

PRESERVATION OF ETDs ON NDLTD

Version 1.0
 February 3, 2003

 Anil Bazaz Edward A. Fox
 Virginia Tech Virginia Tech
 abazaz@vt.edu fox@vt.edu

mailto:abazaz@vt.edu
mailto:fox@vt.edu

Contents

1 Introduction... 3

2 System Design ... 4
2.1 Overview... 4
2.2 System Requirements .. 4
2.3 Architecture ... 5
2.4 Local Directory Structure of Cache... 6
2.5 User Guide to Installation and running... 7

3 Design Rationale ... 8
3.1 Scaling Issues.. 8
3.2 Articles Stored.. 8

4 Implementation ... 8
4.1 OAI Harvester.. 8
4.2 Process XML Data... 9
4.3 ETD Fetching and Storing .. 9
4.4 Control Script .. 9

5 FUTURE WORK... 9

6 References ... 10

1 Introduction
Theses and dissertations published at a university are important research
resources. ETDs (Electronic Theses and Dissertations) are simply the theses
and dissertations published in electronic form (e.g., in PDF). Many universities
are implementing a requirement that theses and dissertations be submitted in
electronic form, thus making it easier for other people to access these works.
These ETDs typically are archived on a server at each local university. We have
developed a mirroring system which will store additional copies of remote ETDs,
and thus will preserve and enhance access to them. The local archive of ETDs
will be updated regularly. If someday the university (Publisher) fails to provide
access to one of its ETDs or an ETD copy is corrupted, the user will still have
access to another copy of ETD. The above system will be used for NDLTD
(Networked Digital Library of Theses and Dissertations).

NDLTD is an initiative to encourage the creation of ETDs by student authors, and
to make ETDs easily accessible to students via World Wide Web, thus improving
graduate education. There are currently over 150 members in NDLTD. Users can
browse or search ETDs through the NDLTD website. The NDLTD website also
provides a union catalog to search for ETDs.

The Open Archives Initiative (OAI) is dedicated to solving problems of digital
library interoperability. OAI has developed a metadata harvesting protocol to
support streaming of metadata from one repository to another, ultimately to a
provider of user services such as browsing, searching, or annotation. An OAI
harvester implements the OAI protocol for metadata harvesting.

We use an OAI harvester to harvest metadata about ETDs and then a simple
web crawler is used to get the actual data and store it on a local machine. This
ensures that we have a local copy of data even if the publisher of data is
somehow unable to provide us with data. Our OAI harvester harvests metadata,
which was not harvested since the last time it was run. Hence, updating the
mirror site is easily accomplished. This is a very effective scheme, which can be
used to mirror any collection of data, provided the collection has an associated
OAI server.

2 System Design

2.1 Overview

Figure 1. General System Design

PUBLISHER
(UNIVERSITY)

Local Machine
(Cache)

PUBLISHER
(UNIVERSITY)

NDLTD

Figure 1 shows the general design of the system. NDLTD hosts an OAI union
catalog, which is used to search for ETDs. Our OAI harvester is used to harvest
the latest metadata from that union catalog. The cache (local machine) stores
and parses through the metadata and gets information about an ETD. It then
goes to the publisher site and fetches the actual ETD and stores it locally.
Harvesting will be done on a weekly basis. This will take into account heavy
traffic days, for example the end of semester, and also low traffic days when the
number of theses published is low, thus balancing network traffic.

2.2 System Requirements
A cheap PC can be used to run the system. The only requirement being that the
PC should have enough storage capacity. Currently a cheap PC with about
120GB of space is approximated at $550 (minimum configuration).

The system is implemented on LINUX and will work with little or no change on
UNIX variants. The system was implemented in Perl and so no installation is

required. We just have to copy scripts to appropriate directories and we are
ready to go. Both LINUX and Perl are free and so no software costs are
associated with the system.

2.3 Architecture

Figure 2. System Architecture

Control
Script

tempProcessed
Process
XML
Data

OAI
Harvester tempHarvestedXML

ETD fetching
and

Storage

Figure 2 shows the architecture of the system implemented. The system has
been implemented with a pipeline architecture. The OAI harvester collects data
and stores it in a file named tempHarvestedXML. The file acts as input to the
Process XML Data module. This component parses through the file and extracts
the etd-identifier, publisher, date of defense, and the URL of the title page for
each ETD and puts them into a file named tempProcessed. This file acts as an
input to our final stage. In the final stage the data pertaining to each ETD is
fetched and stored on the local machine. In addition we have a control script,
which is responsible for controlling the execution of the entire system and
cleanup operations.

2.4 Local Directory Structure of Cache

Figure 3. Local Directory Structure

Data Pertaining to ETD

ETD ETD ETD ETD ETD ETD

Year Year Year Year Year Year

Publisher Publisher Publisher

NDLTD Data Dir

…… …

… … …

… … …

Data fetched from the publisher is stored on the local machine. To store the data
in an orderly form we use a local directory structure (Figure 3). We have the root
data directory shown in above figure as NDLTD Data Dir. This directory contains
subdirectories by the name of each publisher. An example of name of publisher
directory would be VirginiaPolytechnicInstituteandStateUniversity (The space has
been deliberately removed as the spaces are removed while naming directories.)
The publisher directory contains one or more subdirectories named by the year.
An example of this would be 1997. The year has subdirectories according to the
ETD name. These directories are named according to the individual etd-identifier,
a unique identifier assigned to each ETD. In this directory is data pertaining to
each ETD. This directory contains an html file, which is the electronic version of a
title page of the ETD. This directory also contains all of the other thesis
documents pertaining to that ETD. So each ETD will be stored according to its
publisher, the year of defense, and its identifier.

2.5 User Guide to Installation and running

1. Create a directory named public_html in your home directory.
2. In public_html create a directory by the name of cgi-bin.
3. The directory structure will be like this ~/public_html/cgi-bin/
4. cd ~public_html/cgi-bin/
5. Download the component from the ODL website.

 wget http://oai.dlib.vt.edu/odl/software/harvest/Harvest-2.0.tar.gz
6. Decompress the file

 gzip –cd H* | tar –xf –
 7. Change to “ODL-Harvest-2.0/Harvest”
 cd ODL-Harvest-2.0/Harvest
 8. Run
 ./configure.pl NDLTD
 9. Press “a” to add the archive just installed. Answer the questions asked by
 the configuration script as listed below:
 Archive identifier: NDLTD
 baseURL of the archive: http://oai.dlib.vt.edu/~etdunion/cgi-bin/Union/union.pl
 Harvesting interval: 604800 (One week)
 Harvesting overlap: 1 (default)
 Harvesting granularity: second (default)
 metadataPrefix: oai_dc
 set (leave empty): (default)

 10. This completes the installation and configuration of the OAI harvester.
 Now copy the Perl scripts provided into the Harvest directory.
 11. cd /home/
 12. mkdir data
 13. cd ~/home/<user-id>/public_html/cgi-bin/ODL-Harvest-2.0/Harvest/
 14. Start the control script ./control_script
 15. This will start the system.
 16. You will have to run the control_script every week. You can make a cron

 job of it or even make it a deamon.

http://oai.dlib.vt.edu/odl/software/harvest/Harvest-

3 Design Rationale

3.1 Scaling Issues
The most important scaling issue is storage and the cost associated with the
storage. It is imperative that new members will start participating in NDLTD thus
increasing the storage requirements. It is also anticipated that the cost of hard
disks will keep on going down at the rate of about 50% per year. If we assume
that there will be an increase in members at the rate of 50% per year, still the
cost of storage will keep decreasing because of decreasing cost of hard disks.
The software itself is scalable and a minimal change in the OAI harvester
configuration file (addition of new member set) will enable us to store ETDs from
that member locally.

3.2 Articles Stored
The title page and the ETD are stored on the local machine. The ETD itself,
along with any other data associated (for example, figures, maps, music, etc.),
are stored on the local machine. The title page contains a brief summary of the
ETD along with details such as the author, publisher (University), date of
defense, etc.

4 Implementation
As discussed above the system is implemented on LINUX in Perl. The system is
implemented using a pipeline architecture and has three modules and a control
script. We will discuss in detail each of the three modules and the control script in
the next sections.

4.1 OAI Harvester
An OAI harvester written in Perl at Virginia Tech has been used in this system. It
is quite a simple implementation of an OAI harvester. It has a configuration file
associated with it in which the URL of the OAI server, the time intervals at which
the harvester is run, the metadata format, and some other options (not specific to
this implementation) can be specified. The time interval for this implementation
was one week, the site being NDLTD union catalog and the metadata format
being oai_dc. The harvester returns metadata of ETDs since the last time it was
harvested and stores it in a file named tempHarvestedXML.

4.2 Process XML Data
This component takes as input the file tempHarvestedXML. It parses through the
file and extracts etd-identifier, publisher of ETD (University), date of defense, and
URL of the title page of ETD. The title page is an introduction page, which
contains information about the ETD and also URL/URLs of the theses. It places
all the above information in a file name tempProcessed.

4.3 ETD Fetching and Storing
This is the final component of our system. It takes as input the file
tempProcessed. It extracts data (etd-identifier, publisher, date, URL) for each
ETD. It then creates a directory structure for the ETD. It checks if the directory by
the name of publisher exists and if not it creates the publisher directory. It checks
if the directory with the name of the year exists and if not it creates the year
directory. After this it creates a directory for that ETD by the name of etd-
identifier. Then it fetches the title page and stores it in that directory. This title
page is again named after the etd-identifier and stored as an HTML page. Next
the title page is parsed and URL/URLs of the thesis are collected. Data from the
URL/URLs is fetched and stored in the same directory and the files have the
same name and format as they have on the NDLTD website. The whole process
is repeated for the all of the ETDs harvested.

4.4 Control Script
This script is responsible for controlling the execution of the above modules. The
script also cleans up the temporary files after the execution is finished. The script
also performs sanity checks for the execution of the above modules.

5 FUTURE WORK
It is proposed that we integrate the above system with LOCKSS (an effort led by
Stanford University) to provide a robust method for permanent publishing on the
web. The mirroring of data will be done by the above system while LOCKSS will
be utilized to maintain the integrity of data. The LCAP protocol (developed by
LOCKSS group) will be used to communicate with similar mirror sites around the
world to keep checking if data stored is correct or not. Together these will provide
an ideal solution for permanent web publishing.

6 References
[1] Vicky Reich & David S. H. Rosenthal, "LOCKSS (Lots Of Copies Keep Stuff
Safe)", CEDARS Preservation 2000, York, England at
http://www.rlg.org/events/pres-2000/reich.html.

[2] Vicky Reich & David S. H. Rosenthal, “LOCKSS: A Permanent Web
Publishing and Access System”, D-Lib Magazine, June 2001 Volume 7 Number 6
at http://www.dlib.org/dlib/june01/reich/06reich.html.

[3] Open Archives Initiative maintains a web page about OAI metadata harvesting
protocol at http://www.openarchives.org/OAI/openarchivesprotocol.html.

[4] Web page of Networked Digital Library of theses and dissertations at
http://www.ndltd.org.

[5] Digital Library Research Laboratory (Virginia Tech) web page at
http://www.dlib.vt.edu/.

[6] The LOCKSS project website at http://lockss.stanford.edu/.

http://www.rlg.org/events/pres-2000/reich.html
http://www.dlib.org/dlib/june01/reich/06reich.html
http://www.openarchives.org/OAI/openarchivesprotocol.html
http://www.ndltd.org/
http://www.dlib.vt.edu/
http://lockss.stanford.edu/

	February 3, 2003
	Introduction
	System Design
	Overview
	System Requirements
	Architecture
	Local Directory Structure of Cache
	User Guide to Installation and running

	Design Rationale
	Scaling Issues
	Articles Stored

	Implementation
	OAI Harvester
	Process XML Data
	ETD Fetching and Storing
	Control Script

	FUTURE WORK
	References

