
RGML:
A Markup Language for Characterizing Requirements Generation Processes

Ahmed Samy Sidky, James D. Arthur

Department of Computer Science, Virginia Tech
{asidky, arthur}@vt.edu

Abstract

Despite advancements in requirements generation
models, methods and tools, low quality requirements are
still being produced. One potential avenue for addressing
this problem is to provide the requirements engineer with
an interactive environment that leads (or guides) him/her
through a structured set of integrated activities that foster
“good” quality requirements. While that is our ultimate
goal, a necessary first step in developing such an
environment is to create a formal specification mechanism
for characterizing the structure, process flow and
activities inherent to the requirements generation process.
In turn, such specifications can serve as a basis for
developing an interactive environment supporting
requirements engineering.

Reflecting the above need, we have developed a
markup language, the Requirements Generation Markup
Language (RGML), which can be used to characterize a
requirements generation process. The RGML can
describe process structure, flow of control, and individual
activities. Within activities, the RGML supports the
characterization of application instantiation, the use of
templates and the production of artifacts. The RGML can
also describe temporal control within a process as well as
conditional expressions that control if and when various
activity scenarios will be executed. The language is
expressively powerful, yet flexible in its characterization
capabilities, and thereby, provides the capability to
describe a wide spectrum of different requirements
generation processes.

1. Introduction

Only over the past ten years has the real importance
of requirements engineering been recognized.
Subsequently, researchers and practitioners have begun to
identify and follow a more systematic and structured
approach towards the generation of requirements.
Pressman [9] notes that requirements engineering has now
been partitioned into five distinct phases: Requirements
Elicitation, Requirements Analysis, Requirements
Specification, Requirements Validation, and
Requirements Management. Similar to the stepwise

refinement that has occurred in the past for those software
development phases that succeed requirements
engineering in the lifecycle development process, we are
now seeing the emergence of methodologies, tools, and
techniques to support the production of quality
requirements. Several requirements generation process
models that support the production of quality
requirements include the RGM [2], the Agile
Requirements Model [1], the Requirements Triage [4], the
Knowledge Level Process Model [7] and Volere [10].

However, despite a decade of research within the
field of requirements engineering, and the commensurate
advancements that come with it, we are still generating
requirements that vary widely in quality [13]. What is
even more disquieting is that a variance in quality is being
observed even when the same requirements generation
process is being used. Two prominent sources
contributing to the above problem are:

• The requirements engineer either purposefully or
inadvertently deviates from the prescribed
requirements generation process.

• We are using requirements generation processes that
are often composed of an ad hoc collection of sub-
processes, activities and tools that are often
incompatible with each other.

Clearly, there are several approaches to addressing
the sources of these problems. The one we envision,
however, is to provide the requirements engineer with an
interactive environment that guides him/her through an
integrated set of structured activities that reflect a unified,
well-defined requirements generation process. The
product of which will be requirements that consistently
reflect quality characteristics.

However, as a first step towards the development of
such an environment, we need a mechanism by which we
can formally specify the detailed characteristics of the
requirements generation process that underlies it. That
formal specification can then be used a blueprint to build
a corresponding environment. Our ultimate goal,
however, is to provide that interaction through direct
interpretation of those formal specifications. Clearly, the
specification mechanism must be flexible enough to
capture the variations among requirements generation

models, e.g., variations in process structures, artifacts
(produced and consumed) and actions. It must also be
simple and easy to understand, yet formal enough to admit
to programmatic interpretation. In this paper we present
the Requirements Generation Markup Language (RGML).
The RGML is flexible, expressively powerful and
supports the detailed characterization of those elements
necessary to and found within requirements generation
processes.

The organization of the paper is as follows. In
Section 2 we briefly describe several language categories
that are “cousins” to RGML. An overview of RGML and
its highest-level components are presented in Section 3.
Sections 4 and 5 elaborate on those high-level structures.
More specifically, Section 4 presents the four control flow
structures – sequence, iteration, parallel and ad hoc.
Section 5 provides a detailed description of how activities
are integrated within the process flow and describes
components that comprise activities, e.g., application
instantiation and artifact production/consumption. Section
6 describes how, within RGML, we use milestones to
impose temporal and causality constraints, and to effect
activity alternatives. Finally, in Section 7 we provide an
outline of future work that places the RGML in the
context of an interactive requirements engineering
environment.

2. Background

To date we have no evidence indicating the existence
of a specification language for fully characterizing a
requirements generation process. What do exist however,
are related or “cousin” languages that support similar
functionality and objectives in specific domains. We
introduce a few of those languages in the remainder of this
section.

In the field of requirements engineering, there are
many languages that focus on the specification of
requirements. Albert II [5] is a formal specification
language based upon real-time temporal logic. Albert II is
used only to formalize and specify the actual requirements
produced from the requirements generation process.
Similarly, there is the object-oriented Two-Level
Grammar (TLG) [11] that supports the specification of
requirements using a natural language style.
Requirements Specification Language (RSL) [6], another
requirements specification language, is more generic in
that it supports the characterization (from a requirements
perspective) of the more generic software products and
systems. Each of these languages, and many other similar
ones, focus on the actual requirements, e.g., how to
specify them, how to describe their hierarchies, etcetera.

There are of course languages that focus on the
description of processes. The Process Specification

Language (PSL) [3] and the XML Process Definition
Language [8] are among them. We consider these to be
related to RGML because both employ the XML-like
structure for specifying process characteristics. They
differ from the RGML in that they are intended to support
the specification of domain-independent processes – the
RGML focuses its expressive capabilities exclusively on
processes supporting the generation of requirements. This
focus enables RGML to more succinctly describe the
process of requirements generation.

Finally, because the syntax of RGML is modeled
after markup languages, we will outline similarities and
differences between it and other markup languages. In
general, the similarities lie in the syntactic format each
employs and in their interpretive qualities. What
distinguishes them, however, is their domain focus. For
example, one of the most common markup languages is
the HyperText Markup Language (HTML). One of
HTML’s primary objectives is to provide a textual
description of graphical entities that can be interpreted
and displayed over the Internet. The WML (Wireless
Markup Language) is also interpreted to produce a
graphical user interface for cell phones. MathML
(Mathematical Markup Language) supports the textual
description of mathematical notations and the graphical
display of their corresponding representations.

Similar to the above markup languages, RGML will
be interpreted to provide a graphical representation of and
iconic relationship of components within a requirements
generation processes. However, differing from the other
markup languages the RGML also supports

• the stipulation of protocols and guidelines that lead

the requirements engineer through the requirements
generation process,

• the of the production and consumption of artifacts
throughout the generation process,

• the automatic instantiation of software applications,
• constrained execution of activities through the

specification of pre-conditions and milestones,
• the association of templates with artifacts, and
• the specification of conditionals to guide alternative

activity paths.

3. RGML Overview

We have described the RGML as a markup language
that can be used to formally describe a requirements
generation process by characterizing inherent structures,
artifacts, and activities. Of equal significance is that it also
supports the characterization of a requirements generation
process that embodies

• selective control flows and activities based on

temporal and conditional specifications, and

• the automatic instantiation of applications for
producing artifacts from designated templates.

Any requirements generation process hosts many sub-
processes (or activities). The experiences and advice
provided by Young [12] were instrumental in the design
of the RGML, and in particular, in balancing the process
characterization capabilities while maintaining the
requisite expressive power and flexibility. According to
Young, “A process is a set of activities that result in the
accomplishment of a task and the achievement of an
outcome.” Young also states “A process integrates people
and tools as well as procedures and methods.” Guided by
these statements we can divide any process into two major
components:

• a group of activities in which each activity is

supported by specific tools and procedures, and

• the structure (or the flow) of those activities that,
when followed, will lead the process to a desirable
outcome.

Because the objective of the RGML is to model and
characterize processes, we constructed it using similar
divisions. As illustrated in Example 1, The RGML
consists of two major components, and a minor one. The
first major component is structure-oriented and supports
the description of the flow of the control in the process.
Sequence, iteration and branching are the basic control
flow structures. The second major component is activity
oriented and provides for the description of individual
activities within the requirements generation process.
That description includes a characterization of the activity
itself, an indication as to which templates it might use,
which applications are to be instantiated (and when),
alternatives activities, and what preconditions must be
satisfied before executing an activity.

The minor component of the RGML is the
“Definitions” section. This component is like a dictionary
or a repository for template and artifact characteristics.
The RGML, like any other markup language, is based on

the concept of tags and attributes. As illustrated below,
tags divide the language specification into three sections
representing the three principal components of the RGML.

<RGML>

<Structure>
The Flow of control of the activities are nested here

</Structure>
<Details>
 The description of the activities are nested here
</Details>
<Definitions>

All the templates, artifacts and types are nested here
</Definitions>

</RGML>

Example 1: Fundamental RGML Structures

As illustrated in the above code, the language has

three main elements or tags (<Structure>, <Details>,

<Definitions>) nested within the main <RGML> tag. All other
tags in the language are nested within one of these main
tags.

The next two sections provide a more detailed
description of the three language divisions. In particular,
Section 4 describes the <Structure> component and how
its enclosed tags support flow of control characterization.
Section 5 then presents how to use the <Details> and
<Definitions> components to construct activities, define
and instantiate applications, and integrate artifact and
template definitions.

4. Using RGML for Flow of Control

Within a requirements generation process, the flow of
control is captured by identifying and characterizing the
different control flow structures within that process. That
characterization is expressed in the <Structure> section of
the RGML language. More specifically, the
characterization (or description) provided in the
<Structure> section is not intended to define the details of
individual process activities. Instead, it is only responsible
for the description of the arrangement in which those
activities are organized and the sequence of their
execution.

The expressive power of the RGML enables one to
describe many different layouts or organizations for the
activities of a requirements generation process. To

 1 2 3

1 2 3

1 2 3

4 5 6

7

(a) Sequence

(b) Iteration
 (c) Split

1

3

5

4

2

 (d) Ad Hoc

Figure 0 . Basic Constructs of Process Structure Figure 1: Basic Constructs of Process Structure

achieve this, the RGML uses four orthogonal constructs:
Sequence, Iteration, Split and Ad Hoc (see Figure 1).
When used together, either in a sequential or in an
embedded fashion, they provide the flexibility to describe
a large variety of activity sequences.

4.1 Control Flow Constructs

Before describing the 4 basic control flow constructs,
we point out that the activities embedded within each
construct is denoted by an activity tag and unique name.
The details of that activity are defined in the <Details>
section.

 Figure 1 provides an illustration of the basic
structure constructs supported by the RGML. The
sequence construct (Figure 1-a) is used to express a group
of activities executed one after the other. The code shown
in Example 2 illustrates the structure depicted by Figure
1-a.

<Structure id=main>

<Sequence>
 <Activity id=1> Number 1 </Activity>
 <Activity id=2> Number 2 </Activity>

<Activity id=3> Number 3 </Activity>
</Sequence>

<Structure>

Example 2: The Sequence Construct

The Iteration construct (Figure 1-b) is used to

represent a group of activities executed multiple times
until the specified exit criteria are met.

The exit criteria for the loop are specified within the
<Exit> tag range. For expressive power and flexibility the
RGML supports a variety of ways to express exit criteria.
One method is to prompt the user with a “Yes/No”
question. Depending on the response, the iteration is
continued or terminated. To some extent we view this
approach as being “manual” because it requires a response
from the user. The specification of automated methods is
also supported by the RGML. Fore example, exit criteria
could be specified in terms whether or not a specific
artifact has been produced, or if a specific milestone
(described later) has been triggered. The RGML also
permits one to combine different criteria using the
Boolean operator tags: <AND> and <OR>.

An RGML example illustrating an iterative
specification is provided in Example 3. One notable part
of the example is how it uses a combination of three
different Boolean conditions to characterize the exit
criteria. That is: Exit the loop if Artifact “A008” has been
produced or (if milestone “M1” has been reached and the
user answers yes to the question: “Have you met with the
board of directors yet?”). Clearly, the inclusion of the
logical operators, and and or, in the definition of RGML
enhances its expressive capabilities.

<Structure id=main>
 <Iteration>
 <Activity id=1> Number 1 </Activity>
 <Activity id=2> Number 2 </Activity>
 <Activity id=3> Number 3 </Activity>
 <Exit>
 <or>

 <Criteria type=”Artifact”>A008</Criteria>
 <and>

 <Criteria type=”Milestone”>M1</Criteria>
 <Criteria type=”Question” Exit=”Yes”>Have you
 met with the board of directors yet ?</Criteria>

 </and>
 </or>
 </Exit>
 </Iteration>
<Structure>

Example 3: The Iteration Construct

The split construct (Figure 1-c) is used to represent a

group of activities that can be executed simultaneously or
conditionally. The Split element has an important
attribute named “Parallel”. If “Parallel” is set to “Yes”,
this enables the flow of execution to flow across all or any
subset of the enclosed routes simultaneously. However, if
the attribute “Parallel” is set to “No” then the flow can
only go through one branch, if effect, imposing a selection
capability. Independent of whether “Parallel” attribute is
set to “Yes” or “No”, the sequence (or set of sequences)
can be selected manually, or automatically selected using
predefined conditionals.

Note that in Figure 1-c the top and middle branches
of the structure have multiple activities in sequence, and
the last branch has only one activity. As shown in
Example 4, we express this configuration in the RGML by
nesting two <Sequence> tags within a <Split> tag. Each of
the <Sequence> tags will nest their own activities inside.
The solo activity found on the last branch will be nested
directly under the <Split> tag.

<Structure id=main>
 <Split Parallel=”Yes”>
 <Sequence>

<Activity id=1> Number 1 </Activity>
 <Activity id=2> Number 2 </Activity>
 <Activity id=3> Number 3 </Activity>
 </Sequence>
 <Sequence>

<Activity id=4> Number 4 </Activity>
 <Activity id=5> Number 5 </Activity>
 <Activity id=6> Number 6 </Activity>
 </Sequence>
 <Activity id=7> Number 7 </Activity>
 </ Split >
<Structure>

Example 4: The Split Construct

The last of our structure constructs is the “Adhoc”.

This construct is needed to provide the capability to
characterize process structures that simply do not conform
to sets of sequences, iterations and splits. To achieve that

necessary flexibility we also had to be able to view/define
control flows as a combination of entry points, exit points
and connections among sets of activities.

• Entry points are activities through which we can
initiate the flow of control into an ad hoc structure.

• Exit points are activities through which the flow of
control exits an ad hoc structure.

• Connections are used to define flow of control
between any two activities within an ad hoc structure.

Defining a process structure like that depicted in
Figure 1-d would be difficult (if not impossible) using
only our basic set of constructs. While some components
of the structure look “similar” to one the basic constructs
(e.g., the iteration between activities 1 and 2) the presence
of additional flows of control (e.g., from activities 1 and
3) substantially complicate, or negate, the use of a basic
construct. Using an “Ad Hoc” construction approach, we
can express the combination of activities and control
flows as a single structure. In the RGML we expresses the
structure found in Figure 1-d as follows:

<Structure id=main>
 <Adhoc>
 <Entry>
 <Activity id=1> Number 1 </Activity>
 <Activity id=2> Number 3 </Activity>
 <Activity id=3> Number 5 </Activity>
 </Entry>
 <Connections>
 <Iteration>

<Activity id=1> Number 1 </Activity>
 <Activity id=2> Number 2 </Activity>
 </Iteration>
 <Iteration>

<Activity id=1> Number 1 </Activity>
 <Activity id=3> Number 3 </Activity>
 </Iteration>
 <Iteration>

<Activity id=3> Number 3 </Activity>
 <Activity id=5> Number 5 </Activity>
 </Iteration>
 <Sequence>

<Activity id=3> Number 3 </Activity>
 <Activity id=4> Number 4 </Activity>
 </Sequence>
 </Connections>
 <Exit>
 <Activity id=4> Number 4 </Activity>
 <Activity id=5> Number 5 </Activity>
 </Exit>
 </Adhoc>
</Structure>

Example 5: The “Ad Hoc” Construct

As illustrated in the code of Example 5, the code

within the <Adhoc> tag is divided under three main tags.

• The <Entry> tag: All activities that are entry points
into the ad hoc structure are identified within the
delimiters of the <Entry> tag.

• The <Connections> tag: This tag defines control flow
between any two activities.

• The <Exit> tag: All activities that are exit points out
of the ad hoc structure are identified within the
delimiters of the <Exit> tag.

In the following section we employ the basic

constructs defined in this section to characterize Davis’
process of Requirements Triage [4].

4.2 An Example: Expressing Requirements

Triage in RGML

Figure 2 shows the structure of Davis’ Requirements
Triage. Code Example 6 (provided below) illustrates how
RGML can be used to characterize this structure.

<Structure id=main>
 <Sequence>
 <Activity id=PA>Problem Analysis</Activity>
 <Iteration>
 <Split Parallel=yes>

<Activity id=RA>Risk Analysis</Activity>
<Activity id=CS>Cost and schedule</Activity>

 <Activity id=PAN>Price Analysis</Activity>
<Activity id=MA>Market Analysis</Activity>

 </Split>
 <Activity id=5>Feature Triage</Activity>
 <Exit>

<Criteria type=”Question”>Are you sure…. ?</Criteria>
 </Exit>
 </Iteration>
 <Activity id=RS>Requirements Specification</Activity>
 </Sequence>
</Structure>

Example 6: Codifying Requirements Triage

We start with the main <Structure> tag. The first

activity, problem analysis, is nested under a <Sequence>
tag, followed by an <Iteration> tag and another activity at
the end of the specification. It would be invalid to put the
<Activity> tag directly under the <Structure> tag because it
has to be nested within one of the basic constructs used
for structures. In this example we also nest two structures
within each other (the split and the iteration). Before
closing the <Iteration> tag we have to state the exit criteria

Problem
Analysis

Price
Analysis

Cost & Schedule
Estimation

Feature
Triage

Requirements
Specification

Market Analysis

Risk
Analysis

Seed Idea

Figure 2: Requirements Triage

for the iteration. In our example we define a question the
user must answer, and use that answer to determine
whether or not the exit criteria has been satisfied.
Because we are focusing on the flow of control and
activity identification, we are only showing the structure
component of the RGML – we have not yet addressed the
specification of the details of each activity. In the next
section we will describe how we those activity details are
defined.

5. Using RGML to describe Activities

During the description of the process structure,
whenever there is a need to refer an activity we referenced
it using the <Activity> tag and the activity’s unique “id”
attribute. In this section we describe the second major
component of the RGML, the <Details> section. In
particular, we outline how the RGML is used to
characterize: the steps comprising a requirements
generation activity, how applications are instantiated, and
how we specify the production/consumption of the
artifacts.

5.1 Defining the Details of an Activity

The activities’ descriptions are nested under the
<Details> tag. To better illustrate how the RGML
addresses the many aspects of an activity, we will present
a fabricated example, Example 6, starting with the
<Details> tag. This example will also be used to describe
other important concepts present later in this paper. Since
this is just a contrived example, the details for some tags
are omitted.

As shown on line 2 of Example 6 the description of a
specific activity is nested within an <Activity> tag having a
unique ID of 1. (The “StartUseIf” attribute used in the
<Activity> tag supports temporal control and will be
discussed in Section 6.) The name of the activity is nested
between the <Name> tags, and similarly the goal of the
activity is nested between the <Goal> tags (lines 3 and 4).
The goal of an activity is a high-level, text-based
description of the enclosing activity – no special formulas
or methods are required to express the goal. (Pre-
conditions, shown in lines 5-8, can be specified during the
description of the activity, but we will again defer
discussion of this concept until Section 6.)

All activities have primary execution scenarios; they
can also have alternative ones. By default, the primary
scenario is usually executed (line 9-24 in Example 6).
Pre-conditions and milestones, described in Section 6,
determine if the primary activity is executer, or which, if
any of the alternate activity scenario are executed. Lines
25-45 depict examples of alternative scenarios.

The primary (and alternative) execution scenarios for
an activity are expressed using the <Flow> tag. Inside the
<Flow> tag we describe the steps that constitute an activity.

The only tags that can be nested directly within the <Flow>
tag are the <Step> tag and the <Milestone> tag. The steps
within an activity are expressed by using the <Step> tag,
and are nested within the <Flow> tag (lines 10,13 and 15).

Example 6: RGML <Details> Code

1. <Details>
2. <Activity id=1 StartUseIf=M3>
3. <Name> Activity Name </Name>
4. <Goal> This activity is aimed to do so and so </Goal>
5. <Preconditions>
6. <Notes> Make sure that so and so happened </Notes>
7. <Artifact id=”MMM” required=true>
8. </Preconditions>
9. <Flow>
10. <Step Required=true>
11. <Name>123</Name>
12. <Description> Description in English </Description>
13. </Step>
14. <Milestone id=M1>
15. <Step>
16. <Name></Name>
17. <Description> Description in English </Description>
18. <Action mode=C >
19. <Type>E-mail</Type>
20. <Artifact id=”ABCD”>
21. <Description></Description>
22. </Action>
23. </Step>
24. </Flow>
25. <Alternatives>
26. <Alternative id=3a>
27. <StartUseIf>M2</ StartUseIf >
28. <Flow>
29. <Step required=true>
30. <Name>654</Name>
31. <Description> English Description </Description>
32. </Step>
33. <Milestone id=M2>
34. <Step>
35. <Name></Name>
36. <Description></Description>
37. <Action mode=D >
38. <Type>E-mail</Type>
39. <Artifact id=”ABCD”>
40. <Description></Description>
41. </Action>
42. </Step>
43. </Flow>
44. </Alternative>
45. </Alternatives>
46. </Activity>
47. </Details>
48. <Definitions>
49. <Templates>
50. <Template id=”Meeting”>c:\meeting.doc</Template>
51. </Templates>
52. <Types>
53. <Type id=”E-mail” app=”C:\outlook.exe” />
54. <Type id=”Document” app=”c:\winword.exe”/>
55. <Type id=”Spreadsheet” app=”c:\excel.exe” />
56. <Type id=”Presentation” app=”c:\powerpoint.exe” />
57. <Type id=”Context Diagrams” app=””/>
58. <Type id=”SRS Checker” app=”c:\checker.exe”>
59. </Types>
60. <Artifacts>
61. <Artifact id=”ABCD”>
62. <Name></Name>
63. <Template>Meeting Request</Template>
64. <Notes></Notes>
65. </Artifact>
66. <Artifacts>
67. </Definitions>

The RGML can indicate the importance of different steps
by using the “Required” attribute with the <Step> tag.
When the “Required” attribute is set to “True”, this means
that this step is absolutely necessary during the execution
of the activity. On the other hand, if the “Required”
attribute is set to “False”, the requirements engineer can
elect to either execute the step, or skip it, depending on
current objectives and situational status.

 Note that each step in an activity can also have
embedded <Name> and <Description> tags. They support
the inclusion of descriptive text. To promote specification
flexibility, the <Step> tag can also embed additional
<Action> tag (and subsequently additional <Step> tags).

5.2 Instantiation of applications and the production of
artifacts Using RGML.

In the previous section we discussed how the <Step>
is used in the description of an activity. The RGML has
more complex features that can also be used in describing
activities. We discuss two of those features in this section:
the instantiation of applications, and the production of
template-driven artifacts.

An <Action> tag that is nested within a <Step> tag is
used to indicate that an action is to occur in that specific
place during the execution of the activity. Most often, that
action engenders the instantiation of an application, e.g.,
an E-mail program, a Word Processor, or Spreadsheet
application. The <Type> tag on lines 19 and 38 designate
such instantiations.

Instantiated applications often produce artifacts. If an
artifact is to be produced then an <Artifact> tag is
embedded within the <Action> tag. All artifacts are defined
using the <Definitions> tag. As illustrated in Example 6
artifact “ABCD” referenced on line 39 is defined
(between lines 61 and 65) within the <Definitions> tag.

Artifact production, however, prompts the following
questions. How will the process handle an artifact if the
action is executed several times – for example, in an
iteration situation? Should the newly instantiated process
(a) create a different version of the artifact each time the
activity is executed, (b) should it create the artifact only
once, or (c) should it modify the existing artifact. To
address this issue we have associated a “mode” attribute
with the <Action> tag. The “mode” attribute specifies how
to handle the artifact produced in the case of multiple
executions of that activity. The mode can take any of the
following values:

• CD (Create and Display): Indicates that the process
should create the artifact during its first instantiation.
If additional instantiations occur, the artifact is to be
retrieved and displayed to the user in read-only mode.

• CM (Create and Modify): Indicates that the process
should create the artifact during its first instantiation,

and if additional instantiations occur, the artifact is to
be retrieved, displayed to the user, and be modifiable.

• C (Create Only): Indicates that each time this action
is invoked, a new instance of the artifact is to be
created. To maintain unique artifact names, the
iteration number is appended to the name (id) of the
artifact.

• D (Display Only): Indicates that this artifact already
exists and is to be displayed in read-only mode.

• M (Modify): Indicates that this artifact already exists.
It is displayed to user and the user can modify it.

One additional capability provided within the RGML

is associating templates with artifacts. For example the
artifact, “ABCD” used in our example is associated with a
“Meeting Request” Template (see line 63 of Example 6).
Similar to the definition of software applications,
templates are also defined within the <Definitions> tag. The
“meeting request” template referenced in line 63 is
defined between lines 49 and 51.

6. The Conditional Execution of Activities

Within a requirements generation process, the
execution of activities is often predicated on the presence
of one or more conditions. In this section we discuss three
methods provided by the RGML that permit the
specification of the conditional execution of an activity.

6.1 Pre-Conditions

Pre-conditions can be specified for any activity. Pre-
conditions stipulate what conditions must be present for
the enclosing activity to execute. In reality, we have
chosen to implement “hard” and “soft” pre-conditions.

One example of using pre-conditions can be seen
embedded between lines 5 and 8 in Example 6. The
definition of a precondition begins with the <Precondition>
tag. In this example the condition is specified using the
<Artifact> tag and an associated “Required” attribute. The
use of this tag signifies that a specified artifact must exist
before we can proceed with this activity. If the existence
of the artifact is required, then the “Required” attribute is
set to true. If on the other hand, “Required” is set to false,
then (a) the activity stops, (b) an appropriate message is
displayed to the user, and (c) the user must either create
the artifact or actively override the condition before the
activity execution can proceed.

6.2 Milestones

The RGML also uses the concept of milestones to
help express the temporal aspect of a requirements
generation process. Milestones are descriptors used to
describe an instance separating two states. Each milestone

has a scope (or visibility) defined within the
<MilestoneScope> tag. A Milestone is like a Boolean
variable in a program – it can either be “on” or “off”. A
milestone can be triggered “on” or “off” at any point
within its scope. Triggering a milestone usually indicates
the occurrence of a certain event. When the point of an
activity’s execution moves out of the scope of a milestone,
it is automatically reset to an “off” state. For example, in
the case of iteration, each time the execution leaves the
milestone’s scope and re-enters, the milestone’s value is
reset to “off”.

Milestones provide significant flexibility and
expressive capabilities. Milestone uses include

• Controlling the execution sequence between non-
sequential items,

• Serving as exit criteria for iterations, and

• Controlling when and which alternative version of an
activity is to be used.

In the RGML the definition of milestones are given
within the <Structure> tag. Milestones are defined using
the <MilestoneScope> tag. Each <MilestoneScope> tag must
have a unique “Id” attribute. The scope of a milestone is
anything in between the opening <MilestoneScope> tag and
its closing counterpart. Figure 3 depicts a structure in
which two milestones are defined. Milestone M1 has a
scope of the iteration structure only; Milestone M2 has a
scope of the complete structure shown. Code Example 7
provides a specification of what is depicted in Figure 3.

<Structure id=main>
 <Sequence>
 <MilestoneScope id=M2>
 <Iteration>
 <MilestoneScope id=M1>
 <Activity id=A1> A1</Activity>

 <Activity id=A2> A2</Activity>
 <Activity id=A3> A3</Activity>
 </MilestoneScope id=M1>
 <Exit>
 <criteria type=Question>Have you …. ?</criteria>
 </Exit>
 </Iteration>
 <Activity id=A4> A4</Activity>
 </MilestoneScope id=M2>
 </Sequence>
</Structure>

Example 7: Milestone Specification

After defining a milestone within the <Structure> tag,
Milestone triggers can then be placed anywhere within the

steps of an activity that has been defined within the scope
of that milestone.

1. <Details>
2. <Activity id=A1>
3. <Flow>
4. <Step Required=true>
5. <Name>1</Name>
6. :
7. </Step>
8. <Milestone id=M2>
9. <Step>
10. <Name>2</Name>
11. :
12. </Step>
13. </Flow>
14. </Activity>
15. :
16. :
17. <Activity id=A4 StartUseIf=M2>
18. <Name></Name>
19. <Flow>
20. :
21. :
22. </Flow>
23. </Activity>
24. </Details>

Example 8: Triggering and Utilizing Milestones

In Example 8 milestone M2 is triggered between Steps 1
and 2 (see line 8). Milestone M2 is tested at the time
Activity A4 is supposed to execute (line 17 -
StartUseIf=M2). In effect, activity A4 will not execute
unless activity A1 has executed at least once.

6.3 Activity Alternatives

As mentioned in Section 5, each activity has a
primary execution scenario, and zero or more alternative
scenarios. The different execution scenarios of an activity
are expressed under the <Alternatives> tag depicted in line
25 of Example 6, and terminating on line 45. To express
an activity alternative, we start by giving each activity
alternative a unique “Id”. Next we must specify under
what condition the alternative is to be executed. For any
set of primary and alternative activities, the condition for
the primary execution scenario is evaluated first. If it
succeeds, the alternatives are ignored. The RGML use
milestones to express these conditions. The <StartUseIf>
tag (Example 6, line 27) is used to identify the milestone
that controls the execution of an alternative activity.
Similarly, the <StopUseIf> tag is used to signify a
milestone condition such that, when encountered, causes
the current execution scenario is to terminate. If the
<StopUseIf> tag is not used while defining an activity
alternative, then if that activity is selected for execution, it
will continue to be selected in subsequent passes through
the flow until its milestone guard is reset.

All activity alternatives share the same name, goals
and preconditions defined within the primary activity. The
only difference between the primary activity and the

A1 A2 A3 A4

 M2
 M1

Figure 3: Structure with Milestone Scopes

alternative activities is what is defined within the <Flow>
tags, i.e., the steps of the activity, the milestones to
trigger, and when to trigger them.

7. Placing the RGML in Context

In the previous sections we have attempted to
describe the principal capabilities of the RGML. More
specifically, we have described how it is used to formally
characterize

• the flow of control for a requirements generation
process,

• the activities of such a processes, including the
instantiation of applications and the creation of
artifacts,

• temporal execution controls through the use of
milestones and pre-conditions, and

• multiple execution scenarios for a given activity.

The remainder of this section briefly outlines our vision of
an Interactive Requirements Engineering Environment
and what role the RGML plays in realizing that
environment.

Figure 4 illustrates a two-phased approach in defining
an interactive requirements engineering environment that
guides a requirements engineer through a structured
requirements generation process. Phase one emphasizes
the definition of requirements engineering processes. On
the left side of the diagram we have an experienced
requirements engineer who wants to formally characterize
a requirements generation process. It may be the one
currently being employed in the workplace or an
experimental one. The requirements engineer employs a
low-level structured editor that assists him/her in the
characterization process. Process characterization is
achieved through

• the selection of iconic representations of RGML
constructs and concepts, which in turn are expanded
into RGML code, and

• the structured entry of RGML code directly.

As the RGML code is created, it is syntactically and
semantically validated. When a complete requirements
generation process is defined, its definition is stored in a
database.

The second phase depicts two distinct activities –
both are performed by the requirements engineer who is
working with the customer to identify pertinent
requirements. The first activity is process of identifying
and recording customer requirements. This activity,
however, is guided by an interpretive tool that

• reads the selected requirements engineering process
from the database,

• interprets its RGML characterization, and

• presents a visually based, interactive environment that
guides the user (or requirements engineer) through
the prescribed process.

The requirements engineer must also be given the
flexibility to tailor a process to fit an organization’s needs.
Correspondingly, the second activity depicts the
requirements engineer modifying the definition of the
requirements generation process through the use of high-
level editor. We envision the editor having a restricted set
of capabilities, and through iconic selection and
composition permits the manipulation of a visually
oriented representation of the requirements generation
process. The editor should permit tailoring during the
requirements generation process or after it is completed.
The editor should restrict process modifications should to
those actions that do not violate fundamental principles
underlying requirements generation. It should also be

Different
Requirements

Generation
Processes

Low Level RGML
Editor

“ABC”
Described in

RGML

“RGM”
Described in

RGML

Experienced
Requirements

Engineer

ABC
RGM
XYZ
KJH
UYR
WER

Imported to
the RGE Tool

A library of
different

Requirements
generation
processes.

Requirements
Engineer working

on a project

Requirements Generation
Environment - (RGE Tool)

An environment guiding the
requirements engineering
through a requirements

generation process.

High
Level
RGML
Editor

Tailoring
Processes to fit
a certain project
or organization

Phase 1 Phase 2

Figure 4: A Requirements Engineering Environment

designed with the understanding that the person doing the
tailoring may have only a minimal understanding of the
RGML.

Hence, the RGML is only the first step towards the
development of a visually oriented environment
supporting requirements generation. It is to be followed
by the development of

• a low-level editor supporting the formulation and
characterization of requirements generation
processes,

• an interpreter that provides an interactive, visually
oriented interface that guides the requirements
engineer through the selected requirements generation
process, and

• a high-level editor for tailoring the requirements
generation process.

8. Conclusion

In this paper we have provided an outline of the
Requirements Generation Markup Language. The RGML
is a flexible language with significant expressive
capabilities that support a formal characterization of the
various processes defining requirements generation. The
“structure” component of RGML permits the description
of loops, branching, and sequence constructs. The
“details” component supports the description of individual
activities embedded within a requirements generation
process. The description of activities includes the
specification of alternative activities, conditional-based
process flows, the automatic instantiation of software
applications, and conditional execution through the use of
pre-conditions and milestones.

The RGML is novel and can be a benefit to the
requirements engineering community in several ways. In
being descriptive-based, initially the RGML will provide a
foundation for formally thinking about and characterizing
the components, activities and flow structure of
requirements generation processes. This has an added
benefit in that formal characterizations permit a more
objective comparison among different generation
processes. Ultimately, we envision the development of an
interactive, visually oriented environment that provides
significant guidance and assistance leading to the
elicitation, recording and packaging of a set of quality
requirements. The RGML is the first step toward the
realization of that environment.

9. References

[1] Ambler, S.W., "Agile Requirements Modeling," The
Official Agile Modeling (AM) Site (2001)
,http://www.agilemodeling.com

[2] Arthur, J.D. and Markus K. Groener (1999). “An

Operational Model Supporting the Generation of
Requirements that Capture Customer Intent,”
Proceedings of the Pacific Northwest Software
Quality Conference, Portland OR, October 1999, pp.
286-302

[3] Craigh Schlenoff, Amy Knutilla, and Steven Ray,

editors, Proceedings of the Process Specification
Language (PSL) Roundtable, Gaithersburg MD,
April 1997. National Institute of Standards and
Technology.

[4] A. M. Davis. Software Requirements. Objects,

Functions and States. Prentice-Hall, 2 edition, 1993

[5] Du Bois, P., The Albert II Language - On the

Design and the Use of a Formal Specification
Language for Requirements Analysis, Ph.D. thesis,
Dept. of Computer Science, University of Namur,
Namur, Belgium, 1995.

[6] Frincke, Deborah; Wolber, Dave; Fisher, Gene; and

Cohen, Gerald: Requirements Specification
Language (RSL) and Supporting Tools. Nov. 1992.

[7] Herlea, D.E., Jonker, C.M., Treur, J., and

Wijngaards, N.J.E. A Formal Knowledge Level
Process Model of Requirements Engineering. In:
Proceedings of the 12th International Conference on
Industrial and Engineering Applications of AI and
Expert Systems, IEA/AIE'99.

[8] Mike Marin. Workflow Process Definition Interface-

--XML Process Definition Language. The Workflow
Management Coalition Specification, pp. 15-31,

[9] R.S. Pressman. Software Engineering, A

Practitioner 's Approach. McGraw-Hill, Inc., 3rd
edition, 1992.

[10] S. Robertson and J. Robertson. Mastering the

Requirements Process. Addison-Wesley, 1999

[11] A. van Wijngaarden, Orthogonal Design and

Description of a Formal Language, Mathematisch
Centrum, MR 76, October 1965.

[12] Young, R.R. (2001), Effective Requirements

Practices, Addison-Wesley Information Technology
Series, Addison-Wesley, Boston Mass, 2001.

[13] Standish Group 1995. “Chaos”, Standish Research

Paper, <www.standishgroup.com/chaos.html>.

