replication.

In Eqs. (1)–(3), time is expressed in minutes, and all concentrations are dimensionless numbers, having
been scaled relative to some appropriate reference concentration. In frog egg extracts, [Cdk1] is typically
close to 100 nM ([33], [24]). Total concentrations for Cdc25, Wee1 and PPase are unknown, so we set
each to 1 AU (“arbitrary unit”). All vs are pseudo-first-order rate constants (units = min−1). All Ks
are dimensionless Michaelis constants, i.e., ratios of true Michaelis constants (K̂, units = concentration)
to reference concentrations. The ρs are dimensionless numbers expressing the activity of the phosphatase
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(PPase, in Fig. 1) relative to MPF. The rate constants refer to the following reactions:

v′d — dephosphorylation of preMPF by Cdc25 in its less-active form,
v′′d — dephosphorylation of preMPF by Cdc25 in its more-active form,
v′w — phosphorylation of MPF by Wee1 in its less-active form,
v′′w — phosphorylation of MPF by Wee1 in its more-active form,
vd — phosphorylation of Cdc25 by MPF,

vdρd — dephosphorylation of Cdc25 by PPase,
vw — phosphorylation of Wee1 by MPF,

vwρw — dephosphorylation of Wee1 by PPase.

Zwolak et al. [27] describe how the parameters in Eqs. (1)–(3), the vs and Ks, are related to the
fundamental kinetic parameters. They also explain how to introduce a dilution factor into the calculations,
because in some experiments a buffered solution of proteins is added to the frog egg extract, increasing the
volume of the extract and thereby diluting all the endogenous proteins in the extract. Dilution changes
the values of some of the model’s parameters from one experiment to the another, and must be taken into
account when trying to fit the model to experimental observations.

2.2 Experiments

Our goal is to obtain the “best” estimates of the rate constants from the experimental data presented
in Fig. 2. The figure also presents the best-fitting curves derived from Eqs. (1)–(3), using the optimal
parameter values (Table 1). Experiments A–H in Fig. 2 are straightforward measurements of enzyme activity
as functions of time. The data in Figs. 2I and 2J are more indirect and require further explanation.

Table 1. Selected points in parameter space used and discovered in this work. All the points were obtained
by fitting the experimental data summarized in Zwolak et al. [27]. The Marlovits et al. [28] point was fit
by hand. The point βLocalOnly is an optimal point obtained after local optimization was performed with
βMarlovits as an initial point. βGlobal is the result of global optimization followed by local optimization using
the best point returned by the global optimizer. βGlobal3 is the result of local optimization performed on
the third best point returned by the global optimizer. It is presented here for comparison to βGlobal, as they
are very similar and suggest there may be a manifold of solutions. βSimple is the best point from global and
local optimization on the simplified Frog Egg model with slightly different parameter names given that the
model is different.

Rate Constant βMarlovits βLocalOnly βGlobal βGlobal3 βSimple

v′d 0.017 0 .0193 0.0156 0.0153 0 .0152

v′′d 0.17 0 .189 0.187 0.187 0 .187

ρd 0.05 0.0126 0.0013 0.0004 -

v′w 0.01 5 .1 × 10−6 4.4× 10−9 7.8× 10−7 6 .4 × 10−7

v′′w 1.0 0 .986 1.05 1.05 1 .05

ρw 0.05 0 .0376 0.0369 0.0366 0 .0366

Kmd 0.1 0.356 5.73 20.7 -

Kmdr 1.0 0 .257 0.130 0.115 0 .111

Kmw 0.1 0 .0141 0.0187 0.0194 0 .0196

Kmwr 1.0 0 .0596 0.0736 0.0728 0 .0736

vd 2.0 5.57 44.4 152.7 -

vw 2.0 2 .10 2.19 2.20 2 .21

vmd - - - - 7.24

vdr - - - - 0.0573

E(β) 0.6001 0.03569 0.03173 0.03166 0.03165
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Fig. 2. Experimental data ( ) used for parameter estimation, simulations ( and ) generated by the
optimal points βGlobal and βLocalOnly, respectively, and simulations ( ) generated by the Marlovits et al.
[28] parameters. (A) Kumagai and Dunphy [31], Fig. 3C. Phosphorylation of MPF during interphase, when
Wee1 is more active. (B) Kumagai and Dunphy [31], Fig. 3C. Phosphorylation of MPF during mitosis, when
Wee1 is less active. (C) Kumagai and Dunphy [31], Fig. 4B. Dephosphorylation of preMPF during interphase,
when Cdc25 is less active. (D) Kumagai and Dunphy [31], Fig. 4B. Dephosphorylation of preMPF during
mitosis, when Cdc25 is more active. (E) Kumagai and Dunphy [30], Fig. 10A. Phosphorylation of Cdc25
during mitosis, when MPF is more active. (F) Kumagai and Dunphy [30], Fig. 10B. Dephosphorylation of
Cdc25 during mitosis. (G) Tang et al. [32], Fig. 2. Phosphorylation of Wee1 during mitosis, when MPF is
more active. (H) Tang et al. [32], remark in text (p. 3430). Dephosphorylation of Wee1 during interphase.
(I) Moore [35]. Time lag for MPF activation. (J) Moore [35]. Thresholds for MPF activation (↑) and
inactivation (↓).

A fundamental proposal of the Novak and Tyson [29] model of MPF oscillations in frog egg extracts
is that the processes of MPF activation (dephosphorylation of preMPF by Cdc25) and MPF inactivation
(phosphorylation of MPF by Wee1) are jump transitions on a hysteresis loop. To see this, we solve Eqs. (1)–
(3) for the steady-state (ss) concentrations of MPF, Cdc25, and Wee1, and plot (Fig. 2J) Mss as a function
of CT (total cyclin added to the extract, a parameter easily controlled by the experimentalist). The resulting
system has three distinct behaviors depending on the concentration of total cyclin. The system is either
stable with low MPF activity and CT < CI , stable with high MPF activity and CT > CA, or bistable with
high or low MPF activity depending on whether MPF activity was initially high or low and CI < CT < CI

([29], [27]).

The predicted range of cyclin concentrations for which the MPF control system is bistable has recently
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FIG. 2. Continued.

been confirmed experimentally by Sha et al. [24] and Pomerening et al. [23]. The observed range is indicated
by the two arrows in Fig. 2J. The absolute amount of exogenously prepared, nondegradable cyclin that must
be added to the extract at each transition point varies from one experiment to the next (e.g., 20–40 nanomol/L
at the activation threshold), depending upon uncontrollable features of the procedure for preparing cyclin
protein. Presumably, in some preparations, a fraction of the cyclin is inactive, so more prepared cyclin
must be added to the extract to induce the transition. Comparing experiments, we find that the minimum
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amount of nondegradable cyclin needed to induce MPF activation is 16nM, so we take this value as the
activation threshold. In all experiments, the ratio of inactive threshold to the activation threshold is always
1/3 (regardless of their absolute magnitudes), so we take this ratio as our second experimental datum.

Novak and Tyson [29] predicted further that the time lag for activation of MPF should increase dramat-
ically as the cyclin concentration approaches the activation threshold (16nM) from above. This prediction
was confirmed by Sha et al. [24], and their data are presented in Fig. 2I.

In what follows, we shall refer to this collection of equations and experimental data as the “Xenopus
model,” and attack the problem of finding a globally optimum solution to the data-fitting problem.

3. METHODS AND ALGORITHMS
Parameter estimation for problems like this is a complicated business, demanding a variety of software

tools for diverse tasks and careful setup of the numerical parameters in each tool. In our case, the tasks
are global optimization, local optimization, integration of stiff ODEs, and “transformation” of simulation
output (e.g., MPF activity as a function of time) into the format of complex observations (e.g., MPF
thresholds). The first three tasks have mature tools publicly available. The fourth task is highly specific
to the scientific situation and requires specialized software. For this problem, the difficult transformations
involved experiments I and J in Fig. 2. The strategy of these transformations is described in Zwolak et al.
[27].

With these transformations in hand, we calculate the weighted sum of the squared differences of the
calculated properties and the observed properties (Fig. 2) and provide this sum as the objective function
to public domain software for numerical optimization. We use VTDIRECT [36] to perform a global search
of parameter space, followed by ODRPACK [37], to refine the parameter values for our model. The model
equations are integrated by LSODAR [38], a public domain software package that efficiently solves stiff
and nonstiff systems of ODEs. The VTDIRECT, ODRPACK, and LSODAR codes were chosen, after
consideration of many packages, for their suitability to this problem.

3.1 Objective Function

In general, a model predicts the values of dependent variables (y) from independent variables (x) and
parameter values (β):

yi = fi(xi;β), i = 1 . . .n,

where y, x, and β are (in general) all vectors and fi is the model for the ith datum. Suppose the experimental
data can be expressed by vectors yi and xi, i = 1, . . . , n. If the model fits the data perfectly, for a specific
parameter vector β̂, then yi = fi(xi; β̂) for all i. It is always the case that there are discrepancies between
the model and observations because of errors in the measurements and/or inadequacies of the model. The
objective function is a scalar measure of goodness-of-fit where lower values represent a better fit of model to
data. Optimizers search for parameters to minimize the objective function.

We do not assume that all measurement errors are in the dependent variables, and in fact, our model and
data suggest error in the independent variable exists. For example, when the threshold for MPF activation
in the model is greater than any of the time lag data points the error in the dependent variable, time, is
infinite. This occurs even if the data point is close to the timelag curve in the independent variable, total
cyclin concentration. For reactions such as this we seek to minimize the weighted sum of squares (WSOS)
of the orthogonal distances between the model and the data:

Emin = min
β,δ

(

n
∑

i=1

wǫiǫ
2
i +wδiδ

2
i

)

, (4)

subject to the constraints

ǫi = fi(xi + δi;β) − yi, i = 1, . . . , n. (5)

In Eq. (4), ǫi and δi are the residuals for the dependent and independent variables, respectively, and wδi and
wǫi are weights for the errors. The weights are used to translate all observables into a common “currency”
and to express the user’s confidence in the reliability of different observations. The solution of problem
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(4)–(5) consists of β̃, δ̃, ǫ̃, Emin, giving the optimal parameter vector, the minimal discrepancies between
model and observations, and a scalar measure of the overall goodness-of-fit. Convergence to the minimum
solution β̃, δ̃, ǫ̃, and Emin is achieved by adjusting β and δ, where δ is treated like β—as an independent
unknown.

We suggest weights of the form

wǫi =
αi

1 + y2i
, wδi =

αi

1 + x2
i

,

where αi is a dimensionless number that assigns a relative importance to the ith data vector. The terms x2
i

and y2i in the denominator make the squared residuals relative and the addition of 1 ensures that experimental
data close to zero will not increase the weights to unreasonably high values. In our case, we choose αi = 1
for all data except the thresholds. For the thresholds we choose αi = 3 because these two data points
are actually estimated from many separate observations, and thus should be given more significance in the
optimization procedure.

3.2 VTDIRECT

VTDIRECT ([36], [39], [40]) implements the DIRECT algorithm described in Jones et al. [41] and
outlined here. The algorithm divides the search space (a p-dimensional box, assuming β is a p-vector) into
boxes and systematically subdivides the boxes in search of regions of parameter space where the objective
function values are small. The algorithm is deterministic, globally convergent, and (in a certain sense)
computationally efficient. VTDIRECT calls a user-supplied objective function to evaluate points in the
search space. Only these function evaluations are used; VTDIRECT does not use derivative information.
Multiple points in parameter space are returned as potentially optimal with one point having the best value
of the objective function.

The algorithm operates on a list of boxes and objective function values calculated at the center of each
box. Initially there is a single box, encompassing the region of parameter space to be searched. In the
main loop, the algorithm decides which boxes from its list to subdivide, divides them into smaller boxes,
evaluates E at the center of each new box, adds the new boxes to its list, and repeats. (Note that δ and
ǫ are not optimized by VTDIRECT. Instead, at each point βi that VTDIRECT requests, the orthogonal
distance (δi, ǫi) is calculated using Levenberg-Marquardt, and the WSOS is returned.) Fig. 3 illustrates
how VTDIRECT might proceed on a two-dimensional parameter space after initialization, one iteration, five
iterations, and ten iterations.

VTDIRECT selects boxes to be divided from its list of boxes by computing the convex hull on the
lower right envelope of a scatter plot of function values versus box diameters; all boxes on the convex hull
are divided. Figure 4A shows a possible scatter plot of boxes and the convex hull that VTDIRECT would
compute with this scatter plot. The box diameter used in this plot is the length of the longest line that fits
in the box (the line goes from a corner through the box center and to the opposite corner). VTDIRECT has
a parameter ǫ that controls the bias towards exploration or convergence. ǫ’s effects can be seen graphically
in Fig. 4B. Implementation aside, the role of ǫ can be understood as a fictitious box B∗ inserted into the
list of boxes with a diameter of 0 and a function value of E∗ := Emin − ǫ|Emin|, where Emin is the smallest
function value evaluated so far. Although B∗ will never be divided, it is used in the convex hull and may
cause small boxes to be passed up for division on the current iteration.

The main loop continues until one of these stopping criteria are met: iteration limit, function evaluation
limit, minimum box diameter tolerance, or relative change in Emin tolerance. VTDIRECT then returns the
box Bmin containing the parameter vector βmin associated with Emin as the best parameter values thus
far. Optionally, more parameter vectors can be returned with a user-supplied minimum separation ρ. These
additional vectors are selected by removing all boxes within the minimum separation distance from Bmin,
including Bmin, then returning the next best box. Then, repeat by removing boxes within the minimum
separation distance of the next best box and return a new next best box until all boxes have been removed
from the box list.

We performed a few trial runs to see how fast VTDIRECT converges for our particular problem. We
used these results to determine good parameters for VTDIRECT, considering that local optimization by
ODRPACK would be run on each of the points returned by VTDIRECT. We used 0.001 as the tolerance for
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Fig. 3. A pictorial example of rectangle divisions made by VTDIRECT for a simple 2-dimensional example
problem from Watson and Baker [40]. VTDIRECT quickly detects the local minimum after 5 iterations.
After 10 iterations, VTDIRECT has refocused its efforts on the global minimum.

the relative change in Emin and left the other stopping criteria to their defaults (no limits). We used 0.01
for ǫ and 1/3 for ρ, the minimum separation relative to the initial box diameter. For the objective function
we used the same WSOS function (above) for both VTDIRECT and ODRPACK. Later we modified ǫ, ρ,
and the function evaluation limit while trying to rediscover the βLocalOnly point (see the Results section).

3.3 ODRPACK

ODRPACK uses a trust region Levenberg-Marquardt method with scaling to minimize E [42]. In doing
so ODRPACK needs to calculate Jacobian matrices (partial derivatives of the weighted vector (ǫ, δ) with
respect to β and δ). ODRPACK can calculate these matrices by forward differences, centered differences,
or by a user-supplied routine. Forward differences were used here. The default tolerances and scaling were
used, and the maximum number of iterations was set to 10,000. The ODRPACK code is described in detail
in Boggs et al. [43] and summarized for this problem in Zwolak et al. [27].

3.4 LSODAR

All solutions of the ODEs (1)–(3) were computed by LSODAR, a variant of LSODE ([44], [45], [38]),
which automatically switches between stiff and nonstiff methods and has a root finder. LSODAR starts
with a nonstiff method and switches to a stiff method if necessary. LSODAR’s root finder is used in this
application to find the time lag for MPF activation. For nonstiff problems LSODAR uses Adams-Moulton
(AM) of orders 1 to 12. For stiff problems LSODAR uses backward differentiation formulas (BDF) of orders
1 to 5. With both methods LSODAR varies the step size and order. LSODAR switches from AM to BDF
when AM is no longer stable for the problem or cannot meet the accuracy requirements efficiently [46]. The
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Fig. 4. These scatter plots represent a possible collection of boxes that VTDIRECT may have after some
iterations. The objective function value E at the center of each box is plotted versus the box diameter (length
of the longest line the box can contain). The points on the solid black line represent the boxes VTDIRECT
will divide in the current iteration. (A) shows VTDIRECT’s default behavior, which is to compute the
convex hull on the lower right envelope of the scatter plot. (B) shows VTDIRECT’s behavior when ǫ is set
to a positive value. E∗ is Emin − ǫ|Emin|.

root finder in LSODAR is based on ZEROIN [47]. ZEROIN is based on code by Dekker [48]. LSODAR
detects a root when the sign changes for the user-defined subroutine GEX. The tolerances are set to 10−10

for both relative and absolute error. A tolerance of 10−10 is used when calculating a root for a function of
the form M(t)−Mroot, where Mroot is the value of the function M(t) for which a time, t, is desired.

4. RESULTS

4.1 Global optimization of the Xenopus model

In a previous publication [27] we estimated best-fitting parameter values for the Xenopus model by
local optimization, using the Marlovits et al. [28] parameters as a starting point for ODRPACK. In this
paper we report on global optimization over a parameter range passed to VTDIRECT. The results of
global optimization became starting points for ODRPACK to refine the parameter estimates. This strategy
uncovered several local minima and the “global” minimum. The global minimum we found is different from
the local minimum close to the Marlovits et al. [28] starting point. The value of the global minimum is
slightly smaller (by 9%) than the value of the local minimum found in Zwolak et al. [27]. The parameters
found by global optimization suggest a mathematical simplification of the model, and we recomputed the
global minimum for the simplified model.

Table 2 contains the WSOS for all the initial and final points used in the parameter estimation. A
baseline run was performed with βMarlovits as the initial parameters using local optimization and the compu-
tation converged to βLocalOnly, which is similar to results from Zwolak et al. [27], but not identical because
we are using different weights in this paper. Global parameter estimation was run with the initial range
in Table 3 and a relative minimum separation of 1/3, and VTDIRECT returned four points in parameter
space. Those four points were then given to the local optimizer (ODRPACK) to be refined and yielded
the parameter vectors labelled βGlobal, βGlobal2, βGlobal3, and βGlobal4 in Table 2. Notice that βGlobal is
the optimal parameter set for the Xenopus model, where βGlobal2, βGlobal3, and βGlobal4 are locally optimal,
globally suboptimal solutions.

βGlobal2 and βGlobal4 were thrown out because of their high WSOS compared to βGlobal and βGlobal3.
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Table 2. Weighted sum of squares (WSOS) of the residuals for local parameter estimation with various
starting points from the global optimizer. Also included is the Marlovits et al. [28] initial guess.

Point WSOS

βMarlovits 0.60014

βLocalOnly 0.0356919

βGlobal 0.03173179

βGlobal2 0.2515503

βGlobal3 0.0316594

βGlobal4 0.14134885

βGlobalContinued 0.03165119

βSimple 0.0316514

βSimple2 0.2516655

βSimple3 0.0316593

βGlobal and βGlobal3 have similar parameter values as can be seen in Table 1. These points in parameter
space were explored further.

4.2 Simplification of the Xenopus model

The points βGlobal and βGlobal3 differ considerably from βLocalOnly in that the parameters Kmd and vd
are much larger in the “global” vectors than in the “local only” vector. Two parameters characterize the
Michaelis-Menten function used to describe the kinetics of Cdc25 phosphorylation by active MPF. The value
of Kmd is more than five times larger than the maximum concentration of Cdc25 (scaled to be 1). Hence,
substrate concentration is always ≪ Kmd, and the enzyme (MPF) is operating in the linear range of its
kinetic rate law. From a mathematical perspective,

vdM(1−D)

Kmd + (1−D)

becomes
vdM(1−D)

Kmd

for Kmd ≫ (1−D), and then the ratio vd/Kmd can be simplified to a single constant vmd. Figure 5 demon-
strates that this simplification of the rate law is entirely justified for values of inactive Cdc25 concentration
in its operational range, 0–1.

The new model is

dM

dt
=
(

v′d(1−D) + v′′dD
)

(CT −M)−
(

v′w(1−W ) + v′′wW
)

M, (6)

dD

dt
= vmdM(1−D) −

vdrD

Kmdr +D
, (7)

dW

dt
= vw

(

−
MW

Kmw +W
+

ρw(1−W )

Kmwr + (1−W )

)

, (8)

with the following new parameters:

vmd — mass action rate constant, replacing vd/(Kmd + (1−D)),
vdr — dephosphorylation of Cdc25 by PPase, replacing vdρd.

After this simplification the points βGlobal and βGlobal3 are seen to be the same solution: the values of
(vmd, vdr) are (7.75, 0.0074) and (7.36, 0.0079) for βGlobal and βGlobal3, respectively.
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Fig. 5. The reaction rate term containing Kmd from Eq. (2) versus inactive Cdc25 using the point βGlobal

from Table 1. (A) shows the rate of mass action kinetics and Michaelis-Menten kinetics to a range 0–80
for [inactive Cdc25]. (B) shows a blow up of (A) for values of [inactive Cdc25] from 0 to Kmd. Here, the
difference between mass action and Michaelis-Menten kinetics is insignificant for valid values of [inactive
Cdc25], from 0 to 1.

Global and local parameter estimation was then performed with the new equations and parameters.
First, local optimization was run with βGlobal as the starting point. The local optimization yielded a point
close to the starting point. The WSOS of this point can be seen in Table 2 as βGlobalContinued. Second,
global optimization was run with the same ranges specified in Table 3 and returned multiple points with
relative minimum separation of 1/3, each of which was then used as the starting point for local optimization.
The WSOS of the three points returned are in Table 2 labeled βSimple , βSimple2 , and βSimple3 . βSimple2 was
discarded for its high WSOS. βSimple and βSimple3 are the same point. βSimple , recorded in Table 1, is similar
to βGlobal and βGlobal3.

Table 3. Ranges of parameters used for VTDIRECT while globally searching parameter space. The upper
bounds were picked conservatively in case a better fit far from the Marlovits initial parameters exists.

Parameter Lower Upper

v′d 0 1

v′′d 0 10

v′′′d 0 1

v′w 0 1

v′′w 0 10

v′′′w 0 1

Kmd 0 10

Kmdr 0 100

Kmw 0 10

Kmwr 0 100

vd 0 100

vw 0 100

µ 1 10

4.3 The basin of attraction of βLocalOnly

We explored the parameter space further in an attempt to rediscover the solution βLocalOnly. The
search space was cut by a factor greater than 213, about half the size in each dimension, the ǫ parameter
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to VTDIRECT was increased giving more weight towards exploration, and the stopping criterion was set to
10,000 function evaluations. Six points were returned with a relative minimum separation of 1/5 (which is
conveniently 1/2 the distance between βGlobal and βLocalOnly). Of these points two were closer to βLocalOnly

than to βGlobal. One point was an absolute distance of 15 from βLocalOnly and 33 from βGlobal, and the
other was 30 from βLocalOnly and 40 from βGlobal. Only the first of the two was evaluated further. Local
optimization was run and it converged to βGlobal. We could not find the point βLocalOnly with global
optimization even though we used our knowledge of the location of βLocalOnly in our search. None of the
points returned by the global optimizer followed by the local optimizer were close to βLocalOnly. VTDIRECT
explored tens of thousands of points and we expected some of the better points to fall in the basin of
attraction of βLocalOnly. The best points fell into the basin of attraction of βGlobal. After removing all points
around βGlobal within the minimum separation distance the next best point fell into the basin of attraction
of βGlobal2, and similarly, the next best points fell into the basins of attraction of βGlobal3 and βGlobal4.

Why did our attempts to find βLocalOnly fail? What properties of the objective function around βLocalOnly

could explain our results? Possibly, the basin of attraction of βLocalOnly is near one of the other basins and
small enough to fit within the minimum separation distance. Perhaps, the βLocalOnly basin is not small but
is mostly shallow and has a steep drop off near βLocalOnly. Perhaps, the βLocalOnly basin is very small in
which case it may have been missed altogether by VTDIRECT. Or perhaps, the best points of the βLocalOnly

basin fall within the minimum separation distance of the point returned by the global optimizer for βGlobal,
and the points outside that minimum separation distance are considerably higher than other points outside
that distance.

We counted the number of points VTDIRECT evaluated around βGlobal and around βLocalOnly within
a ball of radius one half the distance between βGlobal and βLocalOnly. About 700 out of the 10,000 points
from the last global optimization fell within the ball around βLocalOnly, and about 3000 fell within the
ball around βGlobal. VTDIRECT was dividing boxes more heavily around βGlobal than βLocalOnly . This
means there are more promising boxes near βGlobal than βLocalOnly. We can infer that the parameter space
around βGlobal has a larger range with good values of the objective function since more boxes were divided.
Although not directly correlated, we conjecture that the basin of attraction for βGlobal is in some sense larger
and/or deeper than the basin of βLocalOnly. βLocalOnly was obtained using βMarlovits as the starting point
to ODRPACK. In support of this conjecture, we point out that βLocalOnly and βMarlovits are a distance of
3.7 apart, whereas βLocalOnly and its closest point returned by VTDIRECT are a distance of 15 apart. By
comparison convergence to βGlobal was obtained from points as far away as 80.

Figure 6 provides some views of the objective function over slices of the parameter space between several
locally optimal points. The objective function was calculated in four different planes in parameter space
specified by three points each. The points used are βLocalOnly , βGlobal, βGlobal2, and βGlobal4. (βGlobal3 is
not used because it is similar to βGlobal.) Figures 6A and 6B show that βLocalOnly and βGlobal are in a valley
together; there is not much of an increase in the objective function between them as compared to next to
them (towards βGlobal2 and βGlobal4). Furthermore, the basin of attraction of βGlobal seems larger than that
of βLocalOnly (the objective function values around βGlobal are smaller than that of βLocalOnly given the same
radius around them). Although inconclusive by itself, Fig. 6 provides evidence that βGlobal has a larger basin
of attraction with better objective function values than βLocalOnly . These properties would bias VTDIRECT
and ODRPACK towards βGlobal, as we have seen in our parameter estimation runs.

5. DISCUSSION
The “bottom-up” approach to Systems Biology attempts to build accurate and realistic mathematical

models of the molecular machinery underlying a certain aspect of cell physiology. These models contain many
kinetic parameters (rate constants, binding constants, etc.) that must be estimated by comparing model
simulations to experimental measurements. Although this procedure of estimating the kinetic parameters
from the very experiments that the model is trying to explain is often criticized as being circular reasoning or
vacuous curve-fitting (“with four parameters I can fit an elephant”), the fact is that all kinetic parameters are
ultimately estimated, in one way or another, by fitting the consequences of kinetic rate laws to experimental
data. The question is not whether the parameters are estimated from the data or not, but whether we have
sufficient experimental observations both to estimate the parameters and to provide meaningful tests of the
mechanism. Novak and Tyson, and their colleagues, have been studying these issues for many years on a
model of DNA synthesis and nuclear division in frog eggs and frog egg extracts. In Round One, Novak and
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Fig. 6. Contour plots of two-dimensional cuts in parameter space between four groups of three points each.
All the unique points returned by the global followed by local optimization are used from the first run of
VTDIRECT. These plots provide hints why βGlobal is repeatedly reached by our optimizers while βLocalOnly

is reached only with βMarlovits as the starting point for local optimization.

Tyson [29] proposed the model and estimated the kinetic constants from a consideration only of very general
qualitative features of the control system (steady states, oscillations, thresholds, etc.). They made three
qualitative predictions about the control system (“hysteresis”, “slowing down”, and “checkpoint elevation”)
that were confirmed ten years later [24]. In addition, in the mid 1990s, there appeared several biochemical
studies ([30], [31], [35], and [32]) of rates of component reactions in the Novak-Tyson mechanism. Although
these experiments were not done to test the model, their results were in surprisingly good quantitative
agreement with the Novak-Tyson estimates of the kinetic constants, as shown by Marlovits et al. [28]. The
latter authors did the sort of back-of-an-envelope calculations familiar to biophysical chemists, but did not
try to fit the model rigorously to the data, to estimate optimal parameter values, or to characterize how
deviations from the optimum affect the goodness of fit.
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We addressed these issues in Zwolak et al. [27], using a local optimization algorithm [34] with the
Marlovits parameter set (βMarlovits) as a starting point. We found a locally optimal parameter set βLocalOnly,
close to βMarlovits. Sampling the objective function E(β), close to βLocalOnly, we found the expected bowl-
shape with some parameter combinations tightly constrained by the data and other combinations much less
constrained.

In this paper we address the question whether the parameter set βLocalOnly is a globally optimal solution
of the Xenopus model. To this end, we used a deterministic, global optimization procedure (“dividing
rectangles”) to explore a large region of parameter space, encompassing what we consider to be all possible
reasonable values of the model’s kinetic constants. The global optimizer efficiently explores this domain
and returns “promising regions” of parameter space (where E(β) is small and/or β is sufficiently far away
from other promising regions). The global optimizer is not efficient at homing in on optimal points, so each
promising region is studied further by the local optimizer. This procedure identified three local minima
of the objective function, at points we call βGlobal, βGlobal2, and βGlobal4. (βGlobal3 was deemed to be
indistinguishable from βGlobal.) These three local minimum points are all different from each other and
from βLocalOnly. At these points the objective function takes on the following values: E(βGlobal) = 0.032,
E(βLocalOnly) = 0.036, E(βGlobal4) = 0.14, E(βGlobal2) = 0.25. The two best solutions, βGlobal, and
βLocalOnly, give equally good fits to the data (Fig. 2), whereas the solutions βGlobal4 and βGlobal2 are less
satisfactory (Fig. 7).

The major difference between βGlobal and βLocalOnly is reflected in the kinetic rate law used to describe
one step in the reaction mechanism. βLocalOnly treats this particular MPF-catalyzed reaction as a Michaelis-
Menten rate law that is noticeably saturated in the operational range of substrate concentrations, whereas
βGlobal treats the reaction as operating in the linear range of substrate concentrations. This observation
suggested that the model be simplified, replacing the Michaelis-Menten rate law (two kinetic constants) by
a mass-action rate law (one kinetic constant). The optimal parameter set for the simplified model we call
βSimple .

In Table 2 we have italicized those values of the kinetic constants shared by βSimple and βLocalOnly.
These italicized rate constants are essentially identical, given the experimental uncertainty of the data used
to estimate them. In this light, we do not have two different “optimal” parameter vectors, but only one
parameter vector and two slightly different models. In one model, MPF-catalyzed phosphorylation of Cdc25
is depicted as a Michaelis-Menten-type reaction, and in the other model it is described by a simpler mass-
action rate law. In all other aspects, the two models are in complete agreement about rate laws and kinetic
constants.
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