
Rapid Modeling, Prototyping, and Generation of Digital 
Libraries – A Theory-Based Approach  

Marcos André Gonçalves, Qinwei Zhu, Rohit Kelapure, Edward A. Fox 
Department of Computer Science 

Virginia Polytechnic Institute and State University 
Blacksburg, VA, 24061, USA 

{mgoncalv, qzhu, rkelapur, fox}@vt.edu

ABSTRACT 
Despite some development in the area of DL architectures and 
systems, there is still little support for the complete life cycle of 
DL development, including requirements gathering, conceptual 
modeling, rapid prototyping, and code generation and reuse. Even 
when partially supported, those activities are uncorrelated within 
the current systems, which can lead to inconsistencies and 
incompleteness. Moreover, the current few existing approaches 
are not supported by comprehensive and formal foundations and 
theories, which brings problems of interoperability and makes it 
extremely difficult to adapt and tailor systems to specific societal 
preferences and needs of the target community. In this paper, 
having the 5S formal theoretical framework as support, we 
present an architecture and a family of tools that allow rapid 
modeling, prototyping, and generation of digital libraries. 5S 
stands for Streams, Structures, Spaces, Scenarios, and Societies 
and is our formal theory for DLs. 5SL is a domain-specific, 
declarative language for DL conceptual modeling. 5SGraph is a 
visual modeling tool that helps designers to model a digital library 
without knowing the theoretical foundations and the syntactical 
details of 5SL. Furthermore, 5SGraph maintains semantic 
constraints specified by a 5S metamodel and enforces these 
constraints over the instance model to ensure semantic 
consistency and correctness. 5SGraph also enables component 
reuse to reduce the time and efforts of designers. 5SLGen is a DL 
generation tool that takes specifications in 5SL and a set of 
component pools and generates portions of a running DL system. 
The outputs of 5SLGen include user interface prototypes, in a 
generic UI markup language, for validation of services behavior 
and workflow representations of the running system, generated to 
support the desired scenarios.  
 

Categories and Subject Descriptors 
H.3.7 [Information Systems]: Information Storage and Retrieval – 
Digital Libraries; D.2.2 [Software Engineering]: Design Tools 
and Techniques. 

General Terms: theory, languages, modeling, user 
interfaces, and prototyping. 

Keywords: 5S, 5SL, 5SLGen, 5SGraph, etc. 

1. INTRODUCTION 
With the advent of the Internet and the World Wide Web 
(WWW), the digital library (DL) field has emerged as an 
important application area. Distinct from traditional libraries, 
most digital libraries process large collections of digital objects 
and provide on-line information services. They are very important 
for archiving and utilizing human knowledge records in the 
modern networked world. However, while much attention has 
been paid to the study of how to make a better digital library, very 
little work has focused on simplifying the process of building 
DLs. 
 
A digital library is a complex information system. It is an 
integration of many application fields of computer science such as 
information retrieval, databases, and hypertext. To build a digital 
library, many questions need to be answered: what is the 
specification of the content to be stored; how is that content 
organized, structured, described, and accessed; what kinds of 
services are offered (e.g., searching, browsing, personalizing, 
collaborating); how do patrons use those services and interact 
with each other in the DL environment [9]. Until now, none of 
these questions has been answered perfectly. Much research needs 
to be done. Accordingly, it is difficult and time-consuming to 
build a new DL application right now.  
 
Yet, the demand for new digital libraries is strong. Hundreds of 
digital libraries have been built around the world, and hundreds of 
digital library projects are ongoing. Different user communities 
need different digital libraries to satisfy their requirements. 
Nevertheless, many existing digital libraries are monolithic, 
tightly integrated internally, inflexible, and lack interoperability 
connections with each other. It usually takes a huge amount of 
effort and time to create or customize a digital library to satisfy 
specific needs and requirements. Furthermore, designers of digital 
libraries often are not experts in digital libraries; rather they may 
be new to that field. They may be on the library technical staff, 
computer scientists, or high school teachers. They may lack 
knowledge in either software engineering or information science.  
 
Despite some development in the area of DL architectures and 
systems, there is still little support for the complete life cycle of 
DL development, including requirements gathering, conceptual 
modeling, rapid prototyping, and code generation and reuse. Even 
when partially supported, those activities are uncorrelated within 

 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
Conference ’00, Month 1-2, 2000, City, State. 
Copyright 2002 ACM 1-58113-000-0/00/0000…$5.00. 
 



the current systems, which can lead to inconsistencies and 
incompleteness. Moreover, the current few existing systematic 
development approaches are not supported by comprehensive and 
formal foundations and theories, which brings problems of 
interoperability and make extremely difficult to adapt and tailor 
systems to specific societal preferences and needs of the target 
community. 
 
In this paper, based on the 5S formal theoretical framework, we 
present an architecture and a family of tools that allow rapid 
modeling, prototyping, and generation of digital libraries. 5S 
stands for Streams, Structures, Spaces, Scenarios and Societies 
and is our formal theory for DLs. 5SL is a domain-specific, 
declarative language for DL conceptual modeling. 5SGraph is a 
visual modeling tool that helps designers to model a digital library 
without knowing the theoretical foundations and the syntactical 
details of 5SL. Furthermore, 5SGraph maintains semantic 
constraints specified by the 5S metamodel and enforces these 
constraints over the instance model (of the desired DL) to ensure 
semantic consistency and correctness. 5SGraph also enables 
component reuse to reduce the time and efforts of designers. 
5SLGen is a DL generation tool that takes specifications in 5SL 
and a set of component pools and generates portions of a running 
DL system. The outputs of 5SLGen include user interface 
prototypes, in a generic UI markup language, for validation of 
services behavior and workflow representations of the running 
system, generated to support desired scenarios.  

 
This paper is organized as follows. Section 2 presents an 
overview of the proposed architecture. Section 3 gives a brief 
introduction to our 5S theory and to the 5SL language. Section 4 
focuses on our new 5SGraph modeling tool, its design, features, 
visualization properties and evaluation. Afterwards, the 5SGen 
tool, now including the aspects of scenario synthesis and user 
interface prototyping, is presented in Sections 5. Section 6 covers 
related work. Conclusions and future work are presented in 
Section 7. 
 

2. OVERVIEW OF THE ARCHITECTURE 
Our objective is to cover the whole process of DL development, 
from requirements to analysis, analysis to design, design to 
implementation -- in order to generate a final “tailored” DL 
software product which will satisfy the particular requirements of 
specific DL societies. The first step is to develop models, 
languages, and tools able to capture the rich set of DL 
requirements and properties of particular settings. Then we 
automatically convert these “patterns” into different 
representations by properly “compiling”, transforming and 
mapping models in different levels and phases of the digital 
library development process. The assumption is that automatic 
transformations and mappings diminish the risk of inconsistencies 
and increase productivity. This view will be supported by: a) 
having 5S as a general and formal underlying framework; and b) 
incorporating and combining state-of-the-art research in Software 
Engineering into the process, including domain-specific 
languages [2], scenario synthesis [12] and componentized 
architectures [13]. Figure 1 illustrates the general architecture 
proposed in this work.  
 

High-level DL conceptual abstractions and their properties are 
described in a metamodel, based on the 5S theory. A digital 
library expert creates a metamodel for digital libraries and feeds 
the metamodel to the 5SGraph modeling tool. The modeling tool 
processes the metamodel, allowing the digital librarian (or the DL 
designer) to visualize the components of the metamodel. The 
visualization of the metamodel helps the designer understand the 
structure of a generic digital library and reduces the learning time. 
The digital librarian interacts with the 5SGraph modeling tool to 
describe his own digital library model, based on the specific 
requirements and needs of the societies to which the DL is 
targeted. The designer uses suitable parts of the metamodel to put 
together the final model of his own digital library. The DL 
requirements acquired with the graphical tool are then formally 
captured using a domain-specific language - 5SL. Moreover, the 
graphical tool is able to enforce certain semantic constraints 
among the different sub-models of 5SL, therefore guaranteeing 
the correctness and consistency of the final model.   

Figure 1. Overview of the architecture for DL modeling and 
generation with partial expansion of 5SLGen to show the services 
generation process (Keys: CP= component  pools; UI= user interface). 
 
The produced 5SL models are then fed to the 5SLGen digital 
library generator. The generator, armed with a powerful pool of 
DL components, generates a running version of the digital library, 
which can take the form of running workflows with customized 
components/classes that reuse the capabilities provided in the 
pool. Since in 5SL scenarios represent partial description of 
system behavior, our approach for scenarios composition or 
scenarios integration produces complete specifications of DL 
services. The generator also produces prototype user interfaces, 
which help the designer to validate the behavior of the generated 
DL services with prospective patrons. Ultimately, refined versions 
of those interfaces should be linked together with the running 
workflow of the system.  In the following, we describe in detail 
each of the components of our solution architecture. 

3. THE 5S THEORY AND THE 5SL 
DECLARATIVE LANGUAGE  
Recognizing the difficulties in understanding, defining, 
describing, and modeling digital libraries, Gonçalves, Fox, et al. 
have proposed and formalized the 5S (Streams, Structures, 

5S 
Meta
Model

5SLGraph

DL 
Expert

DL 
Designer

5SL 
DL
Model

5SLGen

CP1

CP2

CPn

Service
Scenario1
Scenario2
Scenario3

…

Scenario
Synthesis

UI
Generator

Executable
Workflow
Generator

UI

Running
Workflow

State-
Machine
Representation
of Service

.

.

.

expanded



Spaces, Scenarios, and Societies) theory of digital libraries [11]. 
5S provides a formal model to capture the complexities of digital 
libraries. The formality of that model makes it possible to 
unambiguously specify the characteristics and behaviors of digital 
libraries. This enables automatic mapping from 5S models to 
actual implementations as well as the study of qualitative 
properties of these models (e.g., completeness, consistency, etc). 
Gonçalves and Fox also proposed 5SL, a language for declarative 
specification and generation of digital libraries [Gonçalves02]. It 
is a high-level, domain-specific language, which: 1) raises the 

level of abstraction in digital library specification and modeling 
by offering specific abstractions for the domain at hand; and 2) 
shows how the several DL design issues may be combined in a 
coherent framework that enriches, extends, and customizes 
classical models for databases, information retrieval and 
hypertext.   5SL is an XML realization of the 5S model with 
specific considerations on interoperability and reuse in its design. 
Table 1 summarizes, for each of the ‘S’ models: its formal 
definition, the objective of the model within 5SL, and resources 
and sub-languages used in the 5SL implementation. 

Model Formal definition Objective within 5SL 5SL Implementation 

Streams Sequences of arbitrary types Describe properties of the DL content such as 
encoding and language for textual material or 
particular forms of multimedia data 

MIME types 

Structures Labeled directed graphs Specify organizational aspects of the DL (e.g., 
structural and descriptive metadata, hypertexts, 
taxonomies, classification schemes) 

XML and RDF schemas; 
Topic maps ML (XTM) 

Spaces Sets of objects and operations on those objects 
that obey specific constraints1 

Define logical and presentational views of several 
components. 

MathML, UIML, XSL 

Scenarios Sequences of events that modify states of a 
computation in order to accomplish some 
functional requirement. 

Detail the behavior of the DL services UML sequence diagrams; 
XML serialization 

Societies Sets of communities and relationships 
(relations) among them 

 

Define managers, responsible for running DL 
services, actors, that use those services, and 
relationships among them 

UML adapted class 
diagrams; XML serialization 

Table1. 5S/5SL overview.

                                                                 
1 The combination of operations on objects with the set of objects is what distinguishes spaces from streams and structures. 

4. THE 5SGRAPH MODELING TOOL 
With 5SL, the designer does not need to be an expert in software 
engineering or information science. The designer only needs to 
have a clear conceptual picture of the needed digital library and 
be able to transform the conceptual picture to 5SL files. This 
greatly reduces the burden on designers, speeds up the building 
process, and increases the quality of the digital libraries built.  
However, 5SL has its own problems and limitations:  
1. The designer must understand 5SL well enough to be able to 
write a 5SL file and to correctly use it to express his/her ideal 
digital library.  
2. The 5SL file, which describes a digital library, consists of five 
sub-models (Stream model, Structural model, Spatial model, 
Scenarios model, and Societal model). Although all of the five 
sub-models are expressed in XML, they use different sets of 
concepts and have different semantics. Thus, the 5SL 
specification is compatible and extensible, because many existing 
standard formats can be used within the 5SL language. However, 
it is frustrating that to build one digital library, the designer needs 
to understand five or more different semantic specifications to 
express the system. 
3. When large and complex digital libraries are to be built, it is 
very hard even for experts to manually write those XML files 
without any assistance from a tool. 
4. It is very difficult to obtain the big picture of a digital library 
just from a huge set of XML files. This inconvenience may cause 

trouble for maintenance, upgrade, or even understanding of an 
existing system. 
5. A number of semantic constraints exist between (inter-model 
constraints) and within (intra-model constraints) the sub-models. 
Designers need extra effort to ensure consistency in the whole 
model. 
 
Reflecting on the above analysis of the disadvantages of 5SL, we 
consider the following four functions of a modeling tool based on 
the 5S/5SL framework to be essential: 

• To help digital library designers understand the 5S model 
quickly and easily. 

• To help digital library designers build their own digital 
libraries without difficulty.  

• To help digital library designers transform their models into 
complete, correct, and consistent 5SL files automatically. 

• To help digital library designers understand, maintain, and 
upgrade existing digital library models conveniently.  

Accordingly, our 5SGraph modeling tool provides an easy-to-use 
graphical interface and automatically generates desired 5SL files 
for the designer. Here, we adopt the idea that visualization helps 
people understand complex models. 5SGraph is able to load and 
graphically display digital library metamodels. The visual model 
shows the structure and different concepts of a digital library and 
the relationship among these concepts. 5SGraph also provides a 
structured toolbox to let the designer build a digital library by 
manipulation and composition of visual components (see Figure 



2). The structured toolbox introduced into our tool not only 
provides all the visual components of the metamodel, but also 
shows the structural relationships among these components. The 
visualization of the model thus provides guidance while the 
designer is building his model. The designer only needs to deal 
with a graphical interface and pull visual components together. It 
is not required for him to memorize the details of the syntax and 
semantics of 5SL. Cognitive load is reduced. Typing effort and 
typing errors are reduced. Furthermore, correctness and 
consistency can be automatically guaranteed by 5SGraph; thus 
producing correct and consistent 5SL XML files according to the 
visual model built by the designer. As such, 5SGraph eliminates 
the disadvantages of 5SL. 
 

 
Figure 2.  5SGraph sample interface with structured toolbox (bottom 
part) and workspace upper part); figure shows modeling of collections 
for the CITIDEL digital library. 

The concept of metamodel is very important here. The role of the 
digital library expert who builds the metamodel brings in 
flexibility. This metamodel describes a generic digital library. The 
model for a specific digital library is an instance of the 
metamodel, which in our case is a domain-specific metamodel, 
i.e., specific to the domain of building digital libraries.   
 
The 5S framework is still under development. It is expected that 
more changes and additions will be made in the future, specially 
to 5SL. Therefore, being given a new metamodel, the tool can be 
used with future versions of the 5S model as well. 
Some of the major features of the tool include: 
1. Flexible and extensible architecture  
5SGraph is domain-specific modeling tool. Thus, the model is 
made up of elements that are part of the domain world, not the 
whole entity world. 5SGraph is tailored to accommodate a certain 
domain metamodel, for 5S. The methods that are appropriate only 
to 5S can be used to optimize the modeling process. Reuse in a 
specific domain is also more realistic and efficient, because the 
models in one domain have more characteristics in common. 
The 5SL language extensively uses existing standards. The reason 
is that the specification of a digital library involves many sub-
domains, and there are many standard specifications for each sub-
domain. There also are many well-developed tools for those sub-

domains. For example, metadata is an important element in 5S. 
Several existing metadata editors can be used to view and edit 
metadata. Another example is in the scenario part of 5S. A 
specific scenario can be modeled and described by UML 
sequence diagrams. Existing UML modeling tools can be used for 
this purpose [15]. 
 
The 5SGraph tool should not “re-invent the wheel”. Therefore, 
the tool is designed to be a super-tool, which means it provides an 
infrastructure based on the 5S model and calls existing tools as 
needed. In the interest of brevity, this paper focuses on how 
5SGraph helps with modeling a digital library, not on how 
5SGraph calls other tools to create customized components. 
 
2. Reuse of components and sub-models 
In 5SGraph, component reusability means that components 
designed in one user model can be saved and reused in other user 
models. Reusability saves time and effort. There are components 
that are common for many different digital library systems. For 
example, many digital libraries share the same data formats, and 
the same descriptive metadata standards. The components 
representing the Stream Model or the metadata in the Structural 
Model can be built once and reused in different digital libraries. 
When a new component is needed, the user does not need to build 
a component from scratch. He loads a similar component and 
spends relatively less time by making minor changes to customize 
the loaded component (see Fig 3.). 
Of course, not all components are designed to be reusable. A 
reusable component should be self-contained and independent of 
any other specific models. 
 
3. Synchronization between the model and the metamodel 
There are two views in the tool. One is for the toolbox 
(metamodel); the other is for the user model. These two views are 
related through the type/instance relationships between 
components in the toolbox and components in the user model.  
When a user selects an instance component in the workspace (user 
model), 5SGraph is able to synchronize the view of the toolbox 
by showing a visible path from the root to the selected instance 
component. The convenience of synchronization is that: 1) The 
user does not need to manually search all the components in the 
toolbox to find the correct type component; and 2) The tool helps 
the user focus on the most important relationships of the type 
components. The child components that can be added to the 
current component are within immediate reach of the user. 
 
4. Enforcing of semantic constraints 
Certain inherent semantic constraints exist in the hierarchical 
structure of the 5S model. The semantic constraints in 5S are 
divided into two categories. The value constraint specifies the 
range of possible values of an element, while the association 
constraint defines the relationships among different components. 
Examples of such constraints include: 

• The streams used in the definition of a digital object 
(document) are predefined in the Stream Model. 



• A collection consists of different kinds of documents. A 
catalog describes a collection, since a catalog collects all the 
administrative or descriptive metadata that apply to the 
digital objects in the collection. A catalog, therefore, is 
dependent on a collection.  

• The services that the actor (a member of the Society Model) 
uses or a manager (another member of the Society Model) 
runs can be only the services already defined in the Scenario 
Model. 

 
 

                   
Figure 3. Reuse of models; before and after loading. 

The 5SGraph tool is able to implement and manage these 
constraints. For example, an actor can only use services that have 
been defined in the Scenario Model. This is specified in the 
metamodel, where the SubNodes part of actor contains the 
Datatype ‘Services’ (not shown in the figure), which means only 
existing instances of Services can become child nodes of an actor. 
The declaration of an actor, Teacher, is shown in Figure 4(a). In 
order to associate actors with the services they use, the designer 
browses back to the Scenario Model to create services:  metadata 
search, multi-scheme browsing, profile filtering, browsing, 
cataloguing, focused crawling, lesson plan building, lesson plan 

customized browsing (this one with four scenarios: unordered and 
ordered browsing, guided path and slide show as supported by 
VIADUCT manager). When the designer browses back to Actor 
in the Scenario Model in the metamodel, she finds out that the 
created set of services are automatically added into the metamodel 
under the node “Actor” (Fig 4(b), structured toolbox), allowing 
the designer to connect the defined services with the actors that 
use them. In the example, Learner is connected to all but two 
services (focused crawling, run by the crawlifier manager, and 
lesson plan building, used only by teachers). 
 

     
                                                  (a) Fig 4. Enforcing of semantic constraints in the CITIDEL digital library   (b) 

4.1 Evaluation 
We conducted a pilot usability test to examine the performance of 
5SGraph. The questions to be answered were:  1) Is the tool 
effective in helping users build digital library models based on the 
5S theory? 2) Does the tool help users efficiently describe digital 
library models in the 5S language? 3) Are users satisfied with the 

tool? Participants of this preliminary test include seventeen 
volunteers from a graduate level Information Storage and 
Retrieval class, and from the digital library research group of 
Virginia Tech.  We choose participants who have basic 
knowledge of digital libraries and have the motivation to create 
digital libraries. These types of people are the target users of the 



tool. Three representative tasks with different levels of difficulty 
were selected:  
Task 1: build a simple model of a Technical Report Digital 
Library using reusable components. The difficulty level of this 
task is low. Its purpose is to help the participants to get familiar 
with 5S and the 5SGraph tool.  
Task 2: finish an existing partial model of CITIDEL (Computing 
and Information Technology Interactive Digital Educational 
Library). The difficulty level of this task is medium.  
Task 3: build a model of NDLTD (Networked Digital Library of 
Theses and Dissertations) from scratch. The difficulty level of this 
task is high.  
The procedures were as follows: 1) the participant was asked to 
read some background documents about 5S and the modeling 
methodology; 2) the participant was given an introductory 
presentation on 5SGraph; 3) we gave the participant a description 
of task 1 and recorded how he/she completed it; 4) after the 
participant finished each task, he/she was given the next task 
description immediately; 5) after the participant finished all the 
tasks, he/she was given a questionnaire form to fill out. 
We use the following test measures: 
-Effectiveness 
Completion rate: percentage of participants who complete each 
task correctly. 
Goal achievement: extent to which each task is achieved 
completely and correctly. 
- Efficiency 
Task time: time to complete each task. 

Closeness to expertise: minimum task time2 divided by task time. 

- Satisfaction 
Satisfaction is measured using a subjective rating scale. After 
each participant finishes all three tasks, he/she is given a 
questionnaire and asked to rate the overall learnability, 
effectiveness, and satisfaction based on his/her observation. The 
subjective rating data is based on 10-point bipolar scales, where 1 
is the worst rating and 10 is the best rating. Pre-Understanding 
refers to the participant’s understanding of 5S before using the 
tool. Post-Understanding refers to the participant’s understanding 
of 5S after using the tool. 
The summary of the results of all three tasks is given in Table 2. 

 Task1 Task2  Task3 

Completion Rate (%) 100 100 100 

Mean Task Time (min) 11.3 11.4 15.1 

Mean Closeness to Expertise 0.483 0.752 0.712 

Mean Goal Achievement (%) 97.4 97.4 98.2 

Table 2. Overall Performance Results for Three Tasks 

                                                                 
2 Minimum task time is the shortest period of time that is needed to finish 
the task, which is measured by the time that an expert with the 5SGraph 
tool spends on finishing the task. 

 
 

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Task1 time (min)
Task2 time (min)
Task3 time (min)

 
Figure 5. Task Time 

- Effectiveness The high completion rate and the high goal 
achievement rate prove the effectiveness of 5SGraph (see Table 
2). 

- Efficiency Most participants finish tasks in less than 20 minutes 
(see Fig. 5) and the results, the generated 5SL files, are incredibly 
accurate, which is a strong evidence of efficiency. 
- Closeness to Expertise reflects the learnability of the tool (see 
Table 2, Fig.6). There are three observations, which have been 
confirmed by using statistics (t test with 05.0=α ). 

Observation 1: the mean Closeness to Expertise in task 2 is 
significantly greater than that in task 1. 
Observation 2: the mean Closeness to Expertise in task 3 is 
significantly greater than that in task 1. 
Observation 3: the mean Closeness to Expertise in task 3 is not 
significantly different from that in task 2. 

0
0 . 1
0 . 2
0 . 3
0 . 4
0 . 5
0 . 6
0 . 7
0 . 8
0 . 9

1

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7

T a s k 1
T a s k 2
T a s k 3

 
Figure 6. Closeness to Expertise 

Observations 1 and 2 suggest that the tool is very easy to learn 
and use. A short task such as task 1 is enough for users to become 
highly familiar with the tool. Users get quite close to expert 
performance level after they use the tool for the first time. In fact, 
there are some participants (participant #9 and participant #10) 
with good computer skills who achieved a completion speed very 
close to the expert’s in task 2 and task 3.  Observation 3 indicates 
that users have similar performance in task 2 and task 3. The 
reason may be that users have become highly familiar with the 
tool after task 1.  The difference between the participants and the 
expert may be due to other factors, e.g., familiarity with the tasks, 
typing speed, reading speed, and skills in using computers. 



Satisfaction The average rating of user satisfaction is 9.1 and the 
average rating of usefulness of the tool is 9.2. From these 
numbers, it appears that our participants are highly satisfied with 
the tool and consider this tool highly useful for building digital 
libraries based on 5S. In addition to satisfaction rating, 
participants rate their understanding of 5S theory before and after 
using the tool. Mean values of their rating are shown in Figure 7. 
Statistical analysis (t test with 05.0=α ) shows that the mean 
value of post-understanding is greater than that of pre-
understanding. It is observed that the tool is helpful to increase 
the understanding of the 5S theory. 

Understanding   of          5S Theory

0.0 2.0 4.0 6.0 8.0 10.0

Pre

Post

 
Figure 7. Pre and Post  understand of  5S. 

5. THE 5SLGEN DL GENERATOR 
5.1 5SLGen for MARIAN 
The first implementation of 5SLGen produces a running DL using 
the Java MARIAN digital library software as the main component 
pool.  MARIAN is a digital library system designed and built to 
store, search, retrieve, and browse large numbers of diverse 
objects in a network of relationships [10]. MARIAN is built upon 
three basic principles: 1) unified representation based on semantic 
networks, which model internal structures of digital objects and 
metadata and different types of relationships among objects and 
concepts (e.g., as in thesauri, classification hierarchies or among 
word terms and structural portions of documents); 2) weighting 
schemes to support information retrieval services, including 
weighted nodes and links, and weighted objects sets wherein a set 
of objects whose relationship to some external proposition is 
encoded in their decreasing weight within the set; and 3) an 
object-oriented class system, which is used to organized nodes 
and links into hierarchies of object-oriented classes, with methods 
to store and maintain instance objects of their class, translate back 
and forth between object IDs and fully realized objects, and 
support matching and retrieval operations. 
 
The MARIAN API is made of sets of reusable Java packages and 
hierarchies of classes. The main API implements basic 
functionality to create, manage, and match portions of semantic 
networks. Classes to support multi-lingual retrieval also are 
implemented. Besides the main API a set of supporting APIs also 
are implemented in MARIAN. There are APIs for database 
management, manipulation of weights and weighted sets used in 
the matching algorithms, and generalized document presentation. 
In particular, the latter include methods to present short versions 
of documents in ranked lists with links to different views of full 
document presentation through XSL stylesheets.  
 

The 5SLGen for MARIAN generator is based on a DOM XML 
parser. 5SLGen parses 5SL specifications, extracts the required 
information and generates the corresponding customized DL 
infrastructure that completely supports a new, tailored digital 
library within the MARIAN system. This infrastructure includes 
the classes of objects and relationships that make up the DL, 
processing tools to create the actual library collection from raw 
documents, as well as services for searching, browsing, and 
collection maintenance. More specifically, the 5SLGen for 
MARIAN outputs include: 
1. Class managers and indexing classes 
Includes class managers to represent the MARIAN semantic 
network view of the documents/metadata as well as indexing 
classes, which represent sets of semantic bipartite weighted 
networks between document/metadata parts and their terms. 
Multilingual free text and controlled vocabulary types also can be 
specified.  
2. ClassIDs and Tailored Database Tables. 
Every object in Java MARIAN, whether an XML element, a 
MARC record attribute, a chunk of text, a unique term, etc., has a 
FullID, which is made of a class ID and an instance ID. ClassIDs 
for terms and controlled texts are normally pre-defined in some 
lexicon or authority file. The ClassIDs for collection dependent 
class managers and link managers are generated from the 5SL 
information. Also during generation of class managers, 
customized databases tables to actually store the semantic view of 
the library are created.  
3. The Collection Loader and Document Handlers 
The Loader class is responsible for taking a stream of documents, 
loading them into the corresponding databases, and creating all 
the indexing information. The loader receives a stream of 
incoming data and separates it into individual XML documents.  
Documents are checked against the Schema specifications and, if 
valid, the loading and inversion processes proceed. The inversion 
process is driven by structure, i.e., weighted links are created 
among terms and specific structural parts of documents/metadata 
and global statistics (e.g., inverse document frequency) are 
calculated in the context of those structural parts. 
4. User interfaces 
Three different types of user interfaces are generated by 5SLGen:  
a. An HTML web query form where searchable fields in pull-
down menus representing a flat view of all structural parts of 
documents, as defined by the XML Schema structure.  The 
interface also allows the user to choose the collections to be 
searched and other personal preferences such as number of results 
to be returned and query time out. Comment buttons are linked to 
the email of the collection manager. 
b. A customized Document Java class, which implements 
methods to present a short version of documents, as in the ranked 
list result set returned for a query, to create links to the full 
version presentation of documents, and to generate the full 
presentation itself. 
c. Some specific XSL stylesheets, used by the Document Java 
class to actually transform XML documents to the kind of output 
that MARIAN expects. The transformation is guided based on the 
document structure itself and some of the MARIAN presentation 



styles, such as background colors, types of buttons, and table 
structures to show multiple documents. 
5. Collection Configuration and Processing Classes 
Since the configuration and business logic processing vary for 
different DLs and collections, this part of the implementation also 
has to be customized automatically. MARIAN is a general 
framework for different kinds of digital libraries; therefore it is 
necessary to customize it based on the underlying differences 
among specific collections. Thus, we use Java Reflection [14] to 
bind automatically generated collection configuration and 
business logic processor Java classes during runtime. The 
collection configuration class is loaded dynamically when the 
system is started by the resource manager, a class responsible for 
administering system resources. It instantiates the singleton 
collection processor and initializes all the specific, collection-
dependent class and link managers. The collection processor acts 
as a facade to all the incoming queries, determines the language 
of the query data, selects and activates the correct class and link 
managers involved in the search, calls corresponding searcher 
modules to fuse and combine results based on document structure, 
and forwards results to the right document managers for 
rendering, possibly with different presentation options.   
 
In Fall 2002 we applied 5SLGen for MARIAN to generate a 
digital library for CITIDEL (Computing and Information 
Technology Interactive Digital Library) within MARIAN 
encompassing thousands (~130K) of metadata records from the 
ACM Digital Library, NCSTRL Historic, CSTC, CS Virtual 
History Museum, and PlanetMath, dealing with millions of 
semantic links. Performance is comparable with similar tools.  

5.2 Scenario Synthesis for Services and User 
Interface Prototype Generation 
Despite the powerful capabilities of the current 5SLGen for 
MARIAN generator, the tool still has some drawbacks: 
1. Lack of Generality: the current pilot systems and prototypes 
built using the 5SLGen are tied to the MARIAN API. Within the 
current 5SL framework, the generation of code prevents 
extensibility as components from other digital library component 
pools like ODL [13]; OpenDLib [5]; or Greenstone [19] cannot be 
plugged into the system (unless integrated with MARIAN). 
2. Incomplete design and implementation of 5SLGen: 5SLGen for 
MARIAN took capabilities for basic services such as searching 
and browsing for granted due to the powerful MARIAN API. 
However, the MARIAN generator did not take into account a 
multiple scenario representation of the services. Since scenarios 
represent partial description of system behavior, an approach for 
scenarios composition or scenarios integration is needed to 
produce complete specifications of generic DL services.  

3. Partial User Interface prototype generation: generation of a UI 
prototype for the services offered by a DL supports rapid 
prototyping. 5SLGen for MARIAN generates a partial UI 
prototype for basic search and browsing services. Nevertheless, 
this prototype is tied to the functionalities provided by the 
MARIAN  API and does not mirror all the services that can be 
offered by a DL.  
 

Accordingly, we have been extending the capabilities of our 
current generators to overcome many of those limitations.  The 
first extensions deal with the question of scenario synthesis 3 and 
generation of multi-platform user interface prototypes for 
validation of services’ behavior.  In the area of scenario synthesis, 
one of the most difficult problems is the integration of 
hierarchical scenarios (i.e., scenarios that are composed of other 
scenarios) and the problem of scenario interleaving (i.e., when 
scenarios share the same state, the integrated scenario can have 
paths of execution that were not allowed by the design). Khriss et 
al. [12] have proposed a set of algorithms to deal with these 
problems. Their scenario synthesis algorithms are implemented in 
a tool called SUIP, which can generate prototype user interfaces 
[7] based on the integrated scenarios.   Those user interfaces 
emulate the behavior of the scenarios from which they were 
generated, therefore allowing rapid validation of the proposed 
services with prospective users. However the SUIP tool has its 
own limitations. For scenario acquisition they adopt proprietary 
textual formats and grammars to represent UML collaboration and 
class diagrams. Moreover, the code generated for the UI prototype 
is in JAVA, is not extensible for other platforms and devices (e.g., 
HTML, WML), and is dependent on specific UI APIs of 
commercial tools, namely Java CaféTM. 
 
We have adapted, extended, and integrated the SUIP algorithms 
and tools within our generators to deal with the problem of rapid 
building, prototyping, and validation of DL services.  The 
approach is illustrated in Fig. 8, which shows the sequence of 
activities in the proposed process. In the Service Acquisition 
activity, the digital librarian elaborates the services by describing, 
in 5SL, all the scenarios that compose the desired services.  
External tools can be integrated with 5SGraph to support drawing  
those scenarios; for example, based on UML sequence diagrams. 
Without such tools, 5SGraph still can be used to logically 
organize related small scenario models within services using the 
loading and reuse mechanisms of the tool.  In the Societies 
Acquisition activity, the digital librarian uses the 5SGraph tool to 
associate actors and managers with already defined 
services/scenarios, which they either use or run, respectively.   

 

With the help of specific converters, the 5SL-XML Scenario 
Model for every service is transformed in a specific textual 
representation for UML collaboration diagrams as expected by 
the SUIP tool. Similarly, the Societies models whose entities are 
involved in the service are mapped to textual representations of 
UML class diagrams. The converters are based on JDOM parsers 
and XML schemas for the two 5SL sub-models. The Specification 
Building activity consists of taking the two transformed models 
and generating state machine representations of the scenarios, 
which will permit the next activity of integration. Accordingly, 
during Scenario Integration, the state machines corresponding to 
each scenario of a same service are iteratively merged to obtain 
an integrated state machine of the complete service. Integrated 
state machines serve as input to the UI Prototype Generation 
activity. Our extended algorithm then produces a User Interface 
Markup Language (UIML) description of the interface [1].  UIML 
                                                                 
3 The term used in Software Engineering literature for integration of 

multiple, related scenario representations. 



is an XML-based domain-specific markup language for 
describing user interfaces and their behavior in a highly device-
independent way. The UIML descriptions are given to a 
Rendering tool, which can translate the UI specification to 
whatever environment, platform, or device the actual DL will run, 
therefore overcoming some of the deficiencies of the original 
SUIP tool.  During Prototype Evaluation, the generated 
prototypes are executed and evaluated by the digital librarian or 
the end user. 

Figure 8. Activities in scenario synthesis and user interface 

generation. 

To support prototype execution, a Simulation Window is 
generated (Figure 10, bottom window), as well as a dialog box to 
Choose Scenarios (Figure 10). For example, after selecting the 
service RelevanceFeedbackSearching, a message is displayed in 
the simulation window that confirms the service selection and 
prompts the user to click the button normalSearch. At that point, 
the execution reaches a place from which several continuation 
paths are possible. The prototype then displays the dialog box for 
scenario selection. In the example, the upper selection 
corresponds to the scenario regularSearch and the lower one to 
the scenario errorSearch. Once a path has been selected the 
execution continues accordingly. If the user selects errorSearch, a 
message corresponds to “no results” is shown (Figure 9). 
Otherwise, the input field EnterRelevantDocs, and the buttons 
ExpandSearch and NewQuery are enabled. Clicking in 
ExpandSearch a new search is performed using some relevance 
feedback algorithm (e.g., Rocchio) which issues a transformed 
query with terms from the relevant documents, results are 
returned accordingly, and the process can be repeated until the 
user gets satisfied or choose NewSearch, when the system then 
returns to the initial state.    

6. RELATED WORK 
Theoretical, formal approaches for DLs are surprisingly almost 
completely missing in the DL literature. One could conjecture that 
this is due to the previously argued complexity of the field. The 
few existing attempts to give some formalization to portions of 
the field (e.g., [17], [4]) are incomplete. Our 5S formal approach 
has provided the most comprehensive formalization of the DL 
field we know so far. 

 
Figure 9. Frames generated for the Service Relevance Feedback 

Searching showing result of scenario errorSearch. 

 
Figure 10. Prototype Execution 

In recent years, many DL systems with different architectures 
have been proposed including monolithic systems (e.g., 
Greenstone [19], MARIAN [10]), componentized architectures 
(e.g, ODL [13], OpenDlib[5]), agent-based architectures (e.g., 
UMDL [18]), and layered architectures (e.g., Alexandria [8]). 
There is no reason why those systems and their components can 
not be incorporated to our component pools, given that they 
export clear, reusable software interfaces with accessible entry 
points. Alternatively, we can think of versions of 5SLGen 
developed for specific target environments, like ODL (our next 
goal) or Greenstone.  
 
Compared to our descriptive language, the WebML modeling 
language [6] provides powerful abstractions to describe and 
generate the hypertext and navigation structure of Web sites  
while  the Digital Library Definition Language (DLDL) [16] is 
focused on describing external behavior of DLs for purposes of 
supporting interoperability in terms of federated searching. More 
recently, in the context of DL requirements gathering, Bolchini 
and Paolini have proposed a hypermedia-based methodology that 
uses scenarios for goal-oriented requirements specification for 
digital libraries [3]. All these approaches, however, are limited in 
scope and in their ability to cover all of the challenges in the 
modeling and construction of complex digital libraries.   More 

Digital Library 
World

Service

Scenario
Services
Acquisition

Societies
Acquisition actor

manager

Scenario 
Model
XML Schema

Specification
Building

Scenario
Converter

Societies
Model
XML Schema

Societies
Converter

SUIP
Class Diagram

SUIP
Collaboration
Diagram

Scenario
Integration

State
machines

Integrated
state
machines

UI Prototype
Generation

UIML
descriptions

Prototype 
Evaluation

User Interface
Prototype

UIML
UI Rendering

SUIP



importantly, none of those works are supported by a sound, 
formal theory for digital libraries as in our case. 
 
The closest approach to our DL generators is the collection 
services and plug-in architecture of Greenstone [19]. However 
their architecture covers only portions of our Stream and 
Structural models with mainly no support for modeling and 
generation of customized DL services (other than searching and 
browsing). 
 
Finally, we are unaware of a similar domain-specific graphical 
modeling tool for DL design like 5SGraph, which includes 
support for rich interaction styles as well as advanced capabilities 
such as extensibility, synchronization, reusability of components, 
and automatic enforcing of semantic constraints. 

7. CONCLUSIONS AND FUTURE WORK 
We have presented a comprehensive architecture along with 
theories, models, languages, and tools that support the complete 
life cycle of DL development, including requirements gathering, 
conceptual modeling, rapid prototyping, and code generation and 
reuse. All those activities are completely integrated within the 
architecture through automatic mappings and transformations.  
 
Current work is focused on generalizing 5SLGen for multiple, 
diverse digital library component pools.  The enhanced 5SLGen 
should be able to generate workflow interfaces that mirror the 
executable state machine of the representative services. These 
workflow interfaces would allow components from other digital 
library architectures to be plugged into the implementation of the 
interface. Adding this layer of abstraction between the design and 
implementation enables extensibility and interoperability by 
allowing digital library components from multiple, diverse 
component pools to implement the interface.  On the theory side, 
we are exploring semantic relationships, properties, and 
constraints existent in the 5S formal model including issues of 
quality in digital library modeling and generation. The results of 
these investigations will be incorporated in our (meta) models, 
languages, and tools.  Finally, all our software, including, 
MARIAN, ODL, 5SGraph, etc., is open source and all of them 
run in prototype mode. Therefore more extensive tests and 
development is required to guarantee robustness, scalability, etc. 

Acknowledgments 
Thanks are given for the support of NSF through its grants: IIS-9986089, 
IIS-0002935, IIS-0080748, IIS-0086227, DUE-0121679, DUE0121741, 
and DUE-0136690. The first author also is supported by CAPES, process 
1702-98. Thanks also go to A. Prabhune, R. Mahajan, M. Singhal, A, 
Shah, L. Lobo,  P. Shastri, and V. Colaso, for  their work on  SUIP. 

5. REFERENCES 
[1]  M. Abrams, C. Phanouriou, A. L. Batongbacal, S. M. 

Williams, J. E. Shuster: UIML: An Appliance-Independent 
XML User Interface Language. Computer Networks (11-16): 
1695-1708 (1999)  

[2] D. S. Batory, C. Johnson, B. MacDonald, D. von Heeder: 
Achieving extensibility through product-lines and domain-

specific languages: a case study. TOSEM 11(2):191-214, 
2002 

[3] D. Bolchini, P. Paolini: Goal-Oriented Requirements 
Specification for Digital Libraries. ECDL 2002: 107-117, 
Rome, Italy, September 16-18, 2002. 

[4] D. Castelli, C. Meghini, P. Pagano: Foundations of a 
Multidimensional Query Language for Digital Libraries. 
ECDL 2002: 251-265 

[5] D. Castelli, and P. Pagano. OpenDLib: A Digital Library 
Service System. ECDL 2002: 292-308, Rome, Italy, 
September 16-18, 2002. 

[6] S. Ceri, P. Fraternali, A. Bongio: Web Modeling Language 
(WebML): a modeling language for designing Web sites. 
Computer Networks 33(1-6): 137-157, 2000. 

[7] M. Elkoutbi, I. Khriss, and R. K. Keller, Generating User 
Interface Prototypes from Scenarios, in Proceeding of the 4th 
IEEE International Symposium on Requirements 
Engineering, pages 150-158, Limerick, Ireland, June 1999. 

[8] J. Frew, M. Freeston, N. Freitas, L. L. Hill, G. Janee, K. 
Lovette, R. Nideffer, T. R. Smith, Q. Zheng: The Alexandria 
Digital Library Architecture. IJODL 2(4):259-268, 2000. 

[9] M. A. Gonçalves and E. A. Fox. 5SL - A Language for 
Declarative Specification and Generation of Digital 
Libraries. 2nd ACM/IEEE Joint Conference on Digital 
Libraries, 263-272, July, 2002. Portland, Oregon. 

[10] M. A. Gonçalves, P. Mather, J. Wang, Y. Zhou, M. Luo, R. 
Richardson, R. Shen, L. Xu, E. A. Fox: Java MARIAN: 
From an OPAC to a Modern Digital Library System. SPIRE 
2002, 194-209, Lisbon, Sept., 2002. 

[11] M. A. Gonçalves, E. A. Fox, L. T. Watson, N. A. Kipp. 
Streams, Structures, Spaces, Scenarios, Societies (5S): A 
Formal Model for Digital Libraries. Under review for ACM 
TOIS. 

[12] I. Khriss, M. Elkoutbi, and R. K. Keller, Automating the 
Synthesis of UML Statechart Diagrams from Multiple 
Collaboration Diagrams, in Proc. of UML'98: Beyond the 
Notation, 115-126, Mulhouse, France, June 1998. 

[13] H. Suleman. Open Digital Libraries. Ph.D. dissertation. 
Virginia Tech, Department of Computer Science. Nov. 2002. 
http://scholar.lib.vt.edu/theses/available/etd-11222002-55624/ 

[14] Sun, Java Reflection API, ftp://ftp.javasoft.com/docs/jdk1.1/java-
reflection.ps 

[15] Tigris.com, ArgoUML: A UML design tool with 
cognitive support,  http://argouml.tigris.org/ 

[16] M. Zubair, K. Maly, I. Ameerally, and M. Nelson. Dynamic 
construction of federated digital libraries. Proceedings of the 
Ninth International World Wide Web, Conference, 
Amsterdam, May, 2000, poster. 

[17] B. Wang: A Hybrid System Approach for Supporting Digital 
Libraries. IJODL2(2-3):91-110 , 1999. 

[18] P. Weinstein, W. P. Birmingham: Creating Ontological 
Metadata for Digital Library Content and Services. IJODL 
2(1): 20-37, 1998. 



[19] I. H. Witten and D. Bainbridge, How to Build a Digital 
Library,  San Francisco, Calif., Morgan Kaufmann, 2002.  


