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Abstract

In this paper, we apply a homotopy algorithm to the problem of finding

points in a moving body that lie on specific algebraic surfaces for a given

set of spatial configurations of the body. This problem is a generalization

of Burmester’s determination of points in a body that lie on a circle for five

planar positions. We focus on seven surfaces that we term “reachable” because

they correspond to serial chains with two degree-of-freedom positioning struc-

tures combined with a three degree-of-freedom spherical wrist. A homotopy

algorithm based on generalized linear products is used to provide a convenient

estimate of the number of solutions of these polynomial systems. A paral-

lelized version of this algorithm was then used to numerically determine all of

the solutions.
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1 Introduction

The problem that we consider originates with the determination by Burmester (1886)[4]
of those points in a body that lie on a circle for a given set of five planar positions.
He used these so-called Burmester points to design a linkage to guide a body through
the given positions. His result was a graphical solution to a set of five quadratic
equations in five unknown parameters, see Suh and Radcliffe (1978)[27], Sandor and
Erdman (1984)[22], or McCarthy (2000)[17].

Chen and Roth (1967)[7] generalized this problem by seeking points and lines in a
moving body that take positions on surfaces associated with articulated serial chains,
in order to design robot manipulators. A subset of these serial chains consists of two
joints that support a spherical wrist, and we consider the surfaces that are reachable
by the wrist center of these chains. Considering the various ways of assembling these
articulated chains, we obtain seven reachable algebraic surfaces. The equations of
these surfaces can be evaluated on the displacement positions of a generic point in
order to define a set of polynomial equations. The solution of these equations define
the surface and the dimensions of the associated chains that guide the end-effector
through the given displacements.

To illustrate this problem, consider the set of points, Pi = (Xi, Yi, Zi)
T , i =

1, . . . , n, that are the images of a point p = (x, y, z)T in a moving body defined by a
set of spatial displacements Ti = [Ai,di] i = 1, . . . , n, which means Pi = [Ai]p + di

—note [Ai] is a 3×3 rotation matrix and di is a 3×1 translation vector (Bottema and
Roth 1979[3], McCarthy 1990[16]). We now ask if there is a point p in the moving
body that has the property that the image points Pi lie on a sphere, such that

(Xi − u)2 + (Yi − v)2 + (Zi − w)2 − R2 = 0, i = 1, . . . , n, (1)

where R is the radius of the sphere and B = (u, v, w) is its center. This sphere is
defined by the seven parameters p = (x, y, z), B = (u, v, w) and R. Thus n = 7 spatial
displacements yield seven quadratic polynomials (1) that determine these parameters.
The system of polynomials has a total degree of 27 = 128, but it is known to have
only 20 solutions, Chen and Roth 1967[7], Liao and McCarthy 2001)[15].

In what follows, we study the cases of the plane, sphere, circular cylinder, circular
hyperboloid, elliptic cylinder, circular torus and general torus. These are the surfaces
reachable by the PPS, TS, CS, RPS, PRS, right RRS, and RRS serial chains. It
is interesting how quickly the complexity of the problem increases with the number
of dimensional parameters and the degree of the surface. The total degree of the
polynomial systems that we consider range from 32 for the simplest to over 4 million
for the most complex.

We show that these polynomial systems have a generalized linear product structure
(Morgan et al. 1995[19]) that yields a bound on the number of solutions that ranges
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Gimbal joint

Spherical joint

Figure 1: The TS serial constraints the wrist center to the surface of a sphere

from 10 to over 800,000. In addition, this generalized linear product structure provides
a convenient start system for a homotopy algorithm POLSYS GLP developed for this
application to numerically determine all of the solutions of these polynomial systems
(Verschelde and Haegemans 1993[29] and Wise et al. 2̃000[35]).

Our results are summarized in Table 3 which compares the total degree of each
polynomial system, the bound obtained using the generalized linear product struc-
ture of these polynomials, and the number of solutions obtained using the homotopy
algorithm POLSYS GLP.

2 Homotopy Algorithms

Our concern is finding all of the solutions of a set of n polynomial equations in n
unknowns that arise in finding surfaces reachable by articulated chains. For the cases
of the plane and sphere, the systems of polynomials can be solved by direct elim-
ination of the unknown parameters to obtain a univariate polynomial. Numerical
solution of this polynomial, combined with back-substitution yields the desired solu-
tions. However, the remaining surfaces yield systems of polynomials that are simply
too complicated to solve by direct parameter elimination, therefore we use a numerical
method called a homotopy algorithm.
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Consider the array of polynomials P (z) obtained from (1),

P (z) =



















S1(z)
S2(z)

...
S7(z)



















= 0, (2)

where z = (p,B, R) is the vector of parameters that define the sphere. If we start with
a polynomial system Q(z) = 0 that has the same structure as P (z) = 0 but with a
known set of solutions, then we can continuously transform Q(z) into P (z) and track
its roots in order to find the solutions of P (z) = 0. This continuous transformation
of Q(z) into P (z) is called a homotopy map.

A numerical homotopy technique was used by Tsai and Morgan (1985)[28] to solve
the inverse kinematics equations of a general 6R robot manipulator. Wampler et al.
(1990)[31] and Sommese et al. (2002)[23] describe the use of numerical homotopy for
applications in the kinematics of linkages and robots. Our focus on the design of serial
chain robots follows Lee and Mavroidis (2002)[14], who used numerical homotopy to
solve the design equations for an RRR manipulator.

For our purposes, we use the convex combination homotopy map

H(λ, z) = (1 − λ)Q(z) + λP (z), (3)

where λ ∈ [0, 1) is the real-valued homotopy parameter. The coefficients of our
polynomial system P (z) = 0 are real, however, its roots z need not be. Therefore,
the homotopy H(λ, z) must be viewed as an array of n complex functions in n complex
variables z together with a single real variable λ.

For each root of the start system Q(z) = 0, denoted z = aj , j = 1, . . ., N ,
the homotopy equation H(λ, z) = 0 has an associated zero curve γa, which is the
connected component of H−1(0) containing the start point (0, aj). The zero curve
leads either to a point (1, za) where P (za) = 0, or diverges to a root “at infinity.”

Each zero curve can be parameterized by its arc length s, so γa has the form
(λ(s), z(s)). Tracking this curve involves numerical computation of points yi ≈
(λ(si), z(si)), where {si} is an increasing sequence of arc lengths. This can be done
using a predictor-corrector strategy described in Watson et al. (1997)[34] and Wise
et al. (2000)[35].

Along the zero curve γa, we have H(λ(s), z(s)) = 0, therefore we can compute

d

ds
H(λ, z) =

[

Hλ Hz
]

{

dλ/ds
dz/ds

}

= 0, (4)

where [JH ] = [Hλ, Hz] is the n× (n+1) matrix of partial derivatives of the homotopy
H(λ, z). Notice that the vector v = (dλ/ds, dz/ds)T tangent to the zero curve γa is
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in the null space of the Jacobian matrix [JH ]. This null space has dimension one by
the theory of polynomial homotopy maps, (Wampler et al. 1990[31] and Wise et al.
2000[35]).

The unit tangent vector vi, in the direction of increasing arc length, at a point yi

on γa is used to predict a value for the next point y0
i+1, that is

y0
i+1 = yi + (si+1 − si)vi, (5)

where si+1 − si is a chosen arc length step. The predicted value of y0
i+1 is corrected

using the Taylor series expansion of the homotopy given by

H(y0
i+1) + [JH(y0

i+1)](y
1
i+1 − y0

i+1) ≈ 0, (6)

which yields the correction formula

y1
i+1 = y0

i+1 − [JH(y0
i+1)]

†H(y0
i+1). (7)

The dagger denotes the Moore-Penrose pseudoinverse of the n × (n + 1) Jacobian
matrix. Geometrically, iteration of the correction formula moves yk

i+1 toward the
zero curve γa along a normal direction, and is termed the “normal flow algorithm.”

The predictor can be improved by interpolation at previous computed points along
the zero curve, and a projective transformation can be used to bound the arc length
of all of the paths so that none diverge to infinity. Finally, an “end-game” strategy
can improve the calculation of y near λ = 1. See Wise et al. (2000)[35] for details.

Fundamental to this approach to solving the equations P (z) = 0 is the determi-
nation of a start system Q(z) = 0 with a known set of solutions. A general purpose
homotopy algorithm must systematically construct a start system with known roots
that is appropriate for the given set of polynomials. In the next section, we show how
to construct a start system using a generalized linear product representation of the
system of polynomials.

3 Linear Product Decomposition

The fundamental theorem of algebra states that the number of roots of a polynomial
is equal to or less than its degree, which is the integer value of its highest power—
equality is obtained if roots are counted with the appropriate multiplicity. This has
been generalized to Bezout’s theorem which states that the number of roots of a
system of polynomials is less than or equal to the product of the degrees of the
individual polynomials, called the total degree of the system. This fact leads to a
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relatively simple start system Q(z) = 0, where di, i = 1, . . . , n is the degree of the ith
polynomial in the target system P (z) = 0, given by

Q(z) =



















a1z
d1

1 − b1

a2z
d2

2 − b2

...
anzdn

n − bn



















= 0. (8)

The coefficients ai and bi are randomly selected complex numbers. The solutions
to this start system are easy to determine and provide the starting coordinates for
tracing the d = d1d2 . . . dn zero curves to the solutions of P (z) = 0.

In the problems that we consider in this paper, the total degree over-estimates the
number of roots in the target polynomial P (z) by a significant amount. For example
in order to solve our example problem (1) the polynomial homotopy algorithm with
the start system (8) would track 128 paths to find 20 roots, which means over 80%
of the computation is spent tracing paths that are extraneous.

The problem of extraneous paths arises from the fact that the polynomials we
wish to solve are not general, but instead have internal structure that reduces the
number of solutions. Morgan et al. (1995)[19] show that a “generic” system of
polynomials that includes every monomial of a particular system of polynomials will
have as many or more solutions as any version obtained by specifying values for the
coefficients. This leads to the construction of the linear product decomposition of a
system of polynomials. Associated with a linear product decomposition is a start
system that is easy to construct and solve called the generalized linear product.

In order to illustrate the linear product decomposition, we analyze the example
(1) in more detail. Write these polynomials in vector form to obtain

(Pi − B) · (Pi − B) = R2, i = 1, . . . , 7, (9)

where the dot denotes the vector dot product. Now subtract the first equation from
the rest in order to eliminate R2. This reduces the problem to six equations in the
unknowns z = (x, y, z, u, v, w), given by

S(z) =











(P2 · P2 − P1 · P1) − 2B · (P2 − P1)
...

(P7 · P7 − P1 · P1) − 2B · (P7 − P1)











= 0. (10)

We now consider these equations as linear combinations of monomials formed by the
unknown parameters.

Let 〈x, y, 1〉 represent the set of linear combinations of parameters x, y and 1,
which means a typical term is αx+βy + γ ∈ 〈x, y, 1〉, where α, β and γ are arbitrary
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constants. Using this notation, we define the product of 〈x, y, 1〉〈u, v, 1〉 as the set of
linear combinations of the product of the elements of the two sets, that is

〈x, y, 1〉〈u, v, 1〉 = 〈xu, xv, yu, yv, x, y, u, v, 1〉. (11)

This product commutes, which means 〈x〉〈y〉 = 〈y〉〈x〉, and it distributes over unions,
such that 〈x〉〈y〉 ∪ 〈x〉〈z〉 = 〈x〉(〈y〉 ∪ 〈z〉) = 〈x〉〈y, z〉. Furthermore, we represent
repeated factors using exponents, so 〈x, y, 1〉〈x, y, 1〉 = 〈x, y, 1〉2.

Recall that Pi = [Ai]p + di where [Ai] and di are known, so it is easy to see that

2B · (Pj+1 − P1) ∈ 〈u, v, w〉〈x, y, z, 1〉. (12)

It is also possible to compute

Pj+1 · Pj+1 −P1 · P1 = 2dj+1 · [Aj+1]p − 2d1 · [A1]p + d2
j+1 − d2

1 ∈ 〈x, y, z, 1〉. (13)

Each of the equations in (10) has the same monomial structure given by

〈x, y, z, 1〉 ∪ 〈u, v, w〉〈x, y, z, 1〉 ⊂ 〈x, y, z, 1〉〈u, v, w, 1〉. (14)

¿From this we see that a generic set of polynomials that contains our system as a
special case can be constructed as a product of linear factors, as

Q(z) =











(a1x + b1y + c1z + d1)(e1u + f1v + g1w + h1)
...

(a6x + b6y + c6z + d6)(e6u + f6v + g6w + h6)











= 0, (15)

where the coefficients are known complex constants. This structure is called the linear

product decomposition of the target system.
Solutions to a linear product decomposition of a set of polynomials are easily

determined by assembling all combinations of factors, one from each equation, that
can be set to zero and solved for the unknown parameters (Wampler 1994[32]). In
our example, select three factors aix + biy + ciz + di = 0 from the six equations, and
combine with the three factors eiu + fiv + giw + hi = 0 in the remaining equations.
A solution of this set of six linear equations is a root of (15). Thus, we find that this
system has

(

6

3

)

= 20 solutions, which matches the known result for (10).
For the problems we consider the linear product decomposition provides a bound

on the number of solutions that is significantly less than the total degree.
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4 Generalized Linear Product

The “generalized linear product” is a start system constructed from the linear prod-
uct decomposition of a polynomial system. It is an extended version of the “parti-
tioned linear product” used to construct m-homogeneous start systems, (Wise et al.
2000[35]).

We begin with a linear product decomposition for each of the polynomials Pi, i =
1, . . ., n in the unknowns zi, i = 1, . . ., n. Augment each factor in this decomposition
with a constant term, if it is not already present. This means that a factor of the form
〈z1, z2, z3〉 is replaced by 〈z1, z2, z3, 1〉. Now for notational convenience we introduce
the “mask” Sij = (sij1, . . ., sijn) constructed from n 1s and 0s in order to identify the
unknowns in z = (z1, z2, . . . , zn) that appear in a specific linear factor. This allows
us to write a general linear product decomposition as

Pi ∈
mi
∏

j=1

〈sij1z1, . . . , sijnzn, 1〉dij , (16)

where mi is the number of different factors in polynomial Pi. Notice that di =
∑mi

j=1
dij

is the degree of Pi. This decomposition is specified by identifying the masks Sij and
the associated degrees dij .

We now construct the start system by introducing the polynomial

Gij =

(

n
∑

k=1

cijksijkzk

)dij

− 1, (17)

for each factor in the augmented linear product decomposition. The coefficients cijk

are randomly specified complex numbers. Thus, the generalized linear product start
system is given by

Q(z) =



































m1
∏

j=1

G1j

...
mn
∏

j=1

Gnj



































. (18)

In order to determine the roots of this start system, we follow Wise et al. (2000)[35]
and introduce the factor lexicographic vector Φ = (Φ1, Φ2, . . ., Φn) which is the lexi-
cographically ordered combinations of factors taken one from each polynomial in the
system. Notice that Φ ranges from (1, 1, . . ., 1) ≤ Φ ≤ (m1, m2, . . ., mn). Next, we
introduce the degree lexicographic vector ∆ = (∆1, ∆2, . . ., ∆n) which is the lexico-
graphically ordered combinations of the count of the roots of unity associated with
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the degree of the factor. The set ∆ ranges from (0, 0, . . ., 0) ≤ ∆ ≤ (d1Φ1
−1, d2Φ2

−1,
. . ., dnΦn

− 1), where 1 ≤ diΦi
by definition of our linear product decomposition.

Given a combination of factors Φ, we have one or more arrays ∆ depending on the
degrees of the specific factors identified by Φ. These two vectors specify the linear
system of equations

[AΦ]z =



















































m1
∑

k=1

c1Φ1ks1Φ1kzk

m2
∑

k=1

c2Φ2ks2Φ2kzk

...
mn
∑

k=1

cnΦnksnΦnkzk



















































=



























e
i

∆1

d1Φ1

e
i

∆2

d2Φ2

...

e
i ∆n

dnΦn



























= b∆. (19)

If [AΦ] is non-singular then the solution of this equation contributes a root to the
start system for every root of unity in the array ∆. Wise et al. (2000)[35] pro-
vide an efficient algorithm for computing the solutions to linear systems that are
organized in this way, which was implemented in the polynomial homotopy software
POLSYS PLP. We use the same algorithm to determine the roots of our generalized
linear product start systems. For this reason, we term our algorithm POLSYS GLP.

5 Verifying the Linear Product Decomposition

In order to execute POLSYS GLP, the user provides both the target polynomials and
their associated linear product decompositions, which are used to construct the start
system. If there is an error and the polynomial does not actually lie in the span of
the specified generic linear products, then the homotopy is meaningless. Therefore,
it is imperative to verify the linear product decomposition as follows.

For each polynomial Pi, we check that each monomial z1
α1z2

α2 · · · zn
αn is contained

in the associated linear product decomposition
∏mi

j=1
〈sij1z1, . . ., sijnzn, 1〉dij . Our

approach is to create a “set structure table” that has the linear terms of 〈sij1z1, . . .,
sijnzn, 1〉 as its column headings, and the factors of the expanded monomial z1

α1z2
α2

· · · zn
αn as its rows. This set structure table has as many columns as the total degree

di of Pi, and as many rows as the total degree of the monomial, which must be less
than or equal to di.

The defining characteristic of a linear product decomposition is that each factor
of the expanded monomial arises from a different linear term in the decomposition.
This means that each row of the set structure table must be assignable to a separate
column. If this assignment does not exist then the linear decomposition is invalid.
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We begin with the first row and search the columns left to right to find a linear
term (column) that contains the associated monomial factor (row). This column
number is saved in a list that denotes the linear terms that have been taken. The
row is incremented and the search applied to the columns that have not been taken.
When the final row is assigned to an available linear term the verification for the
monomial is complete.

If a row is found to have a factor that cannot be assigned to a linear term, then
the assignment of the factor in the previous row is advanced to the next linear term
(column) in which it is contained. This step continues until either all of the factors
are assigned to separate columns, or there is no available assignment for the factor
in the first row. If this occurs then the monomial is not contained in the span of the
linear product decomposition.

6 Parallelizing the Path Tracking Step

Each solution of the GLP start system (19) defines a starting point to begin tracing
an individual zero curve. The zero curve for every root must be traced to determine
whether it leads to a root of the target system or to a point at infinity. Because these
calculations are independent, they can be distributed among different processors in a
parallel computing cluster. See Allison et al. (1989ab)[1, 2], and Chakraborty et al.
(1991, 1993)[5, 6].

We use MPI-2 (Message Passing Interface) described by Gropp et al. (2002)[11]
to distribute an identical set of POLSYS GLP routines among each of n − 1 slave
processing nodes, numbered r = 1, . . . , n − 1. The number r is called the rank of
the processor. The processor of rank 0 is the master node. Each of the slave nodes
executes a loop consisting of a request to the master node for a path index. This
index identifies the root that begins a particular zero curve. The slave node traces
the zero curve, reports the results and requests another path index. The master node
receives the requests by the slave nodes, identifies the rank of the requesting node,
distributes the next path index, and sends a stop code when all the paths are traced.

Recall that the start system is constructed using random values for the coefficients
in the polynomials Gij. We generate these coefficients separately and provided them
to the slave routines via a data file. In this way each slave node has the same
start system with the same array of roots. This reduces the need for inter-processor
communication. The result is a convenient parallel computation of the homotopy zero
curves leading from the roots of the start system to the roots of the target polynomial
system.
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Joint Diagram Symbol DOF

Revolute
θ

R 1

Prismatic
d

P 1

Cylindric
θ

d

C 2

Universal
θ1

θ2

T 2

Spherical
θ1

θ2 θ3

S 3

Table 1: The five basic joints.

7 Reachable Surfaces

We now consider the problem of finding surfaces that contain a set of points generated
by a displaced rigid body. Our focus is on the surfaces reachable by the wrist center
of an articulated serial chain. In general, each joint of an articulated serial chain is
designed to allow either pure rotation about, or a linear slide along, the joint axis,
and is termed a revolute or prismatic joint, denoted R and P, respectively. See Craig
(1989)[8] for an introduction to the kinematics of articulated serial chains.

Revolute and prismatic joints can be combined to define other specialized joints.
In particular, the sequence of two revolute joints that have axes that intersect at right
angles is called a gimbal, or universal joint, denoted by a T. Similarly, the sequence
of a revolute and a prismatic joint constructed so their axes are parallel is called a
cylindric (C) joint. Finally, a three revolute chain with concurrent joint axes form a
spherical (S), or ball, joint. See Table 1.

A spherical wrist is an S-joint that allows full orientation of the gripper about its
wrist center, P, therefore our reachable surfaces by P under the control of two other
joints in the articulated chain. The combinations available for revolute and prismatic
joints yields four basic chains: PPS, RPS, PRS, and RRS. The reachable surfaces
defined by these chains are the plane, the circular hyperboloid, the elliptic cylinder
and the general torus.

We can obtain additional reachable surfaces by specializing the dimensional pa-
rameters that characterize the first two joints. In particular, the RR chain has two
defining parameters the distance, ρ, between the joint axes along their common nor-
mal line, and the angle α between them measured around this common normal. For
α = π

2
we have the chain “right” RRS that traces a circular torus. For the case
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Case Chain angle length Surface

1 PPS - - plane
2 TS π

2
0 sphere

3 CS 0 - circular cylinder
4 RPS α - circular hyperboloid
5 PRS α - elliptic cylinder
6 right RRS π

2
ρ circular torus

7 RRS α ρ general torus

Table 2: The basic serial chains and their associated reachable surfaces.

α = 0, the “parallel” RRS traces a plane and is equivalent to the PPS chain. If the
parameter ρ = 0, then the surface is part of a sphere, and fills the sphere for α = π

2

which characterizes a TS chain.
For RP and PR chains, only the angle α is important because this joint ensures

that all points to travel on lines parallel to its direction. We can identify the special
cases of the RPS and PRS for which this angle is α = 0, which in both cases become
the CS chain that traces a circular cylinder. If this angle is α = π

2
, called a “right”

RPS, then the surface is again a plane equivalent to that traced by the PPS chain.
Finally, all PP chains are essentially the same as long the directions of the two

joints are not parallel, so that some component of movement perpendicular to the
first prismatic joint is available by sliding along the second joint.

The result is a set of seven algebraic surfaces that are reachable by the wrist
centers of a set of articulated chains. See Table 2. In what follows, we formulate
sets of polynomial equations that define these surfaces for a given set of spatial dis-
placements. We then provide a linear product decomposition and the results of our
polynomial homotopy solution.

8 The Plane

The PPS serial chain has the property that the wrist center P is constrained to lie
on a plane (Figure 2). We now seek points in a moving body that can be used for
this wrist center, such that they lie on a plane for each of a set of spatial positions
defined for the body. If the positions be defined by [Ti] = [Ai,di], i = 1, . . . , n, then
Pi = [Ai]p +di are the positions of the wrist center. The goal is to find both a plane
and the point p = (x, y, z), such that the Pi all lie on the plane.

A point P = (X, Y, Z) lies on a plane with the surface normal G = (a, b, c) if its
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G

P

Figure 2: A plane as traced by a point at the wrist center of a PPS serial chain.

coordinates satisfy the equation

aX + bY + cZ − d = G · P− d = 0. (20)

The parameter d is the product of the magnitude |G| and the signed normal distance
to the plane.

There are seven parameters in this problem, the three coordinates of G, the three
coordinates of p, and d. Notice, however, the components of G are not independent
because the depends on the direction of G, not its magnitude. A convenient way
to constrain this magnitude is to choose a vector m and scalar e, and require that
m ·G = e.

Thus, to determine the plane we use this constraint equation together with the
equation of the plane (20) evaluated for six spatial displacements, [Ti], i = 1, . . . , 6,

G · Pi − d = 0, i = 1, . . . , 6. (21)

Subtract the first of these equations from the remaining to eliminate d, The result is
the polynomial system

P (z) =



















G · (P2 − P1)
...

G · (P6 − P1)
m · G − e



















= 0. (22)

This is a set of five quadratic equations and one linear equation in the six unknowns
z = (a, b, c, x, y, z). The total degree of this system is 25 = 32.
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It is easy to see that this polynomial system has the linear product decomposition
(22) as

P (z) ∈



















〈a, b, c〉〈x, y, z, 1〉|1
...

〈a, b, c〉〈x, y, z, 1〉|5
〈a, b, c, 1〉



















. (23)

The root count for this linear product decomposition (LPD) is given by the combina-
tions of linear factors that can be set to zero and solved for the unknown parameters.
In this case, we have

(

5

2

)

= 10 roots, which means that may be as many as 10 points
in the moving body that lie on a plane for six specified positions of the end-effector.

This system of polynomials (22) is small enough that direct elimination of the
parameters can be used to obtain a univariate polynomial, which is found to be of
degree 10. Thus, in this case the LPD bound is exact. It is interesting to note that
our numerical calculations have not yielded more than four real solutions.

Once the plane P and point p are defined, then it is possible to determine a PPS
chain, a parallel RRS or a right RPS chain that guides this point through the specified
positions.

9 The Sphere

We now return to our opening example in which a point P = (X, Y, Z) constrained
to lie on a sphere of radius R around the point B = (u, v, w), Figure 3. This means
its coordinates satisfy the equation

(X − u)2 + (Y − v)2 + (Z − w)2 − R2 = (P −B)2 − R2 = 0. (24)

We now consider Pi to be the image of a point p = (x, y, z) in a moving frame M
that takes positions in space defined by the displacements [Ti] = [Ai,di], i = 1, . . . , n.
See Innocenti (1995)[12], Liao and McCarthy (2001)[15] and Raghavan (2002)[21].

This problem has seven parameters, the three components each of p and B and
the radius R. Therefore we can evaluate (24) on n = 7 displacements,

(Pi − B)2 − R2 = 0, i = 1, . . . , 7. (25)

Subtract the first equation from the remainder in order to eliminate R, and obtain
the equations S(z) (10) where z = (x, y, z, u, v, w).

We have already seen that this system has the linear product decomposition

S(z) ∈











〈x, y, z, 1〉〈u, v, w, 1〉|1
...

〈x, y, z, 1〉〈u, v, w, 1〉|6











, (26)
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B

R

Figure 3: A sphere traced by a point at the wrist center of a TS serial chain.

from which we can compute the LPD bound
(

6

3

)

= 20. Parameter elimination yields a
univariate polynomial of degree 20, which means that this bound is exact. Innocenti
(1995)[12] presents an example that results in 20 real roots.

Thus, given seven arbitrary spatial positions there can be as many as 20 points
in the moving body that have positions lying on a sphere. For each real point, it is
possible to determine an associated TS chain.

10 The Circular Cylinder

In order to define the equation of a circular cylinder, let the line L(t) = B + tG be
its axis. A general point P on the cylinder lies on a circle about the point Q closest
to it on the axis L(t). See Figure 4.

Introduce the unit vectors u and v along G and the radius R of the cylinder,
respectively, so we have

P − B = du + Rv, (27)

where d is the distance from B to Q. Compute the cross product of this equation
with G, in order to cancel d before squaring both sides. The result is

((P −B) × G)2 = R2G2. (28)

In this calculation we use the fact that (v × G)2 = G2.
Another version of the equation of the cylinder is obtained by substituting d =

(P −B) · u into (27) and squaring both sides to obtain

(P −B)2 − ((P −B) · G)2 1

G ·G − R2 = 0. (29)
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Figure 4: The circular cylinder reachable by a CS serial chain.

Notice that we allow G to have an arbitrary magnitude. This form of the cylinder
is related to the equation of the circular hyperboloid, which is discussed in the next
section.

Equation (28) has 10 parameters, the radius R and three each in the vectors
P = (X, Y, Z), B = (u, v, w) and G = (a, b, c). However, because only the direction
of G is important to the definition of the cylinder, its three components are not
independent. We set the magnitude of G as we did above for the equation of the
plane. Choose an arbitrary vector m and scalar e and require the components of G
satisfy the constraint,

G · m − e = 0. (30)

The components of the point B are also not independent, but for a different reason.
It is because any point on the line L(t) can be selected as the reference point B. We
identify this point by requiring B to lie on a specific plane U : (n, f), that is

B · n− f = 0, (31)

where n and f are chosen arbitrarily to avoid the possibility that the line L(t) may
lie entirely on U .

Eight polynomials are obtained by specifying eight spatial displacements [Ti] =
[Ai,di], i = 1, . . . , 8, that is Pi = [Ai]p + di, i = 1, . . . , 8 and evaluating (29) for
p = (x, y, z). The result is

((Pi −B) × G)2 − R2G2 = 0, i = 1, . . . , 8. (32)

Subtract the first equation from the remaining seven to eliminate R and obtain

((Pj+1 − B) ×G)2 − ((P1 −B) × G)2 = 0, j = 1, . . . , 7. (33)
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These equations can be simplified and assembled with the two constraint equations
to define the system of polynomials

C(z) =



























(P2 × G)2 − (P1 × G)2 − 2((P2 −P1) × G) · (B ×G)
...

(P8 × G)2 − (P1 × G)2 − 2((P8 −P1) × G) · (B ×G)
G · m− e
B · n − f



























= 0. (34)

This is a set of seven polynomials of degree four and two of degree one. The total
degree is 47 = 16, 384. See Neilsen and Roth (1995)[20] and Su et al. (2003)[25] for
additional details about this problem.

We now consider the monomial structure of polynomial system (34). Each poly-
nomial Pi is a linear combination of monomials in the set generated by

(〈x, y, z, 1〉〈a, b, c〉)2 ∪ 〈x, y, z, 1〉〈a, b, c〉〈u, v, w〉〈a, b, c〉. (35)

This can be manipulated to show the system of polynomials (34) is a special case of
the linear product decomposition,

C(z) ∈



























〈a, b, c〉2〈x, y, z, 1〉〈x, y, z, u, v, w, 1〉|1
...

〈a, b, c〉2〈x, y, z, 1〉〈x, y, z, u, v, w, 1〉|7
〈u, v, w, 1〉
〈a, b, c, 1〉



























= 0. (36)

In order to determine the number of roots, we notice that the components of G =
(a, b, c) are determined by its linear constraint combined with two terms taken from
〈a, b, c〉 in the seven polynomials. Furthermore, because this term is squared, the
number of choices is increased by a factor of 22 = 4. Next we choose from zero
to three of the terms 〈x, y, z, 1〉 from the remaining five polynomials to define p =
(x, y, z). The remaining factors and the last linear equation define the parameters
B = (u, v, w). This yields the LPD bound of

BLPD = 22

(

7

2

) 3
∑

i=0

(

5

i

)

= 2, 184, (37)

which is significantly less than the total degree.
We use our POLSYS GLP homotopy algorithm to determine the roots for this

system of polynomials for a random set of test cases and obtain the exact root count
for this problem as 804. Thus, for eight arbitrary spatial positions we can find as
many as 804 points in the moving body each of which has all eight positions on a
circular cylinder. For each of these points, we can determine an associated CS chain.

17



a

B

P

N
( b ) top view along -G

H

B
α

P
H

G

d

a

( c ) front view along -N

b
GxN

HG

P

( a )

N

GxN

Figure 5: The circular hyperboloid traced by the wrist center of an RPS serial chain.

11 The Circular Hyperboloid

A circular hyperboloid is generated by rotating one line around another so that every
point on the moving line traces a circle around the fixed line, G, which is the axis of
the hyperboloid, Figure 5. Of all of these circles there is one with the smallest radius,
R, and its center B = (u, v, w) is the center of the hyperboloid. Let G = (a, b, c)
be the direction of the axis L(t) = B + tG. The unit vector N perpendicular to G

though B is the common normal between the axis G and one of the generated lines,
H. The generator is located at the distance R along N, and lies at an angle α around
N relative to the axis G.

The distance d measured along the axis G from B to a point P on the generator
is given by

d =
(P − B) · G√

G · G
. (38)

Notice that we are not assuming that G is a unit vector. The magnitude of P−B is
now computed to be

(P − B)2 = R2 + d2 + (d tanα)2. (39)

Substitute d into this equation to obtain the equation of a circular hyperboloid

(P − B)2 − ((P − B) · G)2
(1 + tan2 α

G ·G
)

− R2 = 0. (40)

When α = 0, this becomes the equation of a cylinder presented in the previous section.
Figure 5(a) shows the RPS chain associated with the circular hyperboloid. The R-

joint axis is G, and its P-joint axis in the direction α measured around the common
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normal. The point P is the center of the S-joint, and lies at the distance R in the
direction N of the common normal.

Expand equation (40) and collect terms to obtain

k0P · P + 2K ·P − (P · G)2 − ζ = 0, (41)

where we have introduce the parameters k0, K = (k1, k2, k3) and ζ defined by

k0 =
G · G

1 + tan2 α
, K = (B · G)G − k0B, ζ = (B ·G)2 − k0B ·B + k0R

2. (42)

Given values for ζ , k0, K, and G, we can compute B by solving the linear equations






k1

k2

k3







=





a2 − k0 ab ac
ab b2 − k0 ac
ac bc c2 − k0











u
v
w







. (43)

Then the length and twist parameters, R and α, are obtained from the formulas

α = arccos
(

√

k0

G · G
)

, R =

√

ζ − (B · G)2 + k0B · B
k0

. (44)

Thus, the 11 dimensional parameters ζ , k0, K, G, and P define a circular hyperboloid.
As we have seen previously, it is the direction of G and not its magnitude that

is required, so this magnitude can be set using an arbitrary vector m and scalar e in
the constraint equation,

G · m − e = 0. (45)

Thus, the remaining ten dimensional parameters can be determined by evaluating
(41) on the displaced positions Pi = [Ai]p+di i = 1, . . . , 10, of the point p = (x, y, z).
The result is

k0P
i · Pi + 2K · Pi − (Pi · G)2 − ζ = 0, i = 1, . . . , 10. (46)

Subtract the first of these equations from the remaining in order to eliminate ζ and
obtain

k0(P
j+1 ·Pj+1−P1 ·P1)+2K·(Pj+1−P1)−(Pj+1 ·G)2+(P1 ·G)2 = 0, j = 1, . . . , 9.

(47)
The result is that the right circular hyperboloid is defined by the system of poly-

nomial equations

H(z) =



















k0(P
2 · P2 − P1 · P1) + 2K · (P2 − P1) − (P2 ·G)2 + (P1 · G)2

...
k0(P

10 · P10 − P1 · P1) + 2K · (P10 −P1) − (P10 · G)2 + (P1 · G)2

G · m − e



















= 0.

(48)
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This is a system of nine fourth degree polynomials and one linear equation which has
a total degree of 49 = 262, 144. See Neilsen and Roth (1995)[20] and Kim and Tsai
(2002)[13] for other formulations of this problem.

A better bound on the number of solutions can be obtained by considering the
monomial structure of these equations. Recall that the term Pj+1 ·Pj+1 −P1 · P1 is
linear in x, y, and z, because the quadratic terms cancel, see (13). This means the
polynomials (47) have the monomial structure

〈k0〉〈x, y, z, 1〉 ∪ 〈k1, k2, k3〉〈x, y, z, 1〉 ∪ (〈x, y, z, 1〉〈a, b, c〉)2. (49)

This simplifies to yield the linear product decomposition for the system (48) as (48)
as

H(z) ∈



















〈a, b, c〉2〈x, y, z, 1〉〈x, y, z, k0, k1, k2, k3, 1〉|1
...

〈a, b, c〉2〈x, y, z, 1〉〈x, y, z, k0, k1, k2, k3, 1〉|9
〈a, b, c, 1〉



















. (50)

This structure allows us to count the number of roots from the number of admissible
sets of linear equations that yield solutions for the unknown parameters. In this case,
we obtain the LPD bound

BLPD = 22

(

9

2

) 3
∑

j=0

(

7

j

)

= 9, 216. (51)

Our POLSYS GLP algorithm yielded a generic root count of 1,024, see Su and
McCarthy (2003)[26]. This calculation took approximately 24 hours on a single
2.4GHz PC (384 paths/processor-hour). The parallel version of POLSYS GLP was
run on 8 64-bit processors of UCI’s Beowulf cluster, and required 30 minutes (2304
paths/processor-hour). This particular problem has a structure that is convenient
for polyhedral homotopy algorithms, which yield the same solutions in minutes on a
single processor by tracking only 1024 paths (Gao et al. 1999[9], Gao et al. 2003[10]).

Thus, for ten spatial positions, we can find as many as 1024 points that have all 10
positions on a circular hyperboloid. For each of these points we can find an associated
RPS chain.

12 The Elliptic Cylinder

An elliptic cylinder is generated by a circle that has its center swept along a line
L(t) = B + tS1 such that the vector through the center normal to the plane of the
circle maintains a constant direction S2 at an angle α relative to the direction S1 of
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L(t), see Figure 6. The major axis of the elliptic cross-section is the radius R of the
circle and the minor axis is R cos α. This surface is generated by the wrist center of
a PRS chain that has its P-joint aligned with the axis L(t) and its R-joint positioned
so its axis is along S2.

Figure 6: The elliptic cylinder reachable by a PRS serial chain.

Consider a general point on the cylinder P, and let Q be the center of the circle.
The point Q moves along the axis L(t) which has the Plucker coordinates S1 =
(S1,B × S1). The distance from the reference point B to Q is denoted d. These
definitions allow us to express the location of P relative to B as

P −B = dS1 + Ru, (52)

where u is a unit vector in the direction S1 ×S2. Compute the cross product with S1

to eliminate d, and the cross product with S2 to obtain

S2 × ((P− B) × S1) = R(S2 · S1)u. (53)

The magnitude of this vector identity yields our equation of the elliptic cylinder

(

S2 ×
(

(P− B) × S1

))2
= R2(S1 · S2)

2. (54)

This equation has 13 dimensional parameters: the radius R, three each for the direc-
tions S1, S2, and the points P and B. Notice that if S1 = S2 = G this simplifies to
the equation of a circular cylinder.

There are actually only 10 independent parameters in (54), because magnitude
of the directions S1 and S2 can be set arbitrarily, and the point B can be any point
on the line S1. We set these values using three additional linear constraints. For,the
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directions of S1 and S2, we introduce two arbitrary planes Vk : (mk, ek), k = 1, 2 and
require

mk · Sk − ek = 0, k = 1, 2. (55)

The point B is specified using the intersection of S1 with the arbitrary plane U : (n, f),
so that

n ·B − f = 0. (56)

Recall that n is the unit normal to the plane and f the directed distance from the
origin to the plane.

Now consider the images of a point p = (x, y, z) generated by 10 spatial displace-
ments, that is Pi = [Ai]p + di, i = 1, . . . , 10. Evaluate equation (54) on these 10
points to obtain

(

S2 ×
(

(Pi −B) × S1

))2 − R2(S1 · S2)
2 = 0, i = 1, . . . , 10. (57)

Subtract the first of these equations from the remaining to obtain

(S2 × ((Pj+1 −B) × S1))
2 − (S2 × ((P1 − B) × S1))

2 = 0, j = 1, . . . , 9, (58)

Thus, the elliptic cylinder is obtained as the solution to the system of polynomials

E(z) =



































(S2 × ((P2 − B) × S1))
2 − (S2 × ((P1 −B) × S1))

2

...
(S2 × ((P10 − B) × S1))

2 − (S2 × ((P1 − B) × S1))
2

m1 · S1 − e1

m2 · S2 − e2

n · B − f



































= 0. (59)

The result is nine polynomials of degree six, and three linear equations. The total
degree of this polynomial system is 69 = 10, 077, 696.

The total degree of this system can be reduced by expanding the triple product
in (59) and introducing new variables. that is

S2 × ((P − B) × S1) =(S1 · S2)(P − B) − ((P −B) · S2)S1

=(S1 · S2)(P − (P · K)S1 + Q), (60)

where

K =
S2

S1 · S2

, and Q = (B · K)S1 − B. (61)

Add to this the constraints

S1 · S1 = 1, K · S1 = 1, and Q · K = 0. (62)
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These definitions reduce the degree of the polynomials from six to four, so we have

(P − (P · K)S1 + Q)2 =

P2 + (P · K)2 + Q2 − 2(P · S1)(P · K) + 2P · Q − 2(P · K)(Q · S1). (63)

The result is a new version of the polynomial system

E ′(z) =



































(P2 − (P2 · K)S1 + Q)2 − (P1 − (P1 ·K)S1 + Q)2

...
(P10 − (P10 · K)S1 + Q)2 − (P1 − (P1 · K)S1 + Q)2

S1 · S1 − 1
K · S1 − 1

Q · K



































= 0, (64)

which has the total degree 2349 = 2, 097, 152.
As we have done previously, we examine the monomial structure of this system of

polynomials. Let S1 = (a, b, c), K = (k1, k2, k3), and Q = (q1, q2, q3), and recall that
the quadratic terms in Pj+1 · Pj+1 − P1 · P1 cancel, as does the term Q2. Thus, the
polynomial (58) has the monomial structure

〈x, y,z, 1〉 ∪ 〈x, y, z, 1〉2〈k1, k2, k3〉2 ∪ 〈x, y, z, 1〉2〈k1, k2, k3〉〈a, b, c〉
∪ 〈x, y, z, 1〉〈q1, q2, q3〉 ∪ 〈x, y, z, 1〉〈k1, k2, k3〉〈a, b, c〉〈q1, q2, q3〉. (65)

This leads to the linear product decomposition of (64) given by

E ′(z) ∈



































〈x, y, z, 1〉〈x, y, z, q1, q2, q3, 1〉〈k1, k2, k3, 1〉〈k1, k2, k3, a, b, c, 1〉|1
...

〈x, y, z, 1〉〈x, y, z, q1, q2, q3, 1〉〈k1, k2, k3, 1〉〈k1, k2, k3, a, b, c, 1〉|9
〈a, b, c, 1〉2

〈k1, k2, k3, 1〉〈a, b, c, 1〉
〈k1, k2, k3, 1〉〈q1, q2, q3, 1〉



































. (66)

The LPD bound for this system is 247,968, which is large.
This system was solved using our parallelized POLSYS GLP on 128 nodes of the

Blue Horizon supercomputer at the San Diego Supercomputer Center. The result was
18,120 solutions in almost 33 minutes. Because each node of Blue Horizon has eight
processors, this corresponds to 563 cpu hours, or approximately 440 paths/processor-
hour.
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13 The Circular Torus

A circular torus is generated by sweeping a circle around an axis so its center traces a
second circle. Let the axis be L(t) = B+tG, with Plucker coordinates G = (G,B×G).
See Figure 7. Introduce a unit vector v perpendicular to this axis so the center of
the generating circle is given by Q − B = ρv. Now define u to be the unit vector in
the direction G, then a point P on the torus is defined by the vector equation,

P− B = ρv + R(cos φv + sin φu), (67)

where φ is the angle measured from v to the radius vector of the generating circle.

G

P

B

ρ

R

Q

V

Figure 7: The circular torus traced by the wrist center of a “right” RRS serial chain.

An algebraic equation of the torus is obtained from (67) by first computing the
magnitude

(P −B)2 = ρ2 + R2 + 2ρR cos φ. (68)

Next compute the dot product with u, to obtain

(P −B) · u = R sin φ. (69)

Finally, eliminate cosφ and sin φ from these equations, and the result is

G2((P −B)2 − ρ2 − R2)2 + 4ρ2((P −B) · G)2 = 4ρ2G2R2. (70)

This is the equation of a circular torus. It has 11 parameters, the scalars ρ and R,
and the three vectors G, P and B.

In contrast to what we have done previously, here we set the magnitude of G to
a constant, in order to simplify the polynomial (70),

G ·G = 1. (71)

Unfortunately, this doubles the number of solutions since −G and G define the same
torus, however, it reduces this polynomial from degree six to degree four.
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Let [Ti] = [Ai,di], i = 1, . . . , 10 be a specified set of displacements, so we have
the 10 positions Pi = [Ai]]p + di of a point p = (x, y, z) that is fixed in the moving
frame M . Evaluating (70) on these points, we obtain the polynomial system

T (z) =



















((P1 − B)2 − ρ2 − R2)2 + 4ρ2((Pi − B) · G)2 − 4ρ2R2

...
((P10 −B)2 − ρ2 − R2)2 + 4ρ2((Pi −B) · G)2 − 4ρ2R2

G · G − 1



















= 0. (72)

The total degree of this system is 2(410) = 2, 097, 152.
In order to simplify this system of polynomials we introduce the parameters

H = 2ρG and k1 = B2 − ρ2 − R2, (73)

which yields the identity

4ρ2R2 = H2(B2 − H2

4
− k1). (74)

Substitute these relations into (72) which eliminates R2 and we obtain the system of
10 polynomials

T ′(z) =















((P1)2 − 2P1 · B + k1)
2 + ((P1 −B) · H)2 − H2(B2 − H

2

4
− k1)

...

((P10)2 − 2P10 · B + k1)
2 + ((P10 −B) · H)2 − H2(B2 − H

2

4
− k1)















= 0.

(75)
It is difficult to find a simplified formulation for these equations, even if we subtract
the first equation from the remaining in order to cancel terms.

Expanding the polynomials in this system and examining each of the terms, we
can identify the linear product decomposition

T ′(z) ∈











〈x, y, z, h1, h2, h3, 1〉2〈x, y, z, h1, h2, h3, u, v, w, k1, 1〉2|1
...

〈x, y, z, h1, h2, h3, 1〉2〈x, y, z, h1, h2, h3, u, v, w, k1, 1〉2|10











. (76)

This allows us to compute the LPD bound on the number of roots as

BLPD = 210

6
∑

j=0

(

10

j

)

= 868, 352. (77)

The computation of these homotopy paths took 72 minutes on 128 nodes of the Blue
Horizon supercomputer. This means the over 800,000 paths were tracked on 1024
processors at a rate of approximately 707 paths per hour.
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Figure 8: The general torus reachable by the wrist center of an RRS serial chain.

14 The General Torus

A general torus is defined by sweeping a circle that has a general orientation in
space around an arbitrary axis. See Figure 8. Let S1 = (S1,B × S1) be the Plucker
coordinates of the line that forms the axis of the torus, and S2 = (S2,Q × S2) be
the through the center of the sweeping circle, perpendicular to its plane. These two
lines define a common normal N and we choose its intersection with S1 and S2 to be
the reference points B and Q, respectively. The normal angle and distance between
these lines around and along their common normal are denoted α and ρ. Finally, we
identify the center of the sweeping circle as lying a distance d along S2 measured from
Q.

In this derivation, we constrain S1 and S2 to be unit vectors, in order to reduce
the degree of the resulting equation. This allows us to define the unit vector in the
common normal direction as n = (S1 × S2)/ sin α, so we obtain a general point P on
the torus from the vector equation,

P − B = ρn + dS2 + R(cos φn + sin φ(S2 × n)). (78)

The algebraic equation for the torus is obtained by first computing

(P −B)2 = ρ2 + d2 + R2 + 2ρR cos φ, (79)

and
(P −B) · (S2 × n) = R sin φ. (80)

Notice that S2 × n is

S2 ×
S1 × S2

sin α
=

1

sin α
(S1 − cos αS2). (81)

Now, eliminate φ between these two equations to obtain

((P −B)2 − ρ2 − d2 − R2)2 +
4ρ2

sin2 α
((P− B) · S1 − d cos α)2 − 4ρ2R2 = 0. (82)

26



This equation has four scalar parameters ρ, α, d and R, and three vector parameters
P, B, and S1which combine with the constraint, |S1| = 1, to yield 12 independent
parameters.

In order to simplify the use of equation (82), we introduce the new parameters

k1 =B · B − ρ2 − R2 − d2,

k2 =(B · S1 + d cosα)
2ρ

sin α
,

k3 =4ρ2R2,

H =
2ρ

sin α
S1, (83)

This allow us to write (82) in the form

(P ·P − 2P · B + k1)
2 + (P · H − k2)

2 − k3 = 0. (84)

This is a quartic polynomial in the 12 unknowns, consisting of k1, i = 1, 2, 3 and the
components P, B, and H.

Given a set of displacements [Ti] = [Ai,d1], i = 1, . . . , 12, we evaluate (84) on the
points Pi = [Ai]p + di, i = 1, . . . , 12. Subtract the first of these equations from the
remaining to cancel k3 and obtain

G(z) =



























(P2 · P2 − 2P2 ·B + k1)
2 − (P1 ·P1 − 2P1 · B + k1)

2

+(P2 · H− k2)
2 − (P1 · H − k2)

2

...
(P12 · P12 − 2P12 ·B + k1)

2 − (P1 ·P1 − 2P1 · B + k1)
2

+(P12 · H− k2)
2 − (P1 · H − k2)

2



























= 0. (85)

The total degree of this system of polynomials is 411 = 4, 194, 304.
We can refine the estimate of the number of roots of this polynomial system by

using the linear product decomposition. Expanding these polynomials, we obtain the
terms

Pj+14 − P14 ∈〈x, y, z, 1〉3,
(2Pj+1 · B)2 − (2P1 · B)2 ∈〈x, y, z, 1〉2〈u, v, w〉2,

−4Pj+12
(Pj+1 · B) + 4P12

(P1 ·B) ∈〈x, y, z, 1〉3〈u, v, w〉,
2k1(P

j+12 − P12 − 2Pj+1 · B + 2P1 ·B) ∈〈x, y, z, 1〉〈u, v, w, 1〉〈k1〉,
(Pj+1 ·H))2 − (P1 · H)2 ∈〈x, y, z, 1〉2〈h1, h2, h3〉2

−2k2(P
j+1 · H − P1 ·H) ∈〈x, y, z, 1〉〈h1, h2, h3〉〈k2〉 (86)
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Case Surface Total degree LPD bound Number of roots

1 plane 32 10 10
2 sphere 64 20 20
3 circular cylinder 16,384 2,184 804
4 circular hyperboloid 262,144 9,216 1,024
5 elliptic cylinder 2,097,152 247,968 18,120
6 circular torus 2,097,152 868,352 94,622
7 general torus 4,194,304 448,702 42,615

Table 3: Summary of the total degree, LPD bound, and number of solutions of the
polynomial equations that define each reachable surface.

Notice that the quartic terms in the first expression cancel. We combine these mono-
mials into the linear product decomposition,

G(z) ∈











〈x, y, z, 1〉2〈u, v, w, h1, h2, h3, 1〉〈x, y, z, u, v, w, h1, h2, h3, k1, k2, 1〉|1,
...

〈x, y, z, 1〉2〈u, v, w, h1, h2, h3, 1〉〈x, y, z, u, v, w, h1, h2, h3, k1, k2, 1〉|11,











.

(87)
This allows us to compute the LPD bound of 448,702.

Our parallel POLSYS GLP algorithm computed 42,615 solutions in 42 minutes
using 128 nodes of Blue Horizon. This is approximately 626 paths/processor-hour.
Each real solution can be used to design an RRS chain to reach the specified displace-
ments. The distribution and utility of these solutions requires further study.

15 Conclusion

In this paper, we seek points in a moving body that lie on seven algebraic surfaces
that are reachable by an articulated chain with a spherical wrist, see Table 2. The
algebraic equations of these reachable surfaces are evaluated for a specified set of
spatial displacements, in order to define a system of polynomial equations that are
solved to determine the surface.

The complexity of this problem increases with degree of the surface and the num-
ber of parameters that define it, and for all but the simplest cases we use a numerical
homotopy algorithm to find all of the roots. Vector operations in the derivation of
these equations yield a general linear product structure that allows us to show the
number of roots is (often) less than the total degree of the system. This linear product
bound defines the number of paths that we must track using our homotopy algorithm
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POLSYS GLP to find these roots. Table 3 summarizes the results of our analysis.
Except for the plane and sphere, this is the first computation of the solutions

for these polynomial systems. The three most challenging cases were the elliptic
cylinder, right circular torus and the general torus, which correspond to the PRS, the
right RRS, and general RRS chains. In these cases, our algorithm required the Blue
Horizon supercomputer in order to compute tens of thousands of solutions. More
research is required to increase the efficiency of the calculation and to evaluate the
utility of each solution.
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