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Abstract. Numerous hierarchical and nonhierarchical decomposition strategies for the optimization of large scale
systems, comprised of interacting subsystems, have been proposed. With a few exceptions, all of these strategies
have proven theoretically unsound. Recent work considered a class of optimization problems, called quasiseparable,
narrow enough for a rigorous decomposition theory, yet general enough to encompass many large scale engineering
design problems. The subsystems for these problems involve local design variables and global system variables,
but no variables from other subsystems. The objective function is a sum of a global system criterion and the
subsystems’ criteria. The essential idea is to give each subsystem a budget and global system variable values,
and then ask the subsystems to independently maximize their constraint margins. Using these constraint margins,
a system optimization then adjusts the values of the system variables and subsystem budgets. The subsystem
margin problems are totally independent, always feasible, and could even be done asynchronously in a parallel
computing context. An important detail is that the subsystem tasks, in practice, would be to construct response
surface approximations to the constraint margin functions, and the system level optimization would use these margin
surrogate functions. The present paper extends the quasiseparable necessary conditions for continuous variables to
include discrete subsystem variables, although the continuous necessary and sufficient conditions do not extend to
include integer variables.

Keywords: decomposition, global/local optimization, mixed integer programming, multidisciplinary design, re-
sponse surface approximation, separable

1. Introduction

Many discrete optimization problems are NP-hard, and thus intractable for even a moder-

ately large number of design variables. All known algorithms for continuous global optimization

have exponential computational complexity, and thus continuous global optimization is similarly

intractable. Consequently, decomposition methods may be particularly useful for such problems.

Numerous hierarchical and nonhierarchical decomposition strategies have been proposed—

Dantzig-Wolfe decomposition, concurrent subspace optimization (CSSO) (Rodŕiguez et al., 1998a),

Sobieski’s nonhierarchical decomposition (Shankar et al., 1993), Kroo’s collaborative optimization

(CO) (Kroo, 1997), multilevel decomposition (Alexandrov, 1997), Renaud and Watson’s augmented

Lagrangian approach (Rodŕiguez et al., 1998b), to name but a few. With but a few exceptions

(such as Dantzig-Wolfe and Renaud-Watson), these strategies have not been rigorously proven to

converge.

Previous work by Haftka and Watson (2004) focused on a class of quasiseparable optimization

problems narrow enough for a rigorous decomposition theory, yet general enough to encompass

many large scale engineering design problems. The subsystems for these problems involve local

design variables and global system variables, but no variables from other subsystems. The objective

function is a sum of a global system criterion and the subsystems’ criteria. Haftka and Watson

(2004) developed a quasiseparable decomposition (QSD) algorithm with global search at the lower

level, and proved that the QSD algorithm does not generate any spurious solutions. Furthermore,
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Liu et al. (2003) demonstrated the power of QSD to perform most of the global optimization

computation in low dimensions at the subsystem level. The objective of the present paper is to

extend QSD to include discrete subsystem variables.

The essential idea of QSD is to give each subsystem a budget and global system variable values,

and then ask the subsystems to independently maximize their constraint margins. (A constraint

margin is the amount of slack a constraint has at a particular design point.) Using these constraint

margins, a system optimization then adjusts the values of the system variables and subsystem

budgets. The subsystem margin problems are totally independent, always feasible, and could even

be done asynchronously in a parallel computing context.

An example of the type of optimization problem targeted by the decomposition theory pre-

sented here is vehicle structural design. Vehicle structural design may be viewed as a multilevel

optimization problem. At the highest level the entire vehicle is designed; at a lower level major

components, such as the wing of an aircraft, or the chassis of a car, are designed; at an even lower

level subcomponents, such as individual panels, are designed. Unfortunately, because of compu-

tational limitations, it has not been possible to perform this multilevel optimization rigorously.

Instead, various ad hoc design procedures are used to decouple the three levels (e.g., Harte et al.,

(2004)).

For aircraft structural design, previous decomposition schemes focused on the use of response

surface approximations, fit to the values of multiple lower level optima, as a way to integrate the

various design levels (e.g., Giunta et al. (1997b), Balabanov et al. (1999), Ragon et al. (1997), and

Liu et al. (2000)). This involved performing hundreds of subsystem optimizations, and fitting the

optimal response surface with a polynomial for use by the system optimization algorithm. Work

using these ad hoc decomposition schemes occasionally verified that the two-level procedure led to

the same design as a single level optimization for some examples (Liu and Haftka, 2003).

Even though the application of these decomposition procedures was successful, usually no at-

tempt was made to explore their theoretical properties. Previous work established these theoretical

properties for the case of continuous design variables and specific decomposition strategies, e.g.,

variable fidelity augmented Lagrangian (Rodŕiguez et al., 1998b) and QSD (Haftka and Watson,

2004). However, in many of these system design problems, some or all of the design variables at

the component level are discrete. For example, in Liu and Haftka (2003), lower level variables are

the ply angles of composite laminates that can take only discrete values, such as 0◦, 90◦, or ±45◦.
The existence of discrete variables in realistic design problems is the motivation for this paper,

whose purpose is to extend the QSD theory to permit discrete subsystem design variables.

It is worthwhile to discuss first the intuitive basis of quasiseparable decomposition (QSD).

The main concept involved here is arranging subtasks, with assigned goals and constraints, that

can be pursued independently and concurrently. Before presenting a mathematical formulation,

it may help to provide a real life scenario that illustrates the basic concept of the decomposition

formulation. The decomposition approach is similar to the fairly common standard practice of a

manager assigning budget and performance requirements to each department or team that reports

to her. The decomposition procedure may be viewed as a negotiation session between the manager

and the team or department leaders, where she presents each with sets of performance requirements

and budgets. For each set the team leader provides a measure of how well he can satisfy the

requirements and the budget. This allows the manager to intelligently divide resources between

teams. Discrete design variables within each department may involve decisions on how many people

to hire or how many computers to buy.
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The decomposition method described in the next two sections is based on this concept. Each

subsystem designer is provided with a budget and a set of performance constraints, and his task

is to maximize the margin of safety for satisfying both.

This paper is the result of collaboration between an engineer and a mathematician. Therefore,

mathematical theorems and proofs are accompanied by notes intended to provide engineering

intuition into some aspects of the basis of these theorems and proofs. In particular, a key concept

in this intuitive understanding is that two distant locally optimal solutions of the original problem

may become close in the decomposed problem. In the context of the management problem discussed

above, this represents the viewpoint of the manager. A department may use its budget to achieve

exactly or approximately the same goals or outputs in several very different ways. However, the

manager, who sees only the results, considers these solutions to be identical or close.

The management analogy also illustrates one important advantage of the decomposition over

a single level solution, due to the fact that both the system level problem and the subsystem level

problems are of lower dimensions than the single level (original) problem. A manager would be

interested in a global rather than a local solution to the problem. By delegating part of the global

optimization to each department, both the manager and the departments seek this global optimum

in a lower dimensional space than if the manager micromanaged the entire (global) search for the

optimum. (Technically, though, even if each department were to find the global optimum for its

assigned budget and requirements, the manager still has the option of finding assignments that are

only locally optimal over all possible assignments to the departments.)

The mathematical theory follows, with the special case of all subsystem variables being discrete

addressed in Section 2, and both continuous and discrete subsystem variables addressed in Section

3. Section 4 concludes with some interesting numerical examples.

2. Theory for purely discrete quasiseparable subsystems

This section considers a special case where the global system variables are real, and all the

local subsystem variables are discrete (integer). The proofs for this case are identical to those for

subsystems with mixed real and integer local variables, but the notation for the general case is

somewhat complicated, and the proofs are nontrivial. Hence to avoid becoming mired in notational

difficulties, the definitions and proofs are first done for the case of purely discrete subsystem (local)

variables here, and then repeated for the general case of mixed integer subsystem variables in the

next section.

Denote real n-dimensional Euclidean space by En, the set of n-tuples of integers by Zn, let

gj denote the jth component of a vector g, and let B(x, δ) ⊂ En denote the open ball of radius

δ centered at x. At some point x̄, the constraint margin for a (scalar) constraint g(x) ≤ 0 is the

amount −µ by which the constraint is slack: g(x̄)− µ = 0. The margin −µ for a vector constraint

G(x) ≤ 0 is the smallest component margin: maxj Gj(x̄)−µ = 0. Writing the (positive at feasible

points) constraint margin as −µ rather than µ leads to elegant decomposed problem formulations.

Denote the system variables by s ∈ En0 , the local subsystem variables by `(i) ∈ Zni , for i = 1,

. . . , N , and the total number of variables by

n = n0 + n1 + · · ·+ nN .
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Let ` =
(
`(1), . . . , `(N)

)
denote all the local variables, let f0(s), f1

(
s, `(1)

)
, . . . , fN

(
s, `(N)

)
be C2

(in the real variables) real-valued functions, and let g(0)(s), g(1)
(
s, `(1)

)
, . . . , g(N)

(
s, `(N)

)
be C2

(in the real variables) real vector-valued functions of dimensions m0, m1, . . . , mN , respectively.

The quasiseparable subsystem problem (Haftka and Watson, 2004) is

min
s,`

f0(s) +
N∑

i=1

fi
(
s, `(i)

)
subject to

g(0)(s) ≤ 0,

g(i)
(
s, `(i)

)
≤ 0, i = 1, . . . , N.

(SSP)

Precisely, a nonlinear programming problem has quasiseparable subsystems (or is quasiseparable)

if it has the form (SSP). The essential ideas are to introduce a budget bi ∈ E for each subsystem

criterion fi
(
s, `(i)

)
, and to attack the subsystem constraints g(i)

(
s, `(i)

) ≤ 0 by maximizing the

constraint margin −µi for each subsystem. The global system variables s are real, but all the local

subsystem variables `(i) are discrete here. The original problem (SSP) is decomposed into an upper

level problem and N lower level problems, which are always feasible and are totally independent.

The decomposed problem is (upper level)

min
s,b

f0(s) +
N∑

i=1

bi subject to
g(0)(s) ≤ 0,

µi(s, b) ≤ 0, i = 1, . . . , N,
(DSSP)

where µi(s, b) is the (global) solution to the ith lower level problem, for i = 1, . . . , N , given by

min
`(i)

µi subject to
max

1≤j≤mi
g

(i)
j

(
s, `(i)

)
− µi ≤ 0,

fi
(
s, `(i)

)
− bi − µi ≤ 0.

(DSSP)

Let X and XD denote the feasible sets for (SSP) and (DSSP), respectively. Assume that the

set
{
` | (s, `) ∈ X

}
of feasible discrete values is finite. Let θ(s, `) be the objective function of (SSP),

and θD(s, b) the upper level objective function of (DSSP). The following lemma is straightforward

to verify.

Lemma 2.1. If (s, `) is feasible for (SSP), then

(s, b) = (s, b1, . . . , bN) =
(
s, f1

(
s, `(1)

)
, . . . , fN

(
s, `(N)

))

is feasible for (DSSP).

It is also easy to check that at an optimal solution of (DSSP) there is no margin on the

budget constraints, so that bi = fi
(
s, `(i)

)
. In the simpler case considered by Haftka and Watson

(2004) where θ(s, `) only depended on s, points that were close to locally optimal solutions for

(SSP) corresponded to even closer points for the upper level of (DSSP) because the ` components

were dropped (these problems were called (ISV) and (DISV), respectively, in (Haftka and Wat-

son, 2004)). This guaranteed that the decomposition did not introduce spurious locally optimal

solutions. Now, with the b variables and the discrete variables `, this is not as trivial. Here the

continuity of the fi ensures that points that are close to locally optimal solutions of (SSP) corre-

spond to nearby points in the upper level of (DSSP). The following definition and theorem imply

that every locally optimal solution of (DSSP) corresponds to a locally optimal solution of (SSP).
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Definition 2.1.
(
s∗, `∗

) ∈ X is a local solution for (SSP) if there exists an open ball B
(
s∗, δ

)

around s∗ such that (s, `) ∈ X and s ∈ B
(
s∗, δ

)
imply θ

(
s∗, `∗

)
≤ θ(s, `). (Note that this implies

the minimum is global with respect to the integer variables.)

Theorem 2.1. If (s∗, b∗) =
(
s∗, f1

(
s∗, `(1)∗), . . . , fN

(
s∗, `(N)∗)) ∈ XD is a local solution for

(DSSP), then (s∗, `∗) ∈ X is a local solution for (SSP).

Proof. The claim is that there exist δ > 0, ε > 0 such that

θD(s∗, b∗) ≤ θD(s, b) for (s, b) ∈ XD ∩B
(
(s∗, b∗), δ

)
=⇒

θ
(
s∗, `∗

)
≤ θ(s, `) for (s, `) ∈ X and s ∈ B

(
s∗, ε

)
.

Suppose the hypothesis holds for some δ > 0, but the conclusion does not hold for any ε > 0; this
will be shown to lead to a contradiction. Then there exists a sequence

(
s(k), `(k)

)
∈ X such that

s(k) → s∗ and

θ
(
s(k) , `(k)

)
< θ
(
s∗, `∗

)

for all k. Since the discrete part of X is assumed finite, it may be assumed that all `(k) = `′, by

reducing to a subsequence if necessary. With `′ as above let b′ =
(
f1

(
s∗, `(1)′), . . . , fN

(
s∗, `(N)′)).

By continuity,
lim
k→∞

(
s(k), `(k)

)
= (s∗, `′) ∈ X.

Observe that for
∥∥s(k) − s∗

∥∥
2
< δ/

√
2,

b(k) =
(
f1

(
s(k), `

(1)
(k)

)
, . . . , fN

(
s(k), `

(N)
(k)

))

is not within δ/
√

2 of b∗, otherwise by the assumed valid hypothesis,

θ
(
s(k), `(k)

)
= θD

(
s(k), b(k)

)
≥ θD(s∗, b∗) = θ

(
s∗, `∗

)
.

Therefore again by continuity, limk→∞ b(k) = b′ is also not within δ/
√

2 of b∗. This together with
the inequality

N∑

i=1

(
b′i − b∗i

)
= θD(s∗, b′)− θD(s∗, b∗) = θ

(
s∗, `′

)
− θ
(
s∗, `∗

)
≤ 0

implies that some component b′i ≤ b∗i − δ
/(√

2NN
)
. Now from the two points (s∗, `∗) and (s∗, `′)

in X build a new point (s, `) ∈ X with s = s∗, `(j) = `(j)∗ for j 6= i, and `(i) = `(i)′. By Lemma

2.1, this point (s, `) corresponds to
(
s, b∗1, . . ., b∗i−1, b′i, b

∗
i+1, . . ., b∗N

) ∈ XD, from which can be
deduced the new point

(s, b) =
(
s, b∗1, . . . , b

∗
i−1, b

∗
i −

δ

2
√
NN

, b∗i+1, . . . , b
∗
N

)
∈ XD

with ‖(s, b)− (s∗, b∗)‖2 < δ and θD(s, b) < θD(s∗, b∗). This contradicts the assumed hypothesis,
so the result follows. Q. E. D.

The proof of Theorem 2.1 immediately yields the following useful observation.

Corollary 2.1. (s∗, b∗) =
(
s∗, f1

(
s∗, `(1)∗), . . . , fN

(
s∗, `(N)∗)) ∈ XD is a global solution for

(DSSP) ⇐⇒ (s∗, `∗) ∈ X is a global solution for (SSP).

5



3. Theory for mixed integer quasiseparable subsystems

As in the previous section, denote real n-dimensional Euclidean space by En, the set of n-tuples

of integers by Zn, let gj denote the jth component of a vector g, and let B(x, δ) ⊂ En denote the

open ball of radius δ centered at x. At some point x̄, the constraint margin for a (scalar) constraint

g(x) ≤ 0 is the amount −µ by which the constraint is slack: g(x̄) − µ = 0. The margin −µ for a

vector constraint G(x) ≤ 0 is the smallest component margin: maxj Gj(x̄) − µ = 0. Writing the

(positive at feasible points) constraint margin as −µ rather than µ leads to more elegant notation

later.

Consider first a trivial special case where the objective function f(s) depends on the global

system design variables s but not on any of the subsystem local design variables ` =
(
`(1), . . . ,

`(N)
)
. Such a problem has the form

min
s,`

f(s) subject to
g(0)(s) ≤ 0,

g(i)
(
s, `(i)

)
≤ 0, i = 1, . . . , N.

(ISV)

(The name ISV derives from the objective function, which is independent of subsystem variables.)

Here the system variables s ∈ En0 , the local subsystem variables `(i) =
(
`(i), ̂̀(i)

)
∈ En̄i × Zn̂i ,

ni = n̄i+n̂i, for i = 1, . . . , N , and to simplify the discussion assume that f(s), g(0)(s), g(1)
(
s, `(1)

)
,

. . . , g(N)
(
s, `(N)

)
are C2 (in the real variables) real vector-valued functions of dimensions 1, m0,

m1, . . . , mN , respectively. To simplify the separation of the discrete and real variables, write

¯̀=
(
`(1), . . . , `(N)

)
and ˆ̀=

(̂̀(1), . . . , ̂̀(N)
)
. In this trivial case, there is no optimization done at

the subsystem level, since each subsystem consists merely of constraints g(i)
(
s, `(i)

)
≤ 0. Thinking

in terms of global system design optimization, the system optimization should have as much leeway

as possible, so the subsystem tasks should not be merely to find feasible `(i), but to maximize the

constraint margins −µi. This idea leads to the decomposed (upper level) problem

min
s
f(s) subject to

g(0)(s) ≤ 0,

µi(s) ≤ 0, i = 1, . . . , N,
(DISV)

where µi(s) is the (global) solution to the ith lower level problem, for i = 1, . . . , N , given by

min
`(i)

µi subject to max
1≤j≤mi

g
(i)
j

(
s, `(i)

)− µi ≤ 0. (DISV)

Denoting the feasible set for (ISV) by X , the feasible set for (DISV) is

XD = {s | (s, `) ∈ X for some `},

the projection of X onto the system design space. Note that distant feasible points (s, `) ∈ X

may project to the same feasible point s ∈ XD, and that a disconnected open set in X may

project to a connected open set in XD. The fact that projections from X to XD do not increase

distances between points is important because it guarantees that the decomposition (DISV) does

not introduce spurious local solutions. This is formalized in the next definition and theorem.
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Definition 3.1.
(
s∗, `∗

) ∈ X is a local solution for (ISV) if there exists an open ball B
((
s∗, `∗

)
, δ
)

around
(
s∗, `∗

)
such that (s, `) ∈ X and (s, ¯̀) ∈ B

((
s∗, `∗

)
, δ
)

imply f(s∗) ≤ f(s).

Theorem 3.1. If s∗ is a local solution for (DISV), then there exists `∗ such that (s∗, `∗) is a local

solution for (ISV).

Proof. s∗ being a local solution means ∃ ε > 0 such that s ∈ XD ∩B(s∗, ε) =⇒ f(s∗) ≤ f(s). Also

s∗ ∈ XD =⇒ ∃ `∗ such that (s∗, `∗) ∈ X . Since clearly ‖s− s∗‖2 ≤
∥∥(s, ¯̀

)− (s∗, `∗)
∥∥

2
, it follows

that (s, `) ∈ X and
(
s, ¯̀
)
∈ B

((
s∗, `∗

)
, ε
)

=⇒ s ∈ XD ∩ B(s∗, ε) =⇒ f(s∗) ≤ f(s) =⇒ (s∗, `∗) is a

local solution of (ISV). Q. E. D.

For the continuous case, with some convexity and quasiconvexity assumptions, it is possible

to prove a theorem of the form “s∗ is a local solution for (DISV) ⇐⇒ ∃ `∗ such that (s∗, `∗)
is a local solution for (ISV).” As shown by a counterexample in (Haftka and Watson, 2004), the

convexity is essential, and thus such a theorem is not possible in the discrete case (any subset of

Zk with at least two points is not convex). However, it is easily seen that global minima of (ISV)

and (DISV) do correspond without convexity assumptions.

Corollary 3.1. s∗ is a global solution for (DISV) ⇐⇒ ∃ `∗ such that (s∗, `∗) is a global solution

for (ISV).

Consider next the more typical situation where the subsystem local design variables are in-

volved in the system objective function. Denote the system variables by s ∈ En0 , the local

subsystem variables by `(i) =
(
`(i), ̂̀(i)

)
∈ En̄i ×Zn̂i , ni = n̄i + n̂i, for i = 1, . . . , N , and the total

number of variables by

n = n0 + n1 + · · ·+ nN .

Let ` =
(
`(1), . . . , `(N)

)
denote all the local variables, ¯̀ =

(
`(1), . . . , `(N)

)
, ˆ̀ =

(̂̀(1), . . . , ̂̀(N)
)
,

let f0(s), f1

(
s, `(1)

)
, . . . , fN

(
s, `(N)

)
be C2 (in the real variables) real-valued functions, and let

g(0)(s), g(1)
(
s, `(1)

)
, . . . , g(N)

(
s, `(N)

)
be C2 (in the real variables) real vector-valued functions of

dimensions m0, m1, . . . , mN , respectively.

The quasiseparable subsystem problem is

min
s,`

f0(s) +
N∑

i=1

fi
(
s, `(i)

)
subject to

g(0)(s) ≤ 0,

g(i)
(
s, `(i)

)
≤ 0, i = 1, . . . , N.

(SSP)

Precisely, a nonlinear programming problem has quasiseparable subsystems (or is quasiseparable)

if it has the form (SSP). The essential ideas are to introduce a budget bi ∈ E for each subsystem

criterion fi
(
s, `(i)

)
, and to attack the subsystem constraints g(i)

(
s, `(i)

)
≤ 0 by maximizing the

constraint margin−µi for each subsystem. The original problem (SSP) is decomposed into an upper

level problem and N lower level problems, which are always feasible and are totally independent.

The decomposed problem is (upper level)

min
s,b

f0(s) +
N∑

i=1

bi subject to
g(0)(s) ≤ 0,

µi(s, b) ≤ 0, i = 1, . . . , N,
(DSSP)

7



where µi(s, b) is the (global) solution to the ith lower level problem, for i = 1, . . . , N , given by

min
`(i)

µi subject to
max

1≤j≤mi
g

(i)
j

(
s, `(i)

)
− µi ≤ 0,

fi
(
s, `(i)

)− bi − µi ≤ 0.
(DSSP)

Let X and XD denote the feasible sets for (SSP) and (DSSP), respectively. Assume that the set{
ˆ̀ | (s, `) ∈ X

}
of feasible discrete values is finite. Let θ(s, ¯̀, ˆ̀) be the objective function of (SSP),

and θD(s, b) the upper level objective function of (DSSP). The following lemma is straightforward
to verify.

Lemma 3.1. If (s, `) is feasible for (SSP), then

(s, b) = (s, b1, . . . , bN) =
(
s, f1

(
s, `(1)

)
, . . . , fN

(
s, `(N)

))

is feasible for (DSSP).

It is also easy to check that at an optimal solution of (DSSP) there is no margin on the

budget constraints, so that bi = fi
(
s, `(i)

)
. In the simpler (ISV) case, points that were close

to locally optimal solutions for (ISV) corresponded to even closer points for the upper level of

(DISV) because the ` components were dropped. This guaranteed that the decomposition did not
introduce spurious locally optimal solutions. Now, with the b variables and the discrete variables
ˆ̀, this is not as trivial. Here the continuity of the fi ensures that points that are close to locally
optimal solutions of (SSP) correspond to nearby points in the upper level of (DSSP). The following

definition and theorem imply that every locally optimal solution of (DSSP) corresponds to a locally
optimal solution of (SSP).

Definition 3.2.
(
s∗, `∗

)
∈ X is a local solution for (SSP) if there exists an open ball B

((
s∗, `∗

)
, δ
)

around
(
s∗, `∗

)
such that (s, `) ∈ X and (s, ¯̀) ∈ B

((
s∗, `∗

)
, δ
)

imply θ
(
s∗, `∗, ̂̀∗

)
≤ θ
(
s, ¯̀, ˆ̀

)
.

Theorem 3.2. If (s∗, b∗) =
(
s∗, f1

(
s∗, `(1)∗), . . . , fN

(
s∗, `(N)∗)) ∈ XD is a local solution for

(DSSP), then (s∗, `∗) ∈ X is a local solution for (SSP).

Proof. The claim is that there exist δ > 0, ε > 0 such that

θD(s∗, b∗) ≤ θD(s, b) for (s, b) ∈ XD ∩B
(
(s∗, b∗), δ

)
=⇒

θ
(
s∗, `∗, ̂̀∗

)
≤ θ
(
s, ¯̀, ˆ̀

)
for (s, `) ∈ X and

(
s, ¯̀
)
∈ B

((
s∗, `∗), ε

)
.

Suppose the hypothesis holds for some δ > 0, but the conclusion does not hold for any ε > 0. Then
there exists a sequence

(
s(k), `(k)

)
∈ X such that

(
s(k) , `(k)

)
→
(
s∗, `∗

)
and

θ
(
s(k) , `(k), ̂̀(k)

)
< θ
(
s∗, `∗, ̂̀∗

)

for all k. Since the discrete part of X is assumed finite, it may be assumed that all ̂̀(k) = ̂̀′, by

reducing to a subsequence if necessary. Define `′ by `′ = `∗, ̂̀′ = ̂̀
(k), and let b′ =

(
f1

(
s∗, `(1)′),

. . . , fN
(
s∗, `(N)′)). By continuity,

lim
k→∞

(
s(k), `(k)

)
= (s∗, `′) ∈ X.
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Observe that for
∥∥s(k) − s∗

∥∥
2
< δ/

√
2,

b(k) =
(
f1

(
s(k), `

(1)
(k)

)
, . . . , fN

(
s(k), `

(N)
(k)

))

is not within δ/
√

2 of b∗, otherwise by the assumed valid hypothesis,

θ
(
s(k), `(k),̂̀(k)

)
= θD

(
s(k), b(k)

)
≥ θD(s∗, b∗) = θ

(
s∗, `∗, ̂̀∗

)
.

Therefore again by continuity, limk→∞ b(k) = b′, and some component b′i ≤ b∗i − δ
/(√

2NN
)
. Now

from the two points (s∗, `∗) and (s∗, `′) in X build a new point (s, `) ∈ X with s = s∗, ¯̀ = `∗,
̂̀(j) = ̂̀(j)∗ for j 6= i, and ̂̀(i) = ̂̀(i)′. By Lemma 3.1, this point (s, `) corresponds to

(
s, b∗1, . . .,

b∗i−1, b′i, b
∗
i+1, . . ., b∗N

) ∈ XD, from which can be deduced the new point

(s, b) =
(
s, b∗1, . . . , b

∗
i−1, b

∗
i −

δ

2
√
NN

, b∗i+1, . . . , b
∗
N

) ∈ XD

with ‖(s, b)− (s∗, b∗)‖2 < δ and θD(s, b) < θD(s∗, b∗). This contradicts the assumed hypothesis,

so the result follows. Q. E. D.

Just as Corollary 3.1 followed from the proof of Theorem 3.1, the proof of Theorem 3.2

immediately yields the following analog of Corollary 3.1.

Corollary 3.2. (s∗, b∗) =
(
s∗, f1

(
s∗, `(1)∗), . . . , fN

(
s∗, `(N)∗)) ∈ XD is a global solution for

(DSSP) ⇐⇒ (s∗, `∗) ∈ X is a global solution for (SSP).

4. Example

This example demonstrates that the theory presented here earlier depends critically on the

form of the inequalities, and that it becomes invalid if strict inequalities are permitted in the

definition of constraints. That is, with strict inequalities, it is possible to get a spurious solution

from the decomposed problem (Theorem 2.1 is false).

Consider a simple budgeting problem where a manager has to decide on dividing work and

allocating funds for computer workstations for two departments. The manager can decide what

fraction s of a total workload of 10 units per day to assign to Department A, with the remainder

(1− s) assigned to Department B. Each unit of work (or fraction thereof) requires a workstation.

Let local subsystem variables `(1) and `(2) denote the number of workstations to be purchased

for Departments A and B, respectively. Due to the nature of the work, the workstation required

by Department A costs $2,000 and the one for Department B costs $8,000. Because of personnel

availability it is desirable to have s as close to 0.65 as possible, so introduce a dollar penalty of

2,400,000(0.65− s)2 for deviating from this value, reflecting expenses for temporary workers.

The objective is to minimize the cost (in units of $1,000):

min
s,`

2400(0.65− s)2 + 2`(1) + 8`(2).

9



The workload constraints are
−`(1) + 10s ≤ 0,

−`(2) + 10(1− s) < 0.

with the strict inequality constraint for Department B reflecting contractual requirements. Bounds

on variables are

`(1), `(2) ≥ 0, `(1), `(2) ∈ Z; 0 ≤ s ≤ 1, s ∈ E.

The (DSSP) decomposition formulation is

min
s,b

2400(0.65− s)2 +
2∑

i=1

bi subject to

−s ≤ 0,

s − 1 ≤ 0,

µi(s, b) ≤ 0,

where (Department A) µ1 solves

min
`(1)

µ1 subject to
−`(1) + 10s− µ1 ≤ 0,

2`(1) − b1 − µ1 ≤ 0,

and (Department B) µ2 solves

inf
`(2)

µ2 subject to
−`(2) + 10(1− s)− µ2 < 0,

8`(2) − b2 − µ2 ≤ 0.

By direct verification the only (local or global) solution of the original problem lies at(
s, `(1), `(2)

)
= (0.65, 7, 4) for a total cost of exactly $46,000. This corresponds to expenditures

of $14,000 by Department A, $32,000 by Department B, and no system-wide penalty for deviation

from the optimal allocation of manpower.

For the decomposed problem, the corresponding local solution is (s, b1, b2) = (0.65, 14, 32).

However, the point (s, b1, b2) = (0.5, 10, 48) is another local solution of the decomposed problem

with a total cost of $112,000. For this latter point, the lower level optimization yields `(1) = 5

and `(2) = 6. Decreasing s from 0.5 leaves the workstation cost unchanged and increases the

manpower cost. Increasing s by an arbitrary small positive value ε violates the workload constraint

for Department A, forcing `(1) to increase by 1 and the budget for Department A to increase to

$12,000. Simultaneously `(2) can be decreased by 1 and the budget for Department B can be

reduced to $40,000 giving a total cost of ≈$106,000. However, there is no continuous feasible

path from (s, b1, b2) = (0.5, 10, 48) to (s, b1, b2) = (0.5 + ε, 12, 40), so there is a local minimum at

(s, b) = (0.5, 10, 48). This shows that there is a local solution of the decomposed problem (DSSP)

that does not correspond to a local solution of (SSP), violating Theorem 2.1. (In fact, (DSSP) has

a local minimum for each s = 0.1j, j = 0, 1, . . ., 6, by the same reasoning as for s = 0.5.)
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