CS5604 — Information Storage and Retrieval

Project Report

Generation of a User Interface Prototype
from an Integrated Scenario Specification

Project Members:
Colaso, Vikrant
Lobo, Lester
Shah, Anuj
Shastri, Priya

Client:
Kelapure, Rohit

Instructor:
Dr. Edward A. Fox

Fdl, 2002

Generation of aUser Interface Prototype from an Integrated Scenario Specification

Table of Contents

I [10 o 8 o1 [0 1NN 3
2. Design and Architecture DELAIS..........coveerenerenenennninie e e e, 4
21 ProblemsFacedo D
2.2 PrOJECE QBSION. .. ettt e et e e e e e 6
2.2.1 Modificationsintegrated into the SUIP desSign....o cvvivieiiiie e 6

2.2.2 Flow of control inthedesign..........c.ocoveii i 8

Appendix A: Generated UIML COTEoovuiniiiie e e e 10
Appendix B: Sngpshot of the Ul prototypeccovveiniiiiiii e 12
REFEIENCES. .. . e 13

Generation of aUser Interface Prototype from an Integrated Scenario Specification

1. Introduction

This report discusses the design for the generation of a device independent user
interface prototype for services offered by a digitd library from an Integrated Scenario
Soecification usng cass diagrams and collaboration diagrams as input. The project was
conceived as an extenson to the SUIP tool, which generates a User interface in java. But
this gpproach has an inherent problem. The interfaces thus generated have the java * look
and fed’ and this can't be changed if the user s0 desires. Our design overcomes this
drawback by generating the interface in UIML which is device indegpendent and thus it is
possible to render the codein java, HTML, WML and other languages.

The report ams a providing detals about the intricacies of the desgn and the
tries to answer the common * how to' quedtions to get the code running. In addition, it aso
ligs possble enhancements to the code that could be taken up as future work.

Generation of aUser Interface Prototype from an Integrated Scenario Specification

2. Design and Architecture Details

Our project was to bascadly extend the functiondity of the SUIP tool so that it
generates the interface code in UIML. The following concept map shows where we
concentrated our efforts in the whole SUIP scenario.

Device Independent LI Prototype

Giiene |nv0ves

4 Steps
SUIP Tool

Java specific look

congistaf simslgt of

consistaf

3. Analysis of partial specifications

1.Requirements Specification

followed By

2. generation of partial Specifications from Scenarios

Understand UIML 14 Hruoly Our project work

fol%by Ienicr
<] v

Unilerstanding the SUIP algorithm

follwed by o
imvghes

Get the UIML specification |

inyofves

folltwgd by

P

Installation of the LIML reniderer |

fo d by

Change SUIP algorithm to generate UIML l

W v

Dema the prototype

Figl: Project Concept Map

Generation of aUser Interface Prototype from an Integrated Scenario Specification

As seen in the concept map the project involved converting the partid pecifications
into the UIML code. To achieve this god, we had to undertake severa activities before
getting down to writing code for thefind ddiveradle.

We took the following approach to redize our objective:

1. Understanding the SUIP dgorithm in order to understand where our design would
fit into the code
Obtaining the latest UIML specification. (UIML v2.0 and v3.0)

Ingdling the UIML renderer. (LiquidUl)
Modifying the SUIP dgorithm in order to integrate our design into the SUIP code,
Preparing a demonstrabl e prototype.

o & WD

2.1 Problems Faced

We were faced with severa problematic issues during the course of the project.
Some were due to our assumptions and the others were due to the non-standardization of
UIML. We have listed the hurdles that we faced bel ow:

1. We dated our design assuming that UIML had the ability to cdl functions across
files However, we couldn' t find such functiondity in the specficaiion. We thus
had to adandon our initid design based on our assumptions. We decided to split
the files into 2 types - .ga and .act files The .dat files contained the Ul part,
which was datic content. The .act files had the action ligeners for the Ul
components. The find output is a sngle file which concatenates the .gat and .act
files

2. We redized that the UIML renderer renders only the older verson of the UIML
goecification much later and by this time we dready had the UIML code
generaed as per the latest specification. We ended up cregting 2 deliverables so
that we had a demonstrable prototype.

3. One more difficulty was getting the UIML renderer (LiquidUl) up and running.
The documentation provided by the software is insufficient to do this It took us
some time to redize that the software required jok1.1 (now obsolete) for the
ingdlation. However, the ironicd pat is that the same software requires jdk1.3 to

run.

Generation of aUser Interface Prototype from an Integrated Scenario Specification

4. Firdly, we had problems regarding the SUIP code obtained from the authors
sgnce the code provided had bugs. We had to debug this code before beginning
our design.

2.2 Logical Flow of the Design
The code written for our project modified 3 files of the origind SUIP code:
1. UlGraphjava
2. Utiljava
3. SUIPjava

The UlGrgph.java file is concerned with the generation of the .dat and .act files from
the partiad specifications generated by the SUIP code.

The Util java file is concerned with the generation of the Main Window for SUIP and
the Smulation Window, which shows the trangtions between the states of the state chart
diagram. The states correspond to the status of the Ul components.

The UIPjava file is the main gpplication file, which garts the entire process and it
contains the code for combining the ga and .act files into a sngle resultat file
“fird.uiml” .

2.2.1 M odifications I ntegrated into the SUIP Design
The following functions were integrated into the UlGraphjavafile

Function Name Function Description

generateuimlFile This function was cregted in line with our initid gpproach of
creging multiple .uiml files which could cdl eech other. This
function crestes a .uiml file with the initid heeders. Code for
generding the datic content of the .uiml files has been
written. However, the further devdopment on this gpproach
was abandoned because we couldn' t find a way of function
cdling between .uiml files

Generation of aUser Interface Prototype from an Integrated Scenario Specification

generateuimlLwidget

This function generaes the UIML equivdent of the java labd

code.

generateuim|Cwidget

This function gengraes the UIML equivdent of the java
Checkbox code. Since the renderer didn't support the
checkbox group, we implemented this as a button group
having radio buttons This in efect had the same
functiondity asthe checkbox group

generateuim|Bwidget

This function generates the UIML equivdent of the java
button widget

generaeSatFile

This function crestes the ga and .act files It however
doesn’ t populatethefiles.

generateUimlControllor

This function generates the UIML equivdent of the java
action ligeners of the various Ul components. In our project,
the action ligeners correspond to button actions and menu

actions

ActivateUiml\Widgets

This function generates the comments on dae trandtions
which are in turn diplayed in the smulation window

DesctivaeUimlWidgets

This function deectivates the Ul components depending on
the trangtion of the Satesin the date trangtion diagram

choosUiml Scenario

This function generates the Ul for choosing the regular or the

error scenario

The following function was modified in the Util javafile
MenuForUIObject — This function was modified to generate UIML code for the man
SUIP termindl and the Smulation window.

The following modifications were done in the UIPjavafile
Code was written to concatenate the .gat and .act files into a single UIML file

“fird.uiml” .

Generation of aUser Interface Prototype from an Integrated Scenario Specification

2.2.2 Flow of Control inthe Design

Ul Graph.java

generateFrame()

Loop through Use Cases

generateuimiFile()

generateStatFile

Generate headersin .stat files

Loop through Ul componentsin the use case

If textfidd generateuimllwidget()

If Label 2 generateuimlLwidget()

If Button & generateui mlBwidget()

If CheckBox <5 generateui miBwidget()
generateUiml Controllor()

abrwbdpE

o

generaieUiml Controllor()

1. Generate menu Action listener for the main SUIP terminal
2. ActivateUimlWidgets()
3. Loopthrough buttonsin each use case

o0 DescativateUimlWidgets()

o ActivateUimlWidgets()

0 ChooseUimlScenario()

MenuForUIObject() [Util.java]

2. Creates Smulation window

[

‘ 1. Creates SUIP Termina ‘

main() TSUIP.java]

I 1. Concatenate .stat and .act filesinto fina .uiml I

Fig 2. FHow of Control

8

Generation of aUser Interface Prototype from an Integrated Scenario Specification

3. User Manud
To use our ddiverable following steps are to be taken.

1.
2.

© N o g &

10.
11.

12.
13.

14.
15.

16.

Unzip the SuipSpec V2.0.zip to the destination folder

(Note: SuipSpec V3.0.zip can't be rendered completely because UIML spec v3.0
can't be rendered by the renderer)

Open a DOS window and go to the destination directory where the file has been
unzipped

Go to the SuipSpec V2.0\libprj\UIObjects\Termind directory

On the command prompt type :

javac*.java

java SUIP classDiagramFile

This generaes the find.uiml file, which is the output file to be rendered. The file
is created in the SuipSpec V2.0 directory

Download the UIML renderer LiquidUl. This can be downloaded a the following
link

http://Aww.harmoni a.comyproducts/liquidui/downl oad.htm

Ingdl jok1.1 since it is required for LiquidUl inddlation. This verdon is obsolete
but can be obtained from the archive & the following link:
http://java.sun.comV/products/archive/index.html

Ingtall jdk1.3 to run the renderer. This is a requirement by the renderer. The
jdk1.3 can be obtained a the following link

http://java.sun.conv2s/1.3/downl oad.html

Once the ingdlation is complete and the find.uiml file has been generaied it is
necessary to check if the vocabulary fileq(UIML2_Og.dtd) is present in the same
directory. If not place thisfile in the same directory as the output file.

The file “find.uim” is now ready to be opened by the renderer, which then shows
the Ul prototype.

Generation of aUser Interface Prototype from an Integrated Scenario Specification

Appendix A: Generated UIML code sample

<?xml version="1.0"?>
<IDOCTYPE uiml PUBLIC "-//Harmonia//DTD UIML 2.0 Draft//EN" "UIML2_0g.dtd">
<uiml>
<interface id="myinterface">
<structure>
<part id="loan_Dialogl" class="JFrame'">
<style>
<property name="title" part-name="loan_Dialogl">Choose
Scenarios</property>
<property name="size" part-name="loan_Dialog1">300,109</property>
<property name="layout">java.awt.BorderLayout</property>
<property name="visible">false</property>
</style>
<part id="loanD1Groupl"” class="ButtonGroup">
<part id="loanD1radiol™ class="JRadioButton">
<style>
<property name="bounds">25,25,188,25</property>
<property name= "text"> {cancelLoan,regularLoan} </property>
<property name="enabled">true</property>
<property name="borderAlignment” >North </property>
</style>
</part>
<part id="loanD1radio2" class="JRadioButton">
<style>
<property name="bounds">25,50,125,25</property=>
<property name="text">{errorUserLoan}</property>
<property name="enabled">true</property>
<property name="borderAlignment">Center</property=>
</style>
</part>
</part>
</part>

</structure>

<behavior>
<rule>

<condition>
<event class="actionPerformed" part-name="loanD1radiol"/>

</condition>

<action>
<property part-name="txtAreal" name="content">DISPLAY
</property>
<property part-name="txtAreal" name="content"> <property part-
name="L 2" name="text"/></property>

10

Generation of aUser Interface Prototype from an Integrated Scenario Specification

<property part-name="txtAreal" name="content"></property>
<property part-name="txtAreal" name="content">DISPLAY
</property=>

<property part-name="txtAreal" name="content"> <property part-
name="L 3" name="text"/></property>

<property part-name="txtAreal" name="content"> </property>
<property part-name="txtAreal"” name="content">DISPLAY
</property=>

<property part-name="txtAreal" name="content"> <property part-
name="L 4" name="text"/></property>

<property part-name="txtAreal" name="content"> </property>
<property part-name="txtAreal"™ name="content"=ENTER
</property>

<property part-name="txtAreal"” name="content"> <property part-
name="L 5" name="text"/></property>

<property part-name="txtAreal" name="content"> </property>
<property part-name="txtFld5" name="enabled">true</property>
<property part-name="txtFId5" name="text"></property>
<property part-name="button2" name="enabled">true </property>
<property part-name="txtAreal" name="content">CLICK

BUTTON </property=>

<property part-name="txtAreal" name="content">

<property part-name="button2" name="text"/></property>
<property part-name="txtAreal" name="content">

</property>

<property part-name="loan_Dialogl" name="visible">false
</property=>
</action>
</rule=>

</behavior>
</interface>
<peers=>
<presentation source="Java_1.3_Harmonia_1.0.uiml#vocab"
base="Java_1.3_Harmonia_1.0"/>
</peers=>
</uiml>

11

Generation of aUser Interface Prototype from an Integrated Scenario Specification

Appendix B: Snapshots of the Ul prototype

bz an:

i | [T T B SSTST Cyp=

71 00 ot Lo Dot Jn ety

Generation of aUser Interface Prototype from an Integrated Scenario Specification

References

1. Project page : http://collab.dlib.vt.edu/runwiki/wiki.pl?IsRprojKelapureThree

2. Scenario synthesis algorithm 1: http://www.iro.umontreal.ca/labs/gelo/suip/GELO-82.pdf

3. Scenario synthesis algorithm 2:
http://mwww.iro.umontreal.ca/~labgelo/Publications/Papers/ccpe-2001.pdf

4. Scenario synthesis algorithm 3:
http://www.iro.umontreal.ca/labs/gelo/suip/bookChapter.pdf

5. The SUIP tool for scenario-based prototyping: http://www.iro.umontreal.ca/labs/gelo/suip/
UIML draft specification version 3.0 : http://www.uiml.org/specs/uim|3/DraftSpec.htm

7. UIML draft specification version 2.0 : http://www.uiml.org/specs/uiml2/DraftSpec.htm

8. List of java classes supported by the renderer:

http://www.uiml.org/toolkits/Java 1.3 _Harmonia_1.0.uiml

