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ABSTRACT
This paper investigates how citation-based information and
structural content (e.g., title, abstract) can be combined to
improve classification of text documents into predefined cat-
egories. We evaluate different measures of similarity, five de-
rived from the citation structure of the collection, and three
measures derived from the structural content, and determine
how they can be fused to improve classification effectiveness.
To discover the best fusion framework, we apply Genetic
Programming (GP) techniques. Our empirical experiments
using documents from the ACM digital library and the ACM
classification scheme show that we can discover similarity
functions that work better than any evidence in isolation
and whose combined performance through a simple major-
ity voting is comparable to that of Support Vector Machine
classifiers.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Informa-
tion Search and Retrieval; I.5.3 [Pattern Recognition]:
Applications—Text processing

General Terms
Algorithms, Measurement, Performance, Experimentation

Keywords
Classification, document similarity, citation analysis, Ge-
netic Programming

1. INTRODUCTION
In the last few years, automated classification of text

into predefined categories has attracted considerable inter-
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est, due to the increasing volume of documents in digi-
tal form and the ensuing need to organize them. How-
ever, traditional content-based classifiers are known to per-
form poorly when documents are noisy and contain little
text [3, 21].

Particularly, digital library (DL) collections offer a num-
ber of opportunities and challenges for classification. The
complex internal structure of documents and metadata records
in DLs provides additional information that can be used in
the classification task. On the other hand, many DLs which
are created by aggregation of other sub-collections/catalogs,
suffer from problems of quality of information. One such
problem is incompleteness (e.g., missing information). This
makes it very hard to classify documents using traditional
content-based classifiers like SVM, kNN or Naive Bayes. An-
other quality problem is imprecision. For example, citation-
based information is often obtained with OCR, a process
which produces a significant number of errors. In this work
we try to overcome these problems by applying automati-
cally discovered fusion techniques of the available evidence
to the classification problem. Particularly, we investigate
an inductive learning method - Genetic Programming (GP)
- for the discovery of better fused similarity functions to be
used in the classifiers and explore how this combination can
be used to improve classification effectiveness.

Experiments were performed on the ACM Digital Library
using the ACM classification scheme. Three different content-
based similarity measures applied to the abstract and title
fields were used in the combination: bag-of-words, Cosine,
and Okapi. Five different citation-based similarity measures
also were used: bibliographic coupling, co-citation, Amsler,
and Companion (authority and hub). The new similarity
functions, discovered through GP, where applied to kNN
classifiers showed a significant improvement in macro-F1
over the best similarity functions in isolation. Furthermore,
the performance of a simple majority voting of the kNN clas-
sifiers with the GP functions produced performance compa-
rable to that of content-based SVM classifiers using the same
training and test data.

This paper is organized as follows. In Section 2 we in-
troduce background on Genetic Programming and present
our new similarity function discovery framework using both
the structural content and citation information. Section 3
describes how the GP framework and the discovered sim-



ilarity functions are applied to the classification problem.
We conduct two sets of experiments to evaluate this frame-
work and summarize the experimental findings in Section 4.
Section 5 discusses the related works to this study and Sec-
tion 6 concludes the paper and points out future research
directions.

2. BACKGROUND

2.1 Genetic Programming
Genetic Programming (GP), an extension of Genetic Al-

gorithms (GAs), is an inductive learning technique designed
following the principles of biological inheritance and evolu-
tion [26]. In GP, a population is a set of solution formulas
which are compositions of the functions and terminals. Each
potential solution is called an individual in a population. An
individual in GP systems is typically represented using a tree
structure as shown in Figure 1.

GP works by iteratively applying genetic transformations,
such as reproduction, crossover, and mutation, to a popu-
lation of individuals to create more diverse and better per-
forming individuals in subsequent generations.

In order to apply GP to the problem of classification, sev-
eral required key components of a GP system need to be
defined. Table 1 lists these essential components along with
their descriptions.
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Figure 1: A sample tree representation.

We set up the configurations of the GP system used for
similarity function discovery as shown in Table 2.
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Figure 2: A graphical illustration of the crossover
operation.

Algorithm 1 (below) details our fitness evaluation function
which GP intends to optimize within a particular class.

Components Meaning

Terminals Leaf nodes in the tree structure. i.e.
x, y as in Figure 1.

Functions Non-leaf nodes used to combine the
leaf nodes. Commonly numerical
operations: +, -, *, /, log.

Fitness Function The objective function GP aims to
optimize.

Reproduction A genetic operator that copies the
individuals with the best fitness val-
ues directly into the population of
the next generation without going
through the crossover operation.

Crossover A genetic operator that exchanges
subtrees from two parents to form
two new children. Its aim is to im-
prove the diversity as well as the ge-
netic fitness of the population. This
process is shown in Figure 2.

Mutation A genetic operator that replaces a
selected individual’s subtree whose
root is a picked mutation point with
a randomly generated subtree.

Table 1: Essential GP Components.

Terminals We use features discussed in Section
2.2 as terminals.

Functions +, *, /, sqrt
Fitness Function Algorithm 1 (see below)
Genetic Opera-
tors

Reproduction, Crossover, Mutation

Table 2: Modeling setup for classification function
discovery by GP. Refer to Table 1 for explanations
of the various components.

Let Lp, Lr be empty lists

For each document D in class C

Let Lp = Lp union (the set of |C| documents most

similar to D)

Let Lr = Lr union (the set of |C| documents most

similar to D and also not already in Lr)

end for

Let P = (no. of documents in Lp that are of class C)/|Lp|

Let R = (no. of documents in Lr that are of class C)/|C|

F = 2PR/(P+R)

A good similarity function, i.e., a similarity function with
a high fitness value, is one that, when applied to a document
di of class C, ranks many documents from class C as similar
to di. The higher the value of F, the better the function.
It is worth to notice that the choice of fitness function can
have a huge impact in the final classification performance [9].
Experiments with different fitness functions are currently
being performed.

2.2 Used Terminals
We combined features regarding content-based structural

information and features regarding citation-based informa-
tion together to serve as the terminals in our GP system.

2.2.1 Structural similarity measures



To determine the similarity between two documents we
used three different similarity measures applied to the con-
tent of abstract and title of documents separately: Bag-of-
Words, Cosine, and Okapi [35]. This gave us six similarity
measures, represented as document × document matrices:
AbstractBagOfWords, AbstractCosine, AbstractOkapi, Ti-
tleBagOfWords, TitleCosine, and TitleOkapi. More specifi-
cally, the documents are represented as vectors in the Vector
Space Model [37]. Suppose we have a collection with N dis-
tinct index terms tj . A document di can be represented as
follows: di = (wi1, wi2, ..., wiN ), where wij represents the
weight assigned to term tj in document di. For the bag-
of-words measure, the similarity between two documents d1

and d2 can be calculated as the following:

bag − of − words(d1, d2) =
|{d1} ∩ {d2}|

|d1|
(1)

where {di} corresponds to the set of terms occuring in doc-
ument di. For the Cosine measure, the similarity between
two documents can be calculated as the following [38]:

cosine(d1, d2) =

Pt

i=1 w1i ∗ w2i
q

Pt

i=1 w2
1i ∗

Pt

i=1 w2
2i

(2)

For the Okapi measure, the similarity between two docu-
ments can be calculated as the following: Okapi(d1, d2) =

X

t∈d1∩d2

3 + tfd2

0.5 + 1.5 ∗ lend2

lenavg
+ tfd2

∗ log
N − df + 0.5

df + 0.5
∗ tfd1

(3)
Here, tf is the term frequency in a document and df is

the document frequency of the term in the whole collection.
N is the number of documents in the whole collection, len is
the length of a document, and lenavg is the average length
of all documents in the collection.

From Eqs. (1), (2), and (3), we can see that the cosine
similarity matrix is symmetric while the bag-of-words and
okapi similarity matrices are not.

2.2.2 Citation-based similarity measures
To determine the similarity of subject between two docu-

ments we used five different similarity measures derived from
link structure: co-citation, bibliographic coupling, Amsler,
and Companion (authority and hub).

Co-citation was first proposed by Small [39], as a simi-
larity measure between scientific papers. Two papers are
co-cited if a third paper has citations to both of them. This
reflects the assumption that the author of a scientific pa-
per will cite only papers related to his own work. To fur-
ther refine this idea, let d be a document and let Pd be the
set of documents that cite d, called the parents of d. The
co-citation similarity between two documents d1 and d2 is
defined as:

cocitation(d1, d2) =
Pd1

∩ Pd2

|Pd1
∪ Pd2

|
(4)

Eq. (4) tells us that, the more parents d1 and d2 have in
common, the more related they are. This value is normalized
by the total set of parents, so that the co-citation similarity
varies between 0 and 1.

Also with the goal of determining the similarity between
papers, Kessler [24] introduced the measure of bibliographic
coupling. Two documents share one unit of bibliographic
coupling if both cite a same paper. The idea is based on
the notion that authors who work on the same subject tend
to cite the same papers. More formally, let d be a docu-
ment. We define Cd as the set of documents that d cites,
also called the children of d. Bibliographic coupling between
two documents d1 and d2 is defined as:

bibcoupling(d1, d2) =
Cd1

∩ Cd2

|Cd1
∪ Cd2

|
(5)

Thus, according to Eq. (5), the more children in common
document d1 has with document d2, the more related they
are. This value is normalized by the total set of children, to
fit between 0 and 1.

In an attempt to take the most advantage of the informa-
tion available in citations between papers, Amsler [1] pro-
posed a measure of similarity that combines both co-citation
and bibliographic coupling. According to Amsler, two pa-
pers A and B are related if (1) A and B are cited by the
same paper, (2) A and B cite the same paper, or (3) A cites
a third paper C that cites B. Thus, let d be a document,
let Pd be the set of parents of d, and let Cd be the set of
children of d. The Amsler similarity between two documents
d1 and d2 is defined as:

amsler(d1, d2) =
(Pd1

∪ Cd1
) ∩ (Pd2

∪ Cd2
)

|(Pd1
∪ Cd1

) ∪ (Pd2
∪ Cd2

)|
(6)

Eq. (6) tell us that, the more links (either parents or chil-
dren) d1 and d2 have in common, the more they are related.

Finally, taking a different approach, Dean and Henzinger
proposed the Companion algorithm [7] for Web pages. Given
a Web page d, the algorithm finds a set of pages related to d

by examining its links. Companion is able to return a degree
of how related the topic of each page in this set is to the topic
of page d. This degree can be used as a similarity measure
between d and other pages. We use a similar approach where
web pages correspond to documents and links to citations.

To find a set of documents related to a document d, the
Companion algorithm has two main steps. In step 1, we
build the set V, the vicinity of d, that contains the parents
of d, the children of the parents of d, the children of d, and
the parents of the children of d. This is the set of documents
related to d. In step 2 we compute the degree to which the
documents in V are related to d. To do this, we consider the
documents in V and the citations among them as a graph.
This graph is then processed by the HITS algorithm [25],
which returns a degree of authority and hubness for each
document in V. Intuitively, a good authority is a document
with important information on a given subject. A good hub
is a document that cites many good authorities. Compan-
ion uses the degree of authority as a measure of similarity
between d and each document in V. For a more detailed de-
scription of the Companion and HITS algorithms, the user
is referred to [7] and [25], respectively.

3. THE FRAMEWORK FOR CLASSIFICA-
TION

All of the similarity measures discussed in section 2.2.1
and 2.2.2 were represented as document × document ma-
trices and served as the terminals in the GP system. With



the above settings, the overall classification framework is as
follows:

1. For each class, generate an initial population of ran-
dom “similarity trees”

2. For each class, perform the following sub-steps on train-
ing documents for Ngen generations

(a) Calculate the fitness of each similarity tree

(b) Record the top Ntop similarity trees

(c) Create new population by:

i. Reproduction

ii. Crossover

iii. Mutation

3. Apply the “best similarity tree” of each class (i.e., the
first tree of the last generation) on a set of testing
documents to a kNN algorithm (see below)

4. Combine the output of each classifier through a simple
majority voting

Steps 1 and 2 concern the training process within GP
which intends to discover better similarity functions for each
class. However, the discovered functions can only be used
to calculate the similarity between any two documents. In
order to evaluate the performance of those functions in the
classification task, we used a strategy based on a nearest
neighbor classifier. This classifier assigns a category label
to a test document, based on the categories attributed to
the k most similar documents in the training set. The most
widely used such algorithm was introduced by Yang [42] and
is referred to, in this work, as kNN. The kNN algorithm was
chosen since it is simple and makes a direct use of similarity
information.

In the kNN algorithm, to a given test document d is as-
signed a relevance score sci,d associating d to each candidate
category ci. This score is defined as:

sci,d =
X

d′∈Nk(d)

similarity(d, d
′)f(ci, d

′) (7)

where Nk(d) are the k nearest neighbors (the most similar
documents) of d in the training set and f(ci, d

′) is a function
that returns 1 if document d′ belongs to category ci and 0
otherwise. In Step 3 of our framework the generic similarity
function of kNN is substituted by the functions discovered
by GP for each class.

In multi-classification problems with n classes, we effec-
tively end up with n kNN classifiers using the described
framework. In order to produce a final classification result,
we combine the output of all n classifiers using a simple ma-
jority voting scheme, whereby the class of a document di

is decided by the most common class assigned by all the n

classifiers. In case of ties, we assign di to the larger class.
Besides its simplicity we chose to use majority voting in our
framework (Step 4) to: 1) help alleviate the common prob-
lem of overfitting found in GP training [11] and; 2) help
boost performance by allowing kNN classifiers to apply dif-
ferent similarity functions which explore and optimize the
characteristics of each particular class in different ways. A
reasonable alternative here would be to generate only one
“global” similarity function instead of n “local” ones. How-
ever, discovery of such a globally unique similarity func-
tion, besides the potential of suffering overfitting, was too

demanding in terms of training time and necessary com-
putational resources while the applied “per class” training
allowed easy distribution of the training task. Nonetheless,
we are working on parallel strategies to allow “global vs.
local” experiments.

4. EXPERIMENTS
To test the hypotheses that GP is able to adapt itself

to find the best similarity functions we run two sets of ex-
periments following the framework of the previous section.
For these experiments, we used only the first level of the
ACM classification scheme (11 categories, A to K)(http:
//www.acm.org/class/1998/) and a subset of the ACM col-
lection with 30K metadata records corresponding to those
classified under only one category in the first level. The
ACM digital library suffers from most of the problems we
mentioned before. For example, only 42% of the records
have abstracts, which makes it very hard to classify them
using traditional content-based classifiers. For these records,
the only available textual content is title. But titles con-
tain normally only 5 to 10 words. Citation information was
created with OCR and had a significant number of errors.
A very imprecise process of matching between the citation
text and the documents, using adaptations of techniques
described in [17, 27, 28], had to be performed. This intro-
duced noise and incompleteness in the citation-based simi-
larity matrices computed with measures such as co-citation
or bibliographic coupling. The other impact factors were
the large searching space and skewed distributions of some
categories.

Stratified random sampling (cf. section 4.1) was used to
create training and test collections. The combination of
these experiments should provide us with insights about the
capability of the GP-based discovery framework.

4.1 Sampling
The collection used in our experiments has 30,022 doc-

uments. Each terminal or feature described is a similarity
matrix which contains the similarity between each pair of
documents. Using half or more of the whole collection as
our training data, the required resources, as CPU time, and
amount of memory, would be enormous. The time required
to discover a proper classification framework also would be
significant. To reduce the high cost of resources and at the
same improve efficiency, sampling was used. A sample is a
finite part of a statistical population whose properties are
studied to gain information about the whole [31]. Sampling
is the act, process, or technique of selecting a suitable sam-
ple, or a representative part of a population for the purpose
of determining parameters or characteristics of the whole
population. A random sample is a sample selected based
on a known probability that each elementary unit will be
chosen. For this reason, it is sometimes referred to as a
probability sample. A stratified sample is one type of ran-
dom sample. A stratified sample is obtained by indepen-
dently selecting a separate simple random sample from each
population stratum. A population can be divided into dif-
ferent groups based on some characteristic. In our case, the
documents belonging to each category of the ACM classifica-
tion scheme (first level) corresponded to different population
strata. We can then randomly select from each stratum a
given number of units which may be based on a proportion,
like 15%, for each category. However special attention needs



to be paid to skewed categories. For example, category E
only has 94 documents while the average size of the other
categories is in the range of thousands. 15% of 94 only gives
us 14 documents and this would be too small to serve as
the sample to discover the whole category’s characteristic.
In this case, we might want to have larger samples. Classi-
fication statistics for the whole collection would be used to
control the sampling procedure. That is, baselines based on
the samples would be compared with baselines for the whole
collection to ensure that the samples mirror the whole col-
lection as well as possible. We generate two sets of training
samples using stratified sample strategy. The first set used
a random 15% sample for large classes and 50% for skewed
classes (A, E, and J). And the second set used a random
30% sample for large classes and 50% for skewed classes (A,
E, and J)1. The rest of the samples will be used for testing
and performance comparison. All results reported in later
sections are based on test data sets only.

4.2 Baselines
In order to demonstrate that the combination of different

features by GP is able to provide better classification re-
sults, we need to compare it with the classification statistics
of each feature in isolation (baselines). We used F1 as our
comparison criteria. F1 is a combination of precision and
recall. Precision is defined as the proportion of correctly
classified records in the set of all records assigned to the
target class. Recall is defined as the proportion of correctly
classified records out of all the records having the target
class. F1 is defined as 2*Precision*Recall / (Precision +
Recall). It is worth to notice that F1 is an even combina-
tion of precision and recall. It reduces the risk that you
can get perfect precision by always assigning zero categories
or a perfect recall by always assigning every category. The
result we want is to assign the correct categories and only
the correct categories, maximizing precision and recall at
the same time, and therefore maximizing F1. Table 3 shows
the evidence that performs the best when applied to a kNN
algorithm for a specific category in isolation in the test col-
lections, among all similarity evidence, based on macro F1.
Table 4 shows the average macro F1 over all categories for
each similarity evidence, also in isolation.

Evidence Macro F1
(15%)

Macro
F1(30%)

Abstract BagOfWords 17.64 19.50
Abstract Cosine 32.59 34.29
Abstract Okapi 32.60 33.86
Bib Coup 31.27 34.73
Amsler 37.44 41.23
Co-citation 21.88 27.31
Comp Authority 26.53 32.09
Comp Hub 29.93 33.95
Title BagOfWords 45.68 49.20
Title Cosine 50.41 52.53
Title Okapi 50.06 52.53

Table 4: Macro F1 on individual evidence.

From Table 3 it can be seen that title-based evidence is
the most important for the majority of the classes. For

1In the remainder of the paper, we use 15% to refer to the
first sample set and 30% to refer to the second sample set.

those classes whose best performer was a citation-based evi-
dence, Amsler was the best measure. From Table 4, it can be
seen that the best types of evidence are the title-based ones,
followed by citation-based and abstract-based evidence, re-
spectively. This should be expected since title is the only
evidence which appears in all the documents while the infor-
mation provided by the citation structure is very incomplete
and imprecise.

4.3 Experimental Set Up
We run several experiments on the two training samples

using different parameters. Particularly, we noticed that a
larger population size and different random seeds2 produce
better results. On the other hand, they have a huge effect on
the training time. The settings for our GP system are shown
in Table 5. In the next section, we only report performance
of the best tree in the training sets applied to the test sets.

Population size 400a, 300
Crossover rate 0.7
Mutation rate 0.25
Reproduction rate 0.05
Generations 30a, 20
No. of seeds 4 (maximum)

aOnly for 15% sample

Table 5: GP system experimental settings.

4.4 Experimental Results
We demonstrate the effectiveness of our classification frame-

work in three ways: 1) by comparing its performance against
the best baselines per class in isolation; 2) by comparing it
against a majority voting of classifiers using those best base-
line similarity functions; and 3) by comparing our experi-
mental results with the results achieved through a content-
based SVM classifier3. While the third comparison may
seem inappropriate since the classifiers are trained and ap-
plied to different types of content, it does provide a good idea
of the core performance of our method, clearly showing it as
a valid alternative in classification tasks similar to the ones
used in this paper. The SVM classifier has been extensively
evaluated for text classification on reference collections, thus
offering a strong baseline for comparison. A SVM classi-
fier was first used in text classification by Joachims [22]. It
works over a vector space, where the problem is to find a
hyperplane with the maximal margin of separation between
two classes. This hyperplane can be uniquely constructed
by solving a constrained quadratic optimization problem, by
means of quadratic programming techniques.

In a comparison class by class between the majority GP
(Table 7) and the best evidence (Table 3) in isolation, the
majority GP outperforms the best evidence in 10 out of 11
classes in both samples (only the performance for class A is
worse).

When comparing the majority GP against the majority
using the best evidence (Table 6) it is clear that the former
presents better performance: we obtain a gain of 13.38% in
the 15% sample and 13.35% in the 30% sample.

2Random seed impacts population initialization, which will
accordingly affect the final learning results.
3For content we used a concatenation of title + abstract.



Class Macro F1/ class(15%) Best Evidence (15%) Macro F1/ class(30%) Best Evidence (30%)

A 40.00 Title BagOfWords 43.56 Title BagOfWords
B 63.89 Amsler 70.58 Amsler
C 60.32 Title Okapi 63.01 Title Cosine
D 67.97 Title Okapi 69.03 Title Okapi
E 20.69 Title Cosine 15.38 Title Cosine
F 45.83 Amsler 53.15 Amsler
G 63.37 Title Okapi 66.27 Title Okapi
H 65.58 Title Okapi 69.27 Title Okapi
I 58.90 Title Okapi 61.84 Title Okapi
J 22.63 Title Cosine 18.58 Title Cosine
K 66.42 Title Cosine 68.38 Title Cosine

Table 3: Best baseline for each category.

Class Majority Best
Evidence
(15%)

Majority Best
Evidence
(30%)

A 32.61 39.77
B 63.35 68.33
C 62.22 64.27
D 68.28 69.32
E 17.54 12.00
F 41.83 47.36
G 64.90 68.22
H 67.94 71.43
I 59.80 63.05
J 20.10 16.39
K 67.09 69.45
Avg F1 51.42 53.60

Table 6: Majority Voting using the best evidence
per class in isolation.

Finally, it can be seen from Table 8 that the performance
of SVM is slightly worse than that of the majority GP, which
suggests that we have a comparable classification method.

5. RELATED WORK
In the World Wide Web environment, several works have

successfully used link information to improve classification
performance. Different information about links, such as an-
chor text describing the links, text from the paragraphs sur-
rounding the links, and terms extracted from linked docu-
ments, has been used to classify documents. For example,
Furnkranz et al. [16], Glover et al. [18] and Sun et al. [41]
show that anchor text and the paragraphs and headlines that
surround the links helped improve the classification result.
Similarly, Yang et al. [43] claimed that the use of terms from
linked documents works better when neighboring documents
are all in the same class.

Other researchers applied learning algorithms to handle
both the text components of the Web pages and the links
between them. For example, Joachims et al. [23] studied
the combination of support vector machine kernel functions
representing co-citation and content information. Cohn et
al. [5] show that a combination of link-based and content-
based probabilistic methods improved classification perfor-
mance. Fisher and Everson [15] extended this work by show-
ing that link information is useful when the document col-

Class Majority
GP (15%)

Majority
GP (30%)

A 32.97 41.42
B 75.43 78.19
C 66.96 69.81
D 75.22 76.44
E 26.32 20.25
F 55.76 61.04
G 70.41 74.30
H 74.68 78.15
I 69.03 72.48
J 24.46 24.15
K 70.01 72.67
Avg.
Macro
F1

58.30 60.81

Table 7: Macro F1 for the combined majority GP
with the 15% and 30% samples.

lection has a sufficiently high density in the linkage matrix
and the links are of high quality.

Chakrabarti et al. [3] estimate the category of test docu-
ments by studying the known classes of neighboring training
documents. Oh et al. [32] improved on this work by using
a filtering process to further refine the set of linked docu-
ments to be used. Calado et. al [2] proposed a Bayesian
network model to combine the output of a content-based
classifier and the information provided by the document’s
link structure.

Both GP and GA have been applied to the information
retrieval field [6, 9, 10, 12–14, 19, 20, 29, 33, 34]. GP has been
applied for data classification [4, 8], but not on text classifi-
cation.

6. CONCLUSION
In this paper, we considered the problem of classification

in the context of a document collections where textual con-
tent is scarce and imprecise citation information exists. A
framework for tackling this problem based on Genetic Pro-
gramming has been proposed and tested. Our experimental
results on two different sets of documents have demonstrated
that the GP framework can be used to discover better sim-
ilarity functions that, when applied to a kNN algorithm,
can produce better classifiers than ones using individual ev-



Class SVM
(15%)

SVM
(30%)

A 44.65 52.19
B 68.41 72.94
C 65.06 68.49
D 72.13 74.67
E 11.76 4.13
F 51.01 56.03
G 64.65 70.3
H 71.45 74.03
I 64.21 68.88
J 18.38 19.93
K 70.08 73.58
Avg.
Macro
F1

54.71 57.74

Table 8: Macro F1 for SVM with the 15% and 30%
samples.

idence in isolation. Our experiments also showed that the
framework achieved results as good as traditional content-
based SVM classifiers.

Our future work includes improving scalability through
parallel computation. Other sampling strategies like active
sampling [30, 36, 40] will also be used to within our classi-
fication framework. We also want to test this framework
in different document collections to see its viability (e.g.,
the Web). We also will use the GP framework to combine
the current results with content-based classifiers as the SVM
classifiers used in the comparisons. Besides that, we want
to improve our current evidence, for example, using better
methods for citation matching, by trying to fix some OCR
errors and using different matching strategies. Finally, new
terminals (features) representing additional evidence may be
explored. For example, matrices representing relations from
other data spaces like author information and patterns of
authorship in certain categories can be explored.
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