
The Virginia Tech Computational Grid:

A Research Agenda

Calvin J. Ribbens Dennis Kafura Amit Karnik Markus Lorch

Department of Computer Science

Virginia Polytechnic Institute & State University

{kafura,ribbens,akarnik,mlorch}@vt.edu

Abstract

An important goal of grid computing is to apply the rapidly expanding power of distributed
computing resources to large-scale multidisciplinary scientific problem solving. Developing a
usable computational grid for Virginia Tech is desirable from many perspectives. It leverages
distinctive strengths of the university, can help meet the research computing needs of users with
the highest demands, and will generate many challenging computer science research questions.
By deploying a campus-wide grid and demonstrating its effectiveness for real applications, the
Grid Computing Research Group hopes to gain valuable experience and contribute to the grid
computing community. This report describes the needs and advantages which characterize the
Virginia Tech context with respect to grid computing, and summarizes several current research
projects which will meet those needs.

1 Introduction

A computational grid is a hardware and software infrastructure that provides convenient, effi-
cient, secure, and reliable access to distributed high-end computational and data storage ser-
vices [14]. The term grid is used by analogy with the electrical power grid; it is meant to suggest
ubiquity and transparency, i.e., electrical power is available everywhere and the user does not
need to know the source of that power. The hardware components of a computational grid are
high-speed networks linking computational resources, e.g., supercomputers, clusters, symmetric
multiprocessors, networks of workstations, disk farms, etc. The software components of a grid
provide an integrated set of services that allow the available computational power to be accessed
conveniently for large-scale computations. Grid services utilize the available computational re-
sources so that tasks are run on whatever machine currently has available capacity. A grid
also allows a single large computation to be spread across several machines, each of which is
executing some portion of the computation. The essential services provided by grids include
authentication and security, resource discovery, scheduling, data transfer, and fault tolerance.

Over the last few years interest in grid computing has grown tremendously. Federal fund-
ing agencies have supported the development of grid software, including Globus [18, 13] and
Legion [29], the most widely used systems. Globus, in particular, is in use at several national
laboratories and supercomputing centers as well as at many universities. The Global Grid
Forum [17] represents a very active international community of researchers and practitioners
working on grid technologies. Most of the large computer manufacturers have announced new
programs in grid computing as well, e.g., IBM [25], Sun [44], HP [23].

The surge in interest in computational grids is motivated by two main trends—one from
the demand side and one from the supply side. On the demand side, computational scientists

1



always want more powerful resources to tackle new grand challenge problems. Today, problems
of national interest are characterized not only by the sheer magnitude of their computational
demands, but often these problems require a multidisciplinary approach: multiple mathematical
models, multiple length and time scales, multiple computer codes, multiple data sources, mul-
tiple investigators. On the other hand, the supply of available computing and network power
continues to grow rapidly, especially when viewed in the aggregate. Today’s desktop machines
are significantly more powerful than a large mainframe of 15 years ago. However, the idea
of a computational grid is to harness the computational power of an entire building full of
computers—or, indeed, an entire campus, nation, or planet.

The principal challenge standing in the way of successful grid computing is the need for soft-
ware infrastructure that makes a grid usable, in the broadest sense. The purpose of this report
is to describe requirements for various types of grid users and stakeholders, and identify several
specific research issues we are pursuing in the Grid Computing Research Group in response to
these needs. Our focus is on a campus-wide grid. There are important specializations that can
be made when a computational grid extends only across a single community or enterprise, rather
than potentially extending over the whole planet. Hence, we turn first to a brief discussion of
issues that are specific to our context at Virginia Tech. Following that, we discuss user scenarios
and requirements in Section 3 and sketch several specific research issues in Section 4.

2 The Virginia Tech Context

Virginia Tech is extremely well positioned to exploit grid computing and to be a leader in
research and development in this area. The university has significant strengths in the research
areas that motivate and support grid computing. The primary motivation for grid computing
is high-end computational science, a mode of investigation practiced by numerous research
groups around campus. For example, at least eleven research centers on campus do large scale
computational science and engineering work. These centers include the Virginia Bioinformatics
Institute (VBI), the Interdisciplinary Center for Applied Mathematics (ICAM), the Laboratory
for Advanced Scientific Computing and Application (LASCA), the Vibration and Acoustics
Lab, the Multidisciplinary Analysis and Design Center for Advanced Vehicles, and the Center
for Modeling and Simulation in Materials Science. Furthermore, the university has computer
science expertise in the research subdisciplines that make grid computing possible, including
networking and distributed computing, parallel computing, numerical modeling and scientific
computing, software engineering, collaborative computing, human-computer interaction, etc.

Virginia Tech also has a growing collection of computing resources that could be usefully
integrated by a grid system. Current resources include the 200 processor CS-LASCA cluster in
Torgersen Hall, the 80 processor CS cluster in McBryde Hall, several other clusters in Torgersen
and at VBI, numerous shared memory machines (symmetric multiprocessors or SMPs), hundreds
of high-end workstations, and perhaps thousands of PCs in teaching classrooms, laboratories,
and study areas. While not all applications run well on all resources, there are important
problems which can leverage the massive amount of untapped computing power on campus;
and there are other problems which can only be addressed if a substantial amount of this
computing power can be used as a single, coordinated resource. (See Section 3 for a discussion
of some typical user requirements.) Finally, in addition to computers, high-end grid computing
also requires high-end networking. The networking infrastructure on campus, along with the
expertise at Communications Network Services (CNS), is another clear strength which makes a
VT computational grid an attractive proposition.

There are several factors that make the goal of establishing a campus grid especially inter-
esting, both in terms of research and in terms of practical benefit to the community. Below,
we list several points that distinguish a campus grid from the broader field of planet-wide grid
computing.

2



• There are important security and authentication simplifications. For example, the local
certification authority could be seamlessly integrated with mechanisms already in place,
e.g., Hokie passport and VT pid. Another important example is that the integrity of
firewalls that sit between campus grid resources and the outside world can be preserved,
e.g., holes can selectively be opened in firewalls in such a way that the main purpose of
the firewall is not compromised.

• We can assume better networking connectivity than in the global scale. Because VT
controls its network, and because the scale of a campus grid is smaller, communications
properties such as reliability, bandwidth, and latency are much more favorable in a campus
grid setting than in a larger-scale grid. This has important ramifications for algorithms
and middleware, as well as usability.

• A relatively small set of resources means that a campus-wide grid is more static than
the planetary grid. By this we mean that the set of (live) resources and the connectivity
amongst them does not change as rapidly as it does in an arbitrary wide area grid. Of
course, by definition, grids are always dynamic to some extent; but important aspects of
grid computing such as resource discovery and load balancing become much easier when
the scale of the grid is only campus-wide.

• A relatively small set of users means that a campus-grid can be more responsive to the
needs of those users. Even when fully deployed, a VT grid might only be of interest to 50
research groups (however, these research groups probably represent 90% of the computing
appetite on campus). And the large-scale applications that these research groups use tend
to fall into only a few broad categories (see discussion in Section 3). Therefore, our grid
research and implementation can be more focused on making the grid usable for the VT
community. In fact, an important goal of our recent research has been to enable grid users
to tailor their own problem-specific computing environments for grid computing [40]. We
believe this task becomes tractable in our setting.

• There are important legal and economic simplifications. The idea of a global grid raises
many serious legal and economic questions, including liability and cost-recovery. While
none of these issues vanish in our setting, we believe that there are important practical
simplifications because, for example, all grid resources are VT property and are covered
by VT terms of service.

• The psychological and sociological challenges to grid computing also have a good chance
of being overcome in our context. This university prides itself in applying technology in
research and education. The faculty and students are sophisticated and motivated when it
comes to using technology well. The level of collaboration among research groups is high,
and collaboration is rewarded.

• It seems likely that most grid computing will take place within a single organization or
enterprise. Hence, it is not too restrictive to exploit the factors listed above. In fact, it is
important to investigate exactly this situation.

Finally, in view of the resources available at Virginia Tech, and leveraging the unique char-
acteristics of our setting, we anticipate the following specific benefits to the university from this
research thrust:

• Achieves economic use of existing resources by utilizing otherwise unused computational
power.

• Leverages investments in buying small clusters or SMPs by allowing those resources to be
combined occasionally with other resources.

• Lowers start-up costs for new users who can gain access to a powerful ensemble with
minimal investment.

3



• Preserves local administrative control since grid scheduling will respect the security and
accounting controls defined by the system administrators of local resources.

• Encourages interdisciplinary work and cooperation through the pooling of computational
resources without requiring detailed agreements on the nature and administration of local
resources.

• Promotes access to national resources at federal research centers which use community-
supported grid software, e.g., Argonne National Laboratory, Oak Ridge National Labora-
tory, Pittsburgh Supercomputing Center.

3 User Scenarios and Requirements

Just as the pioneers of the electric system could not have predicted the shape and function of
today’s power grid, it is difficult today to anticipate all the ways computational grids will be used
in the future. However, an important high-level goal of this research is to learn by doing—to
deploy a prototype grid and gain experience from real users as they solve problems on our grid.
It is helpful to organize our efforts by classifying potential grid users into five broad categories.
In this section we define these five user classes, along with a sixth class consisting of important
stakeholders such as machine owners and administrators. For each class we discuss requirements
likely to emerge from that group. These user classes have increasingly high demands of a grid,
i.e., each class requires all of the things required by the previous classes, and more.

Class 1: Simple applications

The simplest scenario is a user who is just looking for machine cycles. These applications
require no special hardware and only simple file access for input and output. There are many
projects that meet the needs of most of these users already. The Globus toolkit provides many
of these services; others are rapidly becoming available in tools built on top of Globus. The most
widely used system in the area of recovering unused cycles and job-migration is Condor [10, 30].
Requirements for this user class include the following:

• Initiating grid participation, authorization.

• Authentication for a session or job, single sign-on.

• Help with compiling for multiple platforms and with staging the application to these
platforms. Grid-aware code development environments.

• Help with staging and retrieving data files.

• Convenient job submission, monitoring, management.

• Monitoring of the grid and the user’s status with respect to the grid, i.e., resource avail-
ability, limits, and accounting.

• Security: user’s codes and data cannot be compromised when on other machines.

• Fault tolerance: for long-running applications, support for check-pointing and recovery.

• Resource-brokering: matching job requirements to available resources.

• Allocation, scheduling, load-balancing: locate available machines, migrate jobs if machines
that were once lightly loaded become heavily loaded.

Class 2: Embarrassingly parallel applications

The typical user in this class wants to run many instances of the same task or application,
with little or no communication between tasks. A standard example is parameter sweep or
brute-force search algorithms, where the same code is run over and over again but with different

4



inputs. The goal is to find any solution, or perhaps a best solution, according to some measure,
e.g., factoring large integers [43], searching for signs of extraterrestrial life [42], or optimizing
the configuration of a drug molecule [5]. The master-worker paradigm is typically used to or-
ganize parallelism inherent in these applications. The Search for Extraterrestrial Intelligence
(SETI@home) project [42] is a popular instance of an embarrassingly parallel application. Sev-
eral companies have been founded recently to attempt to commercialize this approach to large
scale computing, e.g., DataSynapse, Entropia, Parabon, Avaki. Additional requirements for this
user class include the following:

• A higher-level user interface that controls the overall process. This could be anything from
a scripting language to a graphical user interface (GUI). The interface needs to support
definition of the cases to run, monitor progress, re-schedule if cases fail, and assimilate the
results, e.g., compute the global minimum.

• More sophisticated scheduling algorithms. For example, the scheduler could assign tasks
in batches of size greater than one, or could use performance results from previous runs
to more efficiently schedule future runs.

• More sophisticated fault-tolerance schemes. A typical approach is for the master to
reschedule a given worker task if the first attempt to complete that task fails to return
an answer in some predicted time. Another approach simply schedules more than one
instance of each task, using the first one that returns with an answer and ignoring any
that return later.

Class 3: Traditional parallel applications

This class consists of users with distributed-memory parallel applications, e.g., a code that uses
the MPI message passing library [21]. Two scenarios can be imagined. A relatively simple case
is that of a parallel code that runs on a single homogeneous parallel resource, e.g., a cluster,
SMP, or network of workstations. This user wants to run many instances of the code, perhaps,
and is simply looking for available cycles. This case is essentially a parallel version of Class 1.
The second case is a parallel application so large that no single homogeneous resource suffices.
We focus primarily on the second case here, although important research is done by investigators
whose work falls into the first scenario as well. Requirements for the second case include the
following:

• MPI over the grid, including job startup and termination. It must be possible to run an
MPI job across heterogeneous resources, e.g., across two clusters. The first attempts at
supporting MPI applications over the grid are just now emerging, namely MPICH-G2 [12]
and PACX-MPI [4].

• Algorithms are extremely important for this class of users. Minimally, algorithms must
be adaptive enough to work on different numbers of processors. Latency tolerant, coarse-
grained algorithms are preferred. Resource-aware, resource-adaptive algorithms will be
important as well. For many computations a choice of algorithm and/or implementation
must be made for each type of resource, e.g., SMP, tightly-coupled cluster, loosely-coupled
network of workstations. Using the wrong algorithm can have a significant negative im-
pact on performance. There is a need for algorithm recommendation systems that can
automatically choose the best algorithm as a function of where a particular application is
sent on the grid.

• There is also a need for a resource reservation mechanism and for co-scheduling, i.e., users
need to reserve and schedule multiple resources at once. This is particularly challeng-
ing in a grid environment where it may be necessary to marshal resources from multiple
administrative domains, controlled by multiple local schedulers.

5



• Performance debugging, modeling, measurement and tuning is particularly important for
large parallel jobs. Users require very sophisticated tools to support this kind of activity
in the grid context.

• Fault-tolerance for Class 3 jobs is much more challenging than for previous classes. When
hundreds of processors are committed to a single application, the odds that one of them
will fail are good, especially if the application runs for days or weeks. Furthermore, the cost
of restarting the entire computation is enormous. Ideally, one would like only the failed
process(es) to be restarted, while the healthy processes continue computing. Unfortunately,
current message passing software layers do not provide a convenient solution to these
problems.

Class 4: Heterogeneous parallel applications

These applications typically consist of several components linked together at a high level. A com-
ponent might be a simulation code, a data source, a visualization component, etc. These are the
kinds of applications that motivate the largest computational grid projects at US and european
national laboratories. Well-known examples include global climate modeling and multidisci-
plinary design optimization for aicraft design. Several software frameworks are being developed
to meet the needs of this class, including Harness [9], the Common Component Architecture
(CCA) [3], and Babel [11]. Requirements include the following:

• Software infrastructure for compositional modeling. Model development tools for defining
control-flow and data-flow, and for encapsulating legacy resources.

• Component frameworks, supporting plug-and-play and interoperability among libraries,
solvers, components, etc.

• Representation schemes for sharing data among components. Different components may
model and represent data differently.

• Data-management. Simpler classes need help with managing data too, but it is a major
requirement for this class, since these applications almost always produce and consume
vast quantities of data. Other critical issues include access to data, data locality, and
interfacing with databases and pre- and post-simulation tools.

Class 5: Problem solving communities

The emphasis here is not so much on the type of problem being solved, but on who is solving it. It
is important to keep the real context in mind. Focusing too much on a single user running a single
application is a mistake. Computational science is done by groups of scientists and engineers.
No simulation is done in isolation—many are part of an ensemble of simulations, and every
simulation builds on previous results and suggests future questions. This perspective suggests
the following requirements when thinking about middleware and grid computing environments:

• Management of grid communities. It should be easy to add or remove users from particular
grid communities, e.g., by controlling access to particular machines, codes, data sets.
Convenient mechanisms for authentication, authorization, and delegation are needed here,
including support for short-lived collaborations.

• Collaboration tools. Physically separated users must be able to communicate and share
resources, both synchronously and asynchronously. This is a very broad category and an
active research area in its own right, e.g., see [22, 2].

• Simulation management. This is another very broad category. Previous classes may need
assistance here as well. Tools are needed to coordinate simulations done by a group of
researchers, and to manage and exploit the results of previous simulations.

6



Class 6: Other stakeholders

This class includes machine owners, administrators, and maintainers of the grid infrastructure.
Requirements include the following:

• Control. Owners must be able to determine when cycles are offered to the grid, and to
whom.

• Management. Who bears the burden of adding a machine to the grid and taking it off
again? Who manages the grid? What kinds of management are required?

• Accounting. Monitoring grid use, accountability, e.g., identifying the largest users.

• Security. Grid applications must not compromise machines or data.

• Psychological and economic issues. There must be some motivation for a machine owner
to contribute a machine to the grid.

4 Research Issues and Approach

In this section we identify several current emphases in the Grid Computing Research Group at
Virginia Tech. We focus on computer science research issues rather than on the computational
science and engineering application areas that we support. Applications are crucial to our
success, however. Collaboration with grid users is a critical component of each research thrust
described in this section.

The field of grid computing is growing very rapidly. It is a significant challenge to keep up
with the pace of change and to work strategically, identifying projects that fit well with the
needs of Virginia Tech and with our own expertise and interests, and that leverage work being
done elsewhere. Hence, this list of issues will change frequently.

4.1 Architecture for Grid Computing Environments

Until recently, most of the research and development in grid computing has been on relatively
low-level tools and frameworks such as Globus. This bottom-up approach makes sense, since
without the basic set of grid and data services provided by these tools, we would not be able
to build higher-level tools and frameworks. Now however, with Globus rapidly becoming the
de facto standard for low-level grid services, and with increasing stability in Globus itself,
more attention is being paid to higher level issues. One of the research groups in the Global
Grid Forum is focused on grid computing environments (GCEs) [19]. Emerging tools include
frameworks [16, 28], toolkits [20, 45], and portals [26, 35].

Effective grid computing requires much more than raw computational power and low-level
grid services. Usability concerns dictate that high-level tools and environments are needed
to support large-scale computational science research. This recognition is fundamental to our
research agenda, and it is consistent with the approach taken in our work in Problem Solving
Environments (PSEs) [1, 38]. The PSE Research Group at Virginia Tech has for many years been
studying how to design and build PSEs for multidisciplinary grid communities. The emphasis of
this research has been on leveraging high-level problem-solving context to design architectures
and tools that scientists and engineers can use to build their own computing environments.

The type of virtual organization [15] we are targeting is the computational science research
group. In working with several such groups, we have identified three themes that are crucial to
effectively supporting this community (see Ramakrishnan et al. [40] for details):

• collaboration: computational science is virtually always done in groups.

• compositional modeling: building large computational models from many parts.

• context: computational science tools and environments must be aware of the specific
problem-solving context.

7



User Interface, Portals, Etc.

Model Management

Model Instance Management

Simulation Management

Computational and Data Grid Services

Computational and Data Grid

?

?

?

?

?

?

?

?

Figure 1: An architecture for data-centric computing environments for scientific grid communities.
Adapted from Ramakrishnan et al. [40].

The third theme, exploiting context, is perhaps the most critical in the case of grid computing. In
building grid computing environments, we believe there is a significant requirement for exploiting
the larger context of the particular scientific application. There is also great opportunity in
leveraging this context. The ‘context’ we refer to here should be understood in a very general
sense; it is defined by the activities of the problem-solving community. Consider these simple
examples: (1) a research group has been doing computational simulations for months, and a
database of previous results is used to improve the efficiency of current simulations or to avoid
computation if a desired result is already available; (2) a simulation is being run as part of
a higher-level problem-solving strategy, e.g., in an optimization loop or under the guidance
of a recommender system; (3) a performance database is used by a scheduler to assign grid
resources intelligently; (4) a scientific result depends on the completion of a large ensemble of
simulations, and scheduling and simulation management tools do sophisticated load balancing
given this information. A primary goal of our work is to design an architecture for grid computing
environments that exploits problem-solving context, broadly defined.

Figure 1 shows our high-level architecture for GCEs. This view is not a complete architecture
in the full sense of the word, e.g., with clearly defined interfaces between layers. Instead, it is a
design framework that factors out conceptually independent layers of abstraction corresponding
to different functions that must be represented in an effective GCE. The layers in Figure 1 are
based on three entities, defined as follows:

Model: A model is a directed graph of specific executable pieces defining the control-flow and
data-flow in a computation. Note that we distinguish between a model and its representa-
tion in a GCE; the representation might involve only the model’s name or it might involve
a more sophisticated representation of each node in the digraph. Although models consist
of ready-to-run pieces of code, these pieces may be parameterized.

Model Instance: A model instance is a model with all parameters specified. Note that some
parameters may not be specified until runtime. Thus, while there might not exist a static
conversion from models to model instances, the distinction between model instances and

8



models is still useful. For example, using two different input data sets with the same model
corresponds to two different model instances.

Simulation: A simulation is a model instance assigned to and run on a particular compu-
tational resource. It is useful to distinguish between a model instance and a simulation
because, for example, a single model instance can be run (and re-run) many times using
different computational resources or different random number sequences; each of these
would be a new simulation by our conventions.

Given these definitions, the framework summarized in Figure 1 can be used to organize the
functions which should be supported in a GCE for a computational science grid community. The
Model Management layer contains tools for creating and modifying models. The primary activity
in the Model Instance Management layer is parameter definition, which turns models into model
instances. The core service at the Simulation Management layer assigns model instances to grid
resources. The lowest two levels in Figure 1 correspond to software and hardware resources that
make computational grids possible.

Since our emphasis is on high-level, problem-specific issues, we have focused primarily on
the top four levels in Figure 1. For example, in our interaction with computational scientists
we find that we can make an important computation at the Model Instance Management level.
In the simplest case, users assign parameter values to a model and ask a simulation manage-
ment tool to execute the simulation. This level also includes tools for generating sets of model
instances, e.g., ensemble generators and parameter sweep tools [7, 8]. High-level problem solv-
ing strategies and activities belong at this level as well. For example, scripting languages are
used to ‘program’ model instance generation in the context of an outer optimization loop, or
adaptation and caching strategies are employed, e.g., adjusting algorithm parameters or using
a recently computed result as an initial guess for a subsequent computation. Another high-level
strategy found at this level is a ‘database query’ mode, where scientists describe sets of model
instances in an SQL-like language, and previously computed results are retrieved or new results
computed, as needed. Finally, model instance management includes tools that analyze or reason
about model instances. An emerging example is the use of recommender systems [24, 39] which
use data-mining strategies to select problem or algorithm parameters, based on a database of
previous results.

The Simulation Management level also includes a wide variety of activities. In the most
straightforward case, users define a simulation by selecting resources, and use grid and data
services to interact with those resources. Middleware such as Globus provides the tools needed to
perform these tasks, including authentication, staging, running, and retrieving of results. More
interesting possibilities for simulation management arise when we consider assigning compute
resources to sets of model instances. For example, better scheduling and load balancing strategies
are possible when we know more of the context (e.g., number of model instances, dependencies
between instances, and requirements of each) or when we have performance results from previous
simulations. More sophisticated modes of interacting with running simulations also belong at
this level, including collaborative monitoring and steering of simulations, fault tolerance, and
job migration. Also found at this level are services that allow interaction with a data grid, e.g.,
insertion, retrieval, and mining.

It is clear from even the brief discussion above that a wide variety of context-aware tools and
environments will be needed to support grid computing communities. The challenge will only
increase as grid computing gains in popularity among scientists outside the current generation of
grid ‘power users.’ Flexibility, usability, and extensibility will be of paramount concern. Building
vertically integrated, problem-specific environments from scratch for each problem-solving con-
text is not a good idea; it requires too much effort and results in complex and inflexible systems.
Hence, many research groups are working to define abstractions, architectures, and frameworks
that allow environments to be built out of simpler, pre-existing components. Projects such as
CCA [3], Harness [9], Cactus [6], and many others are making good progress in this direction.
These approaches rely on carefully defined interfaces, strictly enforced via object oriented tech-

9



nology. Such a strategy is certainly useful within each of the layers illustrated in Figure 1, e.g.,
in defining complicated models by composing simpler models. However, we believe a different
approach is needed in order to allow easy construction of GCEs spanning several of the layers
in Figure 1.

Our approach does not attempt to define precise interfaces and component models for each
layer of abstraction. Instead, we take a more flexible, data-centric view. By ‘data-centric’ we
mean that everything in the problem-solving context can be viewed as data. We are building
tools which treat as ‘data’ things such as a name (e.g., an executable, a machine, a user’s data
file), a model of a physical system, an ensemble of simulations, a binding between simulation
components, a load-distribution, or a set of performance results. Data can also include activities,
such as constructing a parameterized model, searching a database for previous results, running
a set of simulations. By taking this approach, we believe a wide variety of tools can be built
and combined to form flexible, powerful, context-aware GCEs.

4.2 Security

Secure access to distributed resources is another key issue for grid computing, and is an area that
has received considerable attention from the grid infrastructure community. We can leverage
this work in our context. However, the technology is still evolving, and there are contributions
that we can make, especially in the area of supporting the kinds of research groups that will be
the dominant users of the Virginia Tech campus grid.

We envision that much grid use will involve small, dynamic working groups for which the
ability to establish transient collaboration with little or no intervention from resource adminis-
trators is a key requirement. Current grid security mechanisms support individual users who are
members of well-defined virtual organizations. Recent research seeks to provide manageable grid
security services for self-regulating, stable communities. Our prior work with component-based
systems for grid computation [31] demonstrated a need to support spontaneous, limited, short-
lived collaborations. Such collaborations most often rely on shared or delegated fine-grained
access privileges to data and executable files as well as to grid compute resources. We are devel-
oping mechanisms that focus on management and enforcement of fine-grained access rights. Our
solution employs standard attribute certificates to bind rights to users (or their surrogates) and
enables high level management of fine-grained privileges, allowing them to be freely delegated,
traded, and combined. Our privilege management and enforcement mechanisms enable the us-
age of fine-grained rights, leverage other work in the grid computing and security communities,
reduce administrative costs to resource providers, enable ad-hoc collaboration through incre-
mental trust relationships, and can be used to provide improved security service to long-lived
communities.

4.3 Simulation Management

Many grid computing research issues fit in the general category of simulation management, which
includes everything needed to submit, monitor, and retrieve results from grid-based simulations.
Given our emphasis on exploiting the broad context of computational science problem solving,
we are also interested in managing and leveraging results from previous simulations, perhaps
run on different parts of the grid. Progress in this broad area is critical to the adoption of grid
computing as a viable option for high-end computational science; hence, much of our work will
be focused here. Our initial efforts are in the area of job submission tools, resource brokering,
and scheduling.

The architecture described in Section 4.1 allows for a variety of job submission tools to be
developed independent of lower-level details of a particular computational grid. For example,
we have built a simple tool that allows users to submit jobs to any resource using grid services
supplied by Globus [27]. However, the same tool can also be used to submit jobs to a non-Globus
resource, e.g., a Condor pool or a ‘private’ workstation. Users can use the tool directly through

10



a command-line interface or through a simple GUI, or the tool can be plugged into a more
complicated grid computing environment. For example, our core job submission facility is used
in prototypes of a parameter-sweep definition tool (which generates many simulations based on
a parameterized data file), and of a database query tool (where simulations are generated only
as needed, if results for the required cases are not already available in a database of previously
computed results).

The resource brokering problem is to select computational resources for a particular job,
based on the needs of that job and current availability of resources. Resources include computers
and networks, but might also include data files, executable codes, and special purpose devices.
In a grid environment, current availability is limited not only by traditional factors such as
machine load, but by distributed computing issues such as authorization and data locality.
Also, in a grid the potential list of resources can be enormous. What is needed is a flexible
framework for resource brokering in the context of grids. The matchmaking paradigm has been
a successful approach to the resource brokering problem for Condor [41]. We are investigating
generalizations of this approach that will work across a grid, and will allow secure, configurable,
and extensible matchmaking modules appropriate to a given grid context.

In addition to resource brokering, another aspect of scheduling that we are focused on is
sometimes called ‘co-scheduling.’ In the simplest case, it is the problem of acquiring enough
computers at the same time to run a single large parallel application. Classical scheduling
algorithms are based on mapping a task graph to a graph of resources (processors), and assume
complete information about the resource graph. Unfortunately, in a grid context there are many
practicalities that make classical approaches problematic. For example, different administrative
domains might not give complete information about their resource structure. Furthermore,
since scheduling is a combinatorial problem, scheduling decisions over a huge grid of resources
becomes unmanageable. We are designing an architecture by which distributed global scheduling
can be done in a scalable manner, while at the same time respecting administrative domains
and policies [37]. The scheduling framework is offered as a web service and does not require
modification of existing local schedulers.

4.4 Fault Tolerant Message Passing

Fault tolerant algorithms, implementations, and systems are critical to successful adoption of
large-scale grid computing. As jobs are scheduled across a diverse and widely scattered pool
of resources, the chances that those jobs will encounter a problem increases. This is especially
true for large parallel jobs. Imagine a single parallel job running on 200 machines at the
Math Emporium for one week—the chance that at least one of those machines goes down is
very high. For Class 2 (embarrassingly parallel) jobs, the usual approach to fault tolerance is
straightforward: if a single task fails to return for some predetermined time, assume it is lost
and resubmit somewhere else. However, for tightly-coupled parallel applications (Class 3), the
task is much harder. User-level checkpointing is one approach that has been used for many
years. This requires code modification, and also requires more simulation monitoring from the
user than is reasonable in a grid setting, e.g., ‘Which of my 150 simulations died and where was
it running when it did so?’ Removing this burden from the user is a high priority. However,
until now there has been no general, system-level solution to the checkpoint and restart problem
for MPI message-passing parallel codes. We are investigating a new approach to transparent
checkpointing that will allow restart and migration of MPI codes without user intervention. We
are collaborating with colleagues in the Computing Systems Research Lab who are developing
the Weaves programming framework. The approach relies on a user-level implementation of
TCP/IP and Weaves support for object-based composition of unmodified code modules. Note
that a system that supports checkpoint/restart/migrate as a strategy for handling faults can
also be used for handling poor performance. If a simulation is not making the kind of progress
we expect on some other available resource, it can be checkpointed and moved.

11



4.5 Algorithms

Effective algorithms are always critical to the success of any computing effort. Finding good
algorithms in the grid context is especially critical because of the large problem-sizes and sub-
stantial computing resources involved. The stakes are higher in the sense that the cost of using
a poor algorithm can be very large. The challenge of finding good algorithms is great too, since
grid applications may have to execute on a wide variety of machines. Our research agenda in
the area of algorithms consists of two main thrusts, one in latency-tolerant algorithms and the
other in software infrastructure for dynamic algorithm selection.

A parallel algorithm is latency-tolerant if it performs well even when the computation is
spread across a relatively wide area network. The most latency-tolerant algorithms typically
consist of many large independent computational steps and relatively few global communica-
tion steps. Embarrassingly parallel applications (Class 2) all fall into this category. Deriving
latency-tolerant algorithms for Class 3 and 4 applications is much more challenging, however.
For applications that require the numerical solution of partial differential equations (PDEs), we
have been studying one approach to hiding latency, namely ‘domain decomposition’ algorithms,
for many years [32, 33, 36]. Other application areas call for other approaches. But common
themes include carefully distributing data and work to multiple processors, overlapping commu-
nication with computation, and trading off computation for communication. We will continue
to investigate these strategies in the context of problems of interest to our computational science
colleagues at Virginia Tech.

The second broad area of our current focus in algorithms for grid computing is in the area
of dynamic algorithm and software selection. This is a higher-level issue than designing a single
efficient algorithm for a particular application on a particular compute platform. Instead, the
assumption is that there may be several algorithms and implementations to choose from for a
given computational step (e.g., solving a linear system of equations); we need to select a suitable
algorithm and implementation at run-time and seamlessly integrate it into the application code,
preferably with little or no intervention from the user. In a grid environment it is often impossible
at development time to know on what computing resource a particular code will run. In fact,
with load balancing and code migration schemes, a single simulation may move from machine to
machine during its lifetime. What is needed is a strategy and a software framework to support
run-time selection of algorithms and integration of codes into running simulations. The selection
can be based on problem and resource characteristics known only at run-time, and can leverage
scientific and performance results from previous runs using data-mining techniques. The goal is
performance portability across a wide range of grid resources.

4.6 Problem Specific Grid Computing Environments

Grid computing research is pointless unless it yields substantial new computational power for
users and enables new insight into science and engineering problems. Hence, we are committed
to working closely with applications researchers in all phases of our research. Our approach to an
architecture and middleware for building GCEs stresses modularity, separation of concerns, and
re-use. A primary goal of this strategy is to allow users to tailor their own environment to the
specifics of their problem-solving context. In order to motivate and test our work, it is important
to build several ‘end-to-end’ systems for particular user communities. This application-oriented
strategy has been a successful one in the PSE work at Virginia Tech [1] for many years, in
terms of funding, in progress in computer science research issues, and in enabling our science
and engineering colleagues to tackle larger and more complex problems.

Our closest collaborations thus far in the grid computing work have been with colleagues in
the Department of Physics and in the Virginia Bioinformatics Institute (VBI). We are building
tools and a grid computing environment to support the work of Massimiliano Di Ventra and
his research group in physics. Di Ventra’s group uses first-principles atomistic calculations to
predict the electronic, optical and transport properties of molecular electronics devices. The

12



computational requirements of this research effort are enormous, requiring hundreds or thou-
sands of simulations, each of which can require days of compute time on a small cluster. The
primary simulation code used by Di Ventra and colleagues is a typical Class 3 parallel ap-
plication. Bioinformatics is another source of large problems which can be attacked via grid
computing. We are working with Allan Dickerman and others at VBI to build GCEs for genomic
sequence analysis using widely-used tools such as BLAST (Basic Local Alignment Search Tool).
These applications mostly fall into Class 1 and 2; but there are very large data files involved,
so concerns of data locality and database interaction are very important. We are also working
with Pedro Mendes and his group at VBI. Mendes’ research is in the simulation and analysis
of biochemical networks. Applications of Class 1, 2, and 3 are all of interest to this group,
which makes it a particularly interesting motivating example for scheduling and load-balancing
middleware. We are currently designing a grid-based version of the COPASI [34] system for
modeling biochemical pathways.

5 Conclusions and Next Steps

Developing a usable computational grid for Virginia Tech is an attractive project from many
perspectives. It leverages distinctive strengths of the university context, including a multi-
tude of distributed compute resources, high networking capacity, and sophisticated users. The
project can help meet the research computing needs of many of the most demanding users. And
from our perspective, grid computing generates a host of interesting computer science research
questions—from networking to security to algorithms to user interfaces. By deploying a grid
and demonstrating that it is effective for real applications, our research group will gain valuable
experience and exposure in the grid computing community.

In the near term, our emphasis will be on expanding the set of machines, users and applica-
tions for the campus grid. Identifying users from Classes 4 and 5 will be especially important in
terms of motivating future research. Collaborations with external partners (e.g., nearby univer-
sities and government labs) should also be pursued. Eventually, leadership and administration
for grid computing should transition from our research group to university support. Our re-
search group will continue to provide leadership on campus through presentations, workshops,
and other collaborations as well.

Acknowledgments

This work was supported in part by the Virginia Commonwealth Information Security Center
and by Virginia Tech Information Systems and Computing. The authors also thank Prachi
Bora, Jeevak Kasarkod, Mrinmayee Kulkarni, Sandeep Prabhakar, and Satish Tadepalli for
their contributions.

References

[1] M. Abrams, D. Allison, D. Kafura, C. Ribbens, M. B. Rosson, C. Shaffer, and L. T.
Watson. PSE research at Virginia Tech: An overview. Technical Report 98–21, Department
of Computer Science, Virginia Polytechnic Institute & State University, Blacksburg, VA,
1998.

[2] D. A. Agarwal, S. R. Sachs, and W. E. Johnston. The reality of collaboratories. Computer
Physics Communications, 110:134–141, 1998.

[3] R. Armstrong, D. Gannon, A. Geist, K. Keahey, S. Kohn, L. McInnes, S. Parker, and
B. Smolinski. Toward a common component architecture for high-performance scientific
computing. In Proceedings of the 8th IEEE International Symposium on High Performance
Distributed Computation. IEEE, 1999.

13



[4] T. Beisel, E. Gabriel, and M. Resch. An extension to MPI for distributed computing on
MPPs. In Marian Bubak, Jack Dongarra, and Jerzy Wasniewskii, editors, Recent Advances
in Parallel Virtual Machine and Message Passing Interface, pages 75–83. Springer, 1997.

[5] R. Buyya, K. Branson, J. Giddy, and D. Abramson. The virtual laboratory: Enabling
molecular modeling for drug design on the world wide grid. Concurrency and Computation:
Practice and Experience, 2003. to appear.

[6] Cactus Project. www.cactuscode.org.

[7] H. Casanova, G. Obertelli, F. Berman, and R. Wolski. The AppLes parameter sweep
template: User-level middleware for the grid. In Proceedings of SC2000, 2000.

[8] A. DeVivo, M. Yarrow, and K. McCann. A comparison of parameter study creation and
job submission tools. Technical Report NAS-01-002, NASA Ames Research Center, Moffett
Field, CA, 2001.

[9] J. Dongarra, G. E. Fagg, A. Geist, J. A. Kohl, P. M. Papadopoulos, S. L. Scott, V. S. Sun-
deram, and M. Magliardi. HARNESS: Heterogeneous adaptable reconfigurable networked
systems. In Proceedings of HPDC 1998, pages 358–359, 1998.

[10] D. H. J. Epema, M. Livny, R. van Dantzig, X. Evers, and J. Pruyne. A worldwide flock of
condors: Load sharing among workstation clusters. Future Generation Computer Systems,
12:53–65, 1996.

[11] T. Epperly, S. Kohn, and G. Kumfert. Component technology for high-performance sci-
entific simulation software. In Proceedings of the Working Conference on Software Archi-
tectures for Scientific Computing Applications, Ottowa, Ontario, Canada, October 2000.
International Federation for Information Processing.

[12] I. Foster and N. Karonis. A grid-enabled MPI: Message passing in heterogeneous distributed
computing systems. In SC’98 Proceedings, New York, NY, 1998. ACM Press.

[13] I. Foster and C. Kesselman. Globus: A metacomputing infrastructure toolkit. Intl. Journal
of Supercomputer Applications, 11:115–128, 1997.

[14] I. Foster and C. Kesselman, editors. The Grid: Blueprint for a New Computing Infrastruc-
ture. Morgan Kaufmann, Orlando, FL, 1999.

[15] I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the grid: Enabling scalable virtual
organizations. Int. J. Supercomputer Appl., 15(3):200–222, 2001.

[16] D. Gannon and A. Grimshaw. Object-based approaches. In I. Foster and C. Kesselman,
editors, The Grid: Blueprint for a New Computing Infrastructure, pages 205–236. Morgan
Kaufmann, Orlando, FL, 1999.

[17] Global Grid Forum. www.gridforum.org.

[18] Globus Project. www.globus.org.

[19] Grid Computing Environments Reseach Group (GGF). www.computingportals.org.

[20] Grid Portal Development Kit. doesciencegrid.org/projects/GPDK.

[21] W. Gropp, E. Lusk, and A. Skjellum. Using MPI. MIT Press, Cambridge, MA, second
edition, 1999.

[22] J. Grudin. Computer-supported cooperative work. CACM, 32:30–34, 1991.

[23] Hewlett-Packard Grid Computing. www.hp.com/techservers/grid.

[24] E. Houstis, A. Catlin, J. R. Rice, V. S. Verykios, N. Ramakrishnan, and C. E. Houstis.
PYTHIA-II: A knowledge/database system for managing performance data and recom-
mending scientific software. ACM Transactions on Mathematical Software, 26:227–253,
2000.

[25] IBM Grid Computing. www-1.ibm.com/grid.

14



[26] IPG Launch Pad. portal.ipg.nasa.gov.

[27] A. Karnik and C. J. Ribbens. Data and activity representation for grid computing. Techni-
cal Report 02-13, Department of Computer Science, Virginia Polytechnic Institute & State
University, Blacksburg, VA, 2002.

[28] K. Kennedy, M. Mazina, J. Mellor-Crummey, K. Cooper, L. Torczon, F. Berman, A. Chien,
H. Dail, O. Sievert, D. Angulo, I. Foster, D. Gannon, L. Johnsson, C. Kesselman, R. Aydt,
D. Reed, J. Dongarra, S. Vadhiyar, and R. Wolski. Toward a framework for preparing
and executing adaptive grid programs. In Proceedings of NSF Next Generation Systems
Program Workshop (International Parallel and Distributed Processing Symposium 2002),
Fort Lauderdale, FL, April 2002, 2002.

[29] Legion Project. legion.virginia.edu.

[30] M. Litzkow, M. Livny, and M. Mutka. Condor—a hunter of idle workstations. In Proceedings
of the 8th International Conference on Distributed Computing Systems, pages 104–111, Los
Alamitos, CA, 1988. IEEE Computer Society Press.

[31] M. Lorch and D. Kafura. Symphony—a Java-based composition and manipulation frame-
work for computational grids. In Proceedings of the 2nd IEEE/ACM International Sympo-
sium on Cluster Computing and the Grid, pages 21–24, Berlin, 2002.

[32] G. Mateescu and C. J. Ribbens. An iterative substructuring preconditioner for collocation
with hermite bicubics. In C.-H. Lai, P. E. Bjorstad, M. Cross, and O. Widlund, editors,
Proceedings of the Eleventh International Conference on Domain Decomposition Methods,
pages 73–81, Bergen, 1999. DDM.org.

[33] G. Mateescu, C. J. Ribbens, and L. T. Watson. A domain decomposition algorithm for
hermite collocation problems. Num. Meth. PDEs, 2003. to apear.

[34] P. Mendes. Biochemistry by numbers: simulation of biochemical pathways with Gepasi 3.
Trends Biochem. Sci., 22:361–363, 1997.

[35] NPACI HotPage. hotpage.npaci.edu.

[36] G. G. Pitts, C. J. Ribbens, and L. T. Watson. Domain decomposition and high order
finite differences for elliptic PDEs. In Parallel Processing for Scientific Computing, pages
727–731, Philadelphia, PA, 1993. SIAM.

[37] S. Prabhakar, C. Ribbens, and P. Bora. Multifaceted web services: An approach to secure
and scalable grid scheduling. Technical Report 02–26, Department of Computer Science,
Virginia Polytechnic Institute & State University, Blacksburg, VA, 2002.

[38] PSE research group. research.cs.vt.edu/pse.

[39] N. Ramakrishnan and C. J. Ribbens. Mining and visualizing recommendation spaces for
elliptic PDEs with continuous attributes. ACM Trans. Math. Softw., 26:254–273, 2000.

[40] N. Ramakrishnan, L. T. Watson, D. G. Kafura, C. J. Ribbens, and C. A. Shaffer. Program-
ming environments for multidisciplinary grid communities. Concurrency and Computation:
Practice and Experience, 2003. to appear.

[41] R. Raman, M. Livny, and M. H. Solomon. Matchmaking: an extensible framework for
distributed resource management. Cluster Computing, 2:129–138, 1999.

[42] SETI@home Project. setiathome.ssl.berkeley.edu.

[43] R. D. Silverman. Massively distributed computing and factoring large integers. Commu-
nications of the ACM, 34:95–103, 1991.

[44] Sun Grid Technology. www.sun.com/grid.

[45] G. von Laszewski, I. Foster, J. Gawor, W. Smith, and S. Tuecke. CoG kits: A bridge
between commodity distributed computing and high-performance grids. In ACM Java
Grande 2000 Conference, pages 97–106, San Francisco, CA, 2000.

15


