
From Cluster to Grid: A Case Study in Scaling-Up a Molecular

Electronics Simulation Code

Calvin Ribbens∗ Prachi Bora∗ Massimiliano Di Ventra† Joshua Hauck∗

Sandeep Prabhakar∗ Christopher Taylor∗

Abstract

This paper describes an ongoing project whose goal
is to significantly improve the performance and ap-
plicability of a molecular electronics simulation code.
The specific goals are to (1) increase computational
performance on the simulation problems currently
being solved by our physics collaborators; (2) al-
low much larger problems to be solved in reasonable
time; and (3) expand the set of resources available
to the code, from a single homogeneous cluster to a
campus-wide computational grid, while maintaining
acceptable performance across this larger set of re-
sources. We describe the sequential performance of
the code, the performance of two parallel versions,
and the benefits of problem-specific load balancing
strategies. The grid context motivates the need for
runtime algorithm selection; we present a component-
based software framework that makes this possible.

1 Introduction

Scalability is a central concern of high performance
computing (HPC). Without scalable hardware, soft-
ware systems, algorithms, and implementations, the
potential of HPC to help solve large-scale computa-
tional science problems is not fulfilled. While many
technical definitions and measures of scalability are
possible, our applications collaborators simply want
an answer to the question “Can I effectively use more
resources to solve proportionally larger problems?”.
The goal of computer scientists working in HPC is to
answer that question in the affirmative, and to make
it happen in a way that is as transparent as possible
to the scientist.

Our goal in this paper is to describe several stages
in a two-year effort to significantly scale-up the per-

∗Department of Computer Science, Virginia Tech, Blacks-
burg, VA 24061. Corresponding author: ribbens@vt.edu.
†Department of Physics, Virginia Tech, Blacksburg, VA

24061.

formance and applicability of a large-scale compu-
tational science code. It is well-known in the HPC
community that achieving good scalable performance
on hundreds or thousands of processors is rarely a
trivial process. It is made more difficult in our con-
text because our ultimate goal is to run the applica-
tion across a computational grid [11, 22] consisting of
multiple clusters, shared-memory parallel machines
(SMPs), and high-end workstations. Hence, after de-
scribing in Section 4 two parallel versions of the code
designed for homogeneous clusters, we concentrate in
Sections 5 and 6 on issues motivated primarily by het-
erogeneous platforms, namely application-aware load
balancing and run-time algorithm selection. We turn
first, however, to an introduction of the application
code and its computational requirements in Section 2,
and then describe its sequential performance in Sec-
tion 3.

2 The application

The transport code is used by faculty and students
of the Physics Department at Virginia Tech (VT) to
study the physical properties of nanoscale electronics
devices. Originally written by N. D. Lang (IBM, T.J.
Watson), transport has been modified and extended
by Massimiliano Di Ventra (VT, Physics) to model
several new physical phenomena. The code uses first-
principles approaches to calculate non-linear trans-
port properties of molecular structures [6, 9, 8, 5, 7].
Molecular electronics has received tremendous atten-
tion recently as an approach to further miniaturiza-
tion in device design [20]. Di Ventra’s research seeks
to understand and predict phenomena that are ob-
served by experimentalists in the field. For example,
Di Ventra was the first to account for the nonlinear
current-voltage characteristics of phenyl molecules
observed experimentally by Reed et al. [21]. He also
elucidated the importance of contact geometry and
chemistry in modulating the current in these systems
and explained that the unusual switching effects ob-

1

Table 1: Problem parameters and memory require-
ments (in Gb).

Nx Ny Nz Nmat Mest
4 4 8 1377 0.17
5 5 10 2541 0.58
6 6 12 4225 1.60
7 7 14 6525 3.81
8 8 16 9537 8.13
9 9 18 13357 15.95

10 10 20 18081 29.23

served in certain organic molecules [3] might be due
to the electronic coupling to low-energy bosons.

A typical numerical experiment enabled by
transport is the computation of the ‘I-V character-
istic’ curve shown in Figure 1. Note that transport
must be run 100’s or 1000’s of times for one of these
experiments. The cost of each run is dominated by
the solution of many large nonsymmetric systems of
linear algebraic equations—one or two for each energy
level (loop 6 in Figure 1). Each discretized Lippman-
Schwinger equation is actually a matrix equation, i.e.,
there are multiple right hand sides for each matrix.
Typical values are 32 to 128 energy levels and 64 to
256 right hand sides per energy level. In Figure 2 we
give a more detailed description of loop 6, the loop
over energy levels. This pseudocode omits many de-
tails, but it is based directly on the code and helps
to identify the computational bottlenecks.

The problem parameters that drive the computa-
tional cost of a run of transport are the number of
energy levels Ne (n e in Figure 2) and the number
of plane waves in each direction (Nx, Ny, Nz). Typi-
cal values for Ne are between 32 and 128. Typical
values of (Nx, Ny, Nz) are shown in Table 1. For
all experiments reported in this paper, Ne is fixed
at 32. Thus, problem size for these results is com-
pletely determined by the number of plane waves;
we use the simple notation (Nx, Ny, Nz) to indicate
‘problem size’ throughout. Table 1 also shows Nmat,
the (one-dimensional) size of the linear systems that
are solved for a given problem instance; and Mest =
6 ∗ 16 ∗ N 2

mat, an estimate of the total amount of
memory required. The memory estimate is based on
the need for six Nmat×Nmat double complex arrays,
a requirement that dominates the overall memory re-
quirements of the code. Note that the matrix size is
given by Nmat = (2∗Nx+1)∗(2∗Ny+1)∗(2∗Nz+1),
and that the matrices in transport are essentially

dense and so are stored as two-dimensional arrays.
Clearly, the memory and computational requirements
of transport are substantial. We profile the perfor-
mance of the code more carefully in the next section.

All experimental results were run on the Anan-
tham cluster located in Virginia Tech’s Laboratory
for Advanced Scientific Computing and Applications
(LASCA). Each of the 200 compute nodes of Anan-
tham is a 1.0 GHz AMD Athlon running Linux, with
1 GB of memory. The nodes of the cluster are inter-
connected by a 2.56 Gb/s Myrinet network.

We began this project with a version of transport
that had been parallelized in a straightforward way
for execution in a distributed memory, message pass-
ing environment. This version of the code parallelizes
only the energy loop (line 6 in Figure 1). The com-
putation associated with a single energy level must
fit on a single compute node. On Anantham, this
means that problem sizes larger than (5, 5, 10) will
not fit in main memory (see Table 1). Furthermore,
scalability is limited by this strategy since there are
no more than Ne tasks that can run in parallel. With
32 ≤ Ne ≤ 128, this is a significant limit on scala-
bility. In Section 4.1 we describe a second parallel
version of transport which can use more processors,
motivated both by memory constraints and parallel
scalability issues.

3 Sequential performance

Importance of fast BLAS

Like many scientific applications, transport’s run
time is dominated by a few simple linear algebra op-
erations. For many years the scientific computing
community has relied on efficient implementations of
the Basic Linear Algebra Subprograms (BLAS) [14]
to achieve high performance on a variety of archi-
tectures. Since transport uses BLAS functions, an
efficient implementation of these kernels makes a sub-
stantial difference in performance. We used the AT-
LAS [23] implementation of the BLAS for our ex-
periments (ATLAS version 3.2.1). The improvement
over the reference (FORTRAN) implementation of
the BLAS is significant. For example, for problem
size (3, 3, 6) the time for a 2-iteration test case is re-
duced from 3507 seconds to 1618 seconds when AT-
LAS is used instead of the reference implementation,
an improvement of a factor of 2.17. For a (4, 4, 8) test
case the improvement is even greater: from 28468 sec-
onds to 8764 seconds, a factor of 3.25. The benefit of
fast BLAS is greater for larger problem sizes because

2

- 6

- 4

- 2

0

2

4

6

0

0 . 5

1

1 . 5

2

- 4 - 2 0 2 4

C
ur

re
nt

 (

 A
)

C
on

du
ct

an
ce

 (

 S
)

Voltage (V)

µ

µ

1. foreach bias level
2. foreach molecule configuration
3. initialize potential
4. while force not converged
5. while density not converged
6. foreach energy level
7. setup Lippman-Schwinger equation
8. solve for new wave functions
9. endfor
10. compute new density
11. compute new potential
12. check for convergence in density
13. endwhile
14. compute new force
15. check for convergence in force
16. endwhile
17. endfor
18.endfor

Figure 1: Top left: experimental I-V characteristic of benzene-1,4-dithiolate molecules between bulk elec-
trodes measured by Reed et al. [21]. Bottom left: theoretical I-V curve [9]. Right: algorithm used to compute
the theoretical curve. Ten or more bias levels are required (loop 1); for each bias 100 or more molecular
configurations may be needed (loop 2). Steps 3-16 correspond to one run of transport. Parallelism can be
exploited trivially at loops 1 and 2, and with more effort at loop 6 and within steps 7-8.

for ie = 1 to n_e /* typical value of n_e is 32 or 128 */

for idirec = 1 to id /* id is 1 or 2 */
call store_ggz /* compute/restore Green’s function matrices */

call zgemm /* matrix-matrix multiply */

call zgetrf /* LU factorization */

for ikapax = 1 to nkapax /* nkapax varies from 8 to 32 */

for iphi = 1 to nphi /* nphi is always 8 */
call zgetrs /* triangular solve */

endfor

endfor

endfor

endfor

Figure 2: Important steps in the main loop over energy levels (steps 6-9 in Figure 1).

3

a greater percentage of the overall computing time is
spent in BLAS calls as problem size grows. For the
remainder of this paper, all results use the ATLAS
BLAS.

Profiling the code

Recall from the pseudocode in Figures 1 and 2 that
the algorithm implemented in transport is basically
an outer iteration toward convergence in force and
density, with each iteration dominated by a loop over
Ne energy levels. In the initial parallel implemen-
tation of transport, only the energy loop is paral-
lelized, i.e., loop 6 in Figure 1, expanded in Figure 2.
To evaluate parallel performance, it is useful to de-
termine which sections of the code dominate the se-
quential performance. Table 2 gives timing results
for three test problems, each run for two iterations of
the outer loop (loop 5 in Figure 1). The table gives
time and percent of the total time for various phases
of the computation.

Note first that the initialization time is negligible
compared to the time spent in the main iteration; this
is especially true as problem size grows and when we
recall that a typical computation may run for 10 or
20 iterations rather than just two. Within the itera-
tion, the time spent in the energy loop is increasingly
dominant as problem size grows. (The time reported
for the ‘Energy Loop’ is a subset of the ‘Iteration’
time; and the time reported as ‘Linear Algebra’ is
in turn a subset of the ‘Energy Loop’ time.) How-
ever, we already see a hint of scalability limitations in
the current implementation. For example, for prob-
lem size (5,5,10), 3.7% of the iteration time is not
in the parallelized energy loop; so by Amdahl’s Law,
we know we will never see parallel speedup of more
than about 25 on this problem with this parallel im-
plementation. Finally, the time reported as ‘Linear
Algebra’ includes only the calls to the BLAS (zgemm)
and LAPACK [1] (zgetrf and zgetrs) routines (see
Figure 2). We total these separately because there
are parallel implementations of these codes which can
be used to increase the scalability of transport. No-
tice that the Linear Algebra time is substantial, and
growing with problem size; but there is considerable
work being done outside these calls as well.

4 Parallel performance

We now turn to the performance of the initial parallel
version of transport. Figure 3 shows fixed problem-
size parallel speedup for problem sizes (3, 3, 6) and

(4, 4, 8). We show results for both a statically sched-
uled and a dynamically scheduled version of the code.
The scheduling strategy refers to how the energy lev-
els are distributed to processors. There are 32 en-
ergy levels for all of the test problems used in this
paper. In the statically scheduled version, each pro-
cessor gets approximately the same number of en-
ergy levels. The dynamically scheduled version uses
a ‘master/worker’ paradigm, where energy levels are
assigned to processors one at a time. In the current
implementation, one processor serves as the master
and does none of the work corresponding to an energy
level. The ‘Number of Processors’ shown in Figure 3
actually corresponds to the number of ‘workers’; one
additional processor was used in the role of ‘master.’

As can be seen from Figure 3, dynamic schedul-
ing is clearly better, both in terms of speedup and
in terms of efficiently using any number processors.
This result is not surprising since different energy lev-
els require different amounts of computation. For ex-
ample, in Figure 4 we see that the relative cost of
a single energy level computation can vary by more
than a factor of 3. Since there are only 32 energy lev-
els, we can also see that using more than 16 worker
processes is not likely to be helpful; as long as at least
one worker is assigned 2 energy levels, that worker is
likely to be the bottleneck. With 32 workers we can
assign only one energy level to each worker; but Fig-
ure 4 shows that this case corresponds to considerable
processor idle time as well. Although not shown in
Figure 3, we did run problem size (4, 4, 8) with 32
worker processors, achieving a speedup of only 8.8;
this is very small improvement over the speedup of
7.6 achieved with 16 workers.

With 16 or fewer workers the dynamic scheduling
strategy yields a fairly balanced workload. For ex-
ample, with problem size (4, 4, 8) and 8 workers, the
load balance factor (lbf) is only 1.03, where

lbf =
time for most loaded processor

average time for all processors
.

With 12 and 16 workers, the corresponding lbf val-
ues are 1.11 and 1.07, respectively—quite acceptable
considering the large granularity of the tasks being
assigned. Finally, we note that any load balancing
problems are relative to the number of energy levels
and the number of worker nodes, i.e., as the number
of energy levels grows with respect to the number of
workers, the load balancing problems are reduced.

In terms of parallel speedup, the peak performance
shown in Figure 3 is only a speedup of 7.6 on 16 pro-
cessors. Even with a larger problem size ((5, 5, 10),

4

Table 2: Sequential performance of transport: time in seconds for three test problems.

(3,3,6) (4,4,8) (5,5,10)
Phase Time Percent Time Percent Time Percent
Initialization 38 2.4 84 1.0 157 0.4
Iteration (2 iters) 1547 97.6 8576 99.0 37361 99.6
Energy Loop 1305 82.3 8072 93.2 36143 96.3
Linear Algebra 704 44.4 5359 61.9 26839 71.5
Total 1585 100.0 8660 100.0 37518 100.0

1

2

3

4

5

6

7

8

0 2 4 6 8 10 12 14 16

S
pe

ed
up

Number of Processors

Parallel Speedup for Problem Sizes (3,3,6) and (4,4,8)

(3,3,6) Static
(3,3,6) Dynamic

(4,4,8) Static
(4,4,8) Dynamic

Figure 3: Fixed problem-size parallel speedup.

5

40

60

80

100

120

140

160

180

200

0 5 10 15 20 25 30

T
im

e

Energy Level

Time per Energy Level

Figure 4: Time (in seconds) for various energy levels, for problem size (4,4,8), first iteration.

not shown in Figure 3), the best observed speedup
was 11.3 with 32 worker processors. These less-than-
ideal results are not surprising considering the size of
the remaining sequential portion of the code and the
load imbalance issues just discussed. The remaining
sequential portion of the code is the primary culprit.
For example, on problem size (4,4,8) with 16 worker
processes, of the 1150 seconds total wallclock time
required to complete the computation, 591 seconds
are spent in purely sequential (redundant) work—
86 seconds in the Initialization phase and 505 in the
sequential portions of the main iteration. In fact,
the parallel speedup of the energy loop is relatively
good— from 8072 seconds with 1 worker down to 559
with 16 workers, a speedup of 14.4. Only some rel-
atively minor load imbalance causes this speedup in
the energy loop to be less than a perfect 16.0. This
load imbalance cannot be avoided unless the paral-
lel algorithm is changed. We have not given much
attention to the remaining sequential portion of the
mani iteration because its relative importance shrinks
as problem size grows; fortunately, it will parallelize
straightforwardly.

4.1 A more scalable implementation

In order to scale up in both problem size and num-
ber of processors, we must exploit parallelism at more
than one level in transport. This is also necessary

in order to investigate new scientific questions, which
require larger problem sizes, e.g., (10,10,20) plane
waves. In either case—using more processors effi-
ciently on current problem sizes, or handling larger
problem sizes—it is necessary to exploit parallelism
within an energy level computation as well as between
energy levels. This involves distributing the largest
data structures and the work associated with them
across multiple processors. We focus on the ‘Linear
Algebra’ portion of the energy loop because it increas-
ingly dominates as problem size grows. This modifi-
cation uses distributed memory parallel implementa-
tions of BLAS and LAPACK, namely PBLAS [4] and
ScaLAPACK [2], respectively. We note that in set-
ting up the matrix problems to reflect ScaLAPACK’s
preferred data decomposition, the overhead of calls
to utility functions at inner loops can be a serious
bottleneck; careful by-hand optimization was needed
to avoid this overhead.

It is not the best strategy to spread a single energy
level computation across all P processors, for large
P . The dominant computations for a given energy
level are linear algebra operations on matrices on the
order of 104 × 104; this is not a large problem if dis-
tributed across 100’s of processors. Instead, we use
two levels of parallelism, assigning each energy level
to a small ‘team’ of processors, with each team work-
ing in parallel on the computations for that energy
level. (The question of team size is addressed in Sec-

6

Table 3: Performance of a single ScaLAPACK LU
factorization arising in transport, for various pro-
cessor grids. Matrix size is Nmat = 2541. ‘Spdup’ is
speedup relative to the one processor LAPACK case,
‘Rate’ is in millions of double complex floating point
operations per second.

Proc. Grid Time Spdup Rate Rate
Proc

LAPACK 44.8 — 244.1 244.1
1× 1 44.9 1.00 243.6 243.6
1× 2 29.6 1.51 369.5 184.8
1× 3 24.8 1.81 441.0 147.0
2× 2 14.5 3.09 754.3 188.6
1× 5 17.0 2.64 643.4 128.7
2× 3 11.6 3.86 942.9 157.1
1× 7 14.4 3.11 759.6 108.5
2× 4 10.0 4.48 1093.8 136.7
3× 3 8.7 5.15 1257.2 139.7

tion 5.) By keeping the team sizes relatively small,
we are able to achieve near peak speed for the linear
algebra portion of transport. For example, Table 3
shows the computational rate for a single LU factor-
ization step for problem size (5,5,10). Note that the
rate per processor degrades relatively slowly as the
number of processors increases, despite the relatively
small fixed problem size. Beyond nine processors,
performance tails of sharply.

5 Load balancing strategies

As noted in Section 4, our first parallel version of
transport achieves a reasonably balanced work de-
composition as long as the number of worker pro-
cesses is small relative to the number of energy levels
Ne. However, load balancing is not so straightfor-
ward for the second, more scalable, version of the
algorithm. The main question is how to choose the
number of teams Nt, given the total number of pro-
cessors P . (For now, we assume P is given and that
each team will be of the same size.) At one extreme,
setting Nt = 1 would achieve good load balance, but
often with a poor computational rate—especially for
large P—because each linear algebra problem would
be distributed across too many processors. In gen-
eral, computational rates for the dominant linear al-
gebra steps improve as Nt grows, i.e., as team size
shrinks; but there are two constraints which must be
enforced: (1) there must be enough aggregate mem-

ory in a team to handle a single energy level, and
(2) Nt must be relatively small compared to Ne to
avoid serious load imbalance. Heuristically, we set
Nt = min{P/kmin, Ne/2}, where kmin is the mini-
mum number of processors required to handle a sin-
gle energy level. The value of kmin can be computed
a priori, given the problem size (Nx, Ny, Nz) and the
amount of memory per processor.

Notice that even this simple load-balancing scheme
requires information from the application (Ne and
(Nx, Ny, Nz)) and the machine (memory size). In
fact, with a little more information from the appli-
cation we can improve the load balance further in
many cases, by replacing the dynamic master/worker
scheduling by a near-optimal static schedule. The
key point is that for this application and algorithm,
the amount of work needed to solve for a given en-
ergy level can be estimated very accurately, given
the problem parameters shown in Figure 2. Given
the cost of each energy level, an optimal assignment
of the Ne energy levels to Nt teams can easily be
derived. When Nt ≈ Ne/2, we realize an improve-
ment in running time of at least 10% on typical prob-
lems with optimal static scheduling rather than sim-
ple master/worker scheduling.

The assumption so far in this discussion of load bal-
ancing has been that the number of processors P is
given. A further assumption has been that we are
using a homogeneous computing platform, i.e., we
have assumed that workload should be proportional
to team size. Relaxing these assumptions is desirable
because it will allow users or schedulers to choose dif-
ferent values of P depending on various criteria; re-
laxing these assumptions is necessary if we are going
to scale up to a heterogeneous grid environment.

The key to scheduling and load-balancing across a
grid is performance prediction. We are designing a
performance prediction service (PPS) for transport.
The PPS will take as input problem parameters de-
scribing a particular energy level and a computing
resource proposed for that energy level, including
number of processors and machine and interconnec-
tion characteristics (taken from a list of known re-
sources on our campus grid). The PPS will return
an estimate of the running time of that energy level
on that resource. Our scheduling strategy [17] re-
quires that a single energy level be assigned to a sin-
gle tightly-coupled homogeneous resource—this sim-
plifies the performance prediction enormously, and
reflects the fact that there is considerably more com-
munication within a team than between teams. The
PPS derives performance estimates using a recom-

7

mender system which uses a data-mining approach
to infer patterns and relationships from a database
of previous performance results [12, 19]. In this way,
load-balancing and scheduling is application-aware
and resource-aware in a very broad sense: we lever-
age not only information from a single instance of an
application on a single resource, but potentially from
all past runs of that application on all the resources
of our grid.

6 Run-time algorithm selection

A second major issue we confront as we scale up
to grid-based computations is the need for run-time
algorithm selection. To motivate this requirement,
consider the example of linear solvers. It is well-
known that different algorithms and implementations
work best on different platforms, e.g., ScaLAPACK
for dense systems on distributed memory machines,
LAPACK on a sequential machine, perhaps SuperLU
on a shared-memory machine, and dozens of precon-
ditioned iterative solvers to choose from for sparse
systems on various architectures. Even if the appli-
cation knew the best solver to use on a given platform
(a research topic in its own right), there is a serious
software engineering obstacle to deploying the right
solver at the right time. It is unreasonable to ex-
pect the application writer to know about all pos-
sible solvers at development time. Maintaining dif-
ferent versions of the application for each platform
is also tedious, at best, and rules out the possibility
of choosing a solver based on run-time information,
e.g., matrix characteristics, team size, interconnec-
tion network, etc. A better solution is to allow selec-
tion of algorithms at run-time.

One approach to run-time algorithm selection is to
use shared libraries. When shared libraries are used,
the application must contain enough information to
find the library containing a given solver, and the li-
brary is loaded when the executable is invoked. Using
shared libraries we could load the solver we want at
runtime. However, this is not transparent to the ap-
plication since it needs to make explicit system calls,
like dlopen, to load appropriate libraries.

6.1 Babel: component technology for
scientific computing

A better approach to supporting run-time algorithm
selection takes advantage of the rapidly maturing
world of component frameworks. Code reuse using
component technologies has gained popularity in the

software industry. Technologies like CORBA and
COM [18] are being used on a large scale to develop
components for business applications. However, these
technologies do not address many of the specific needs
of scientific applications. For example, they do not
support complex numbers, do not have FORTRAN
style dynamic multi-dimensional arrays, do not have
a way to describe massively parallel distributed ob-
jects and are not optimized for function calls within
the same address space.

Babel is a component tool developed at the
Lawrence Livermore National Laboratory [10, 15]
which addresses these issues pertaining to scientific
applications. Babel provides a way to define and sup-
port interoperability between codes written in multi-
ple languages. The functionality provided by a com-
ponent is expressed using Babel’s Scientific Interface
Definition Language (SIDL). SIDL is similar to In-
terface Definition Language in COM and CORBA,
but is targeted at scientific applications. SIDL only
defines the interfaces and not their implementation.
The Babel compiler reads the SIDL definition and
generates glue code—stubs, skeletons, internal ob-
ject representation and implementation prototypes—
for each component. It is the responsibility of library
writers to fill in library specific code in the implemen-
tation prototypes. Application (client) programs can
then access components through standard interfaces.

6.2 The SolverBuilder abstraction

Babel supplies a useful tool for handling language in-
teroperability problems, and it gives us convenient
‘plug-and-play’ capabilities in that we can try dif-
ferent solvers on different resources and problem in-
stances. The straightforward approach is to define a
‘Solver’ interface and provide multiple implementa-
tions of that interface, one for each particular solver.
However, the application writer must still make deci-
sions at compile or link time about which particular
solver to instantiate, and where to find that library.
We want to make algorithm and software selection
much more dynamic and seamless from the point of
view of the application developer. A more powerful
abstraction is required. Following Kohn et al. [13],
we define an interface called ‘SolverBuilder’ to make
this possible (see Figure 5). A class implementing the
SolverBuilder interface is similar to a factory class in
CORBA [16]. A SolverBuilder class provides the ca-
pability for creating families of related objects. They
are used when the decision of which class to instan-
tiate must be made at run time and cannot be de-
termined during development. The SolverBuilder en-

8

capsulates the logic needed to decide which subclass
to instantiate. This is transparent to the application
because object selection is delegated to the Solver-
Builder.

The SolverBuilder abstraction can be used in
transport as follows (see Figure 5). First, we provide
various implementations of the Solver interface, e.g.,
one for LAPACK, one for ScaLAPACK, etc. When
a solver needs to be instantiated, the application
calls an implementation of the SolverBuilder interface
and sets a parameter indicating resource constraints.
Our simplest implementation of SolverBuilder just
chooses between LAPACK and ScaLAPACK depend-
ing on whether team size is greater than one or not.
The method GetSolver of SolverBuilder is called to
obtain a reference to the appropriate solver. This
method in turn looks at the parameter set (in this
case, ‘team-size’) and instantiates the corresponding
solver. The application then calls SetMatrix to ini-
tialize the matrix, and subsequently calls Solve on the
Solver object thus obtained. More powerful Solver-
Builders can be used to choose algorithms in more
complicated situations. For example, if the choice of
the solver is to be made based on the matrix (lin-
ear operator) characteristics, then the Setup method
of SolverBuilder would be called before obtaining a
reference to the Solver. The solver chosen by Solver-
Builder then would be a function of the matrix char-
acteristics.

7 Conclusions and future work

The paper illustrates the challenge inherent in achiev-
ing good performance with large-scale applications
on the grid. A wide variety of contributions were
used, including optimized low-level kernels, parallel
algorithms and data decomposition strategies, par-
allel mathematical software, application-aware and
resource-aware load-balancing schemes, and compo-
nent frameworks for runtime software selection. Sev-
eral of these contributions are quite problem-specific.
There is no substitute for knowing the application
and working with the physicist. Yet there are good
possibilities for general strategies and tools as well.

We are investigating a more general PPS tool which
uses a data-centric approach to make performance
predictions for a wide class of problems, based on re-
sults from many previous runs. The SolverBuilder
abstraction can also be generalized; we are investi-
gating its use in other applications where algorithms
and software for key problem-solving steps should be
selected at run-time, based on problem and resource

characteristics. Context-aware approaches such as
these will be required to achieve consistent, scalable
performance for large-scale grid-based scientific ap-
plications.

References

[1] E. Anderson, Z. Bai, C. Bischof, S. Black-
ford, J. Demmel, J. Dongarra, J. Du Croz,
A. Greenbaum, S. Hammarling, A. McKenney,
and D. Sorensen. LAPACK Users’ Guide. So-
ciety for Industrial and Applied Mathematics,
Philadelphia, PA, third edition, 1999.

[2] L. S. Blackford, J. Choi, A Cleary, E. D’Azevedo,
J. Demmel, I. Dhillon, J. Dongarra, S. Hammar-
ling, G. Henry, A. Petitet, K. Stanley, D. Walker,
and R. C. Whaley. ScaLAPACK Users’ Guide.
SIAM, Philadelphia, PA, 1997.

[3] J. Chen, M.A. Reed, A.M. Rawlett, and J.M.
Tour. Large on-off ratios and negative differen-
tial resistance in a molecular electronic device.
Science, 286:1550, 1999.

[4] J. Choi, J. Dongarra, S. Ostrouchov, A. Petitet,
D. Walker, and R. C. Whaley. A proposal for a
set of parallel basic linear algebra subprograms.
Technical Report CS-95-292, University of Ten-
nessee, 1995.

[5] M. Di Ventra, S-G. Kim, S.T. Pantelides, and
N.D. Lang. Temperature effects on the transport
properties of molecules. Phys. Rev. Lett., 86:288,
2001.

[6] M. Di Ventra and N.D. Lang. Transport in
nanoscale conductors from first principles. Phys.
Rev. B, 65:045402, 2002.

[7] M. Di Ventra and S.T. Pantelides. Hellmann-
feynman theorem and the definition of forces
in quantum time-dependent and transport prob-
lems. Phys. Rev B, 61:16207, 2000.

[8] M. Di Ventra, S.T. Pantelides, and N.D. Lang.
The benzene molecule as a resonant-tunneling
transistor. Appl. Phys. Lett., 76:3448, 2000.

[9] M. Di Ventra, S.T. Pantelides, and N.D. Lang.
First-principles calculation of transport proper-
ties of a molecular device. Phys. Rev. Lett.,
84:979, 2000.

9

Interface Solver

{

int SetMatrix(in Matrix A);
int Solve(in Vector b, inout Vector x);

}

Interface SolverBuilder

{
int SetParameterDouble(in string name, in double value);

int SetParameterInt(in string name, in int value);

int Setup(in Matrix A);

int GetSolver(out Solver S);

}

Figure 5: SIDL fragment representing SolverBuilder abstraction.

[10] T. Epperly, S. Kohn, and G. Kumfert. Com-
ponent technology for high-performance scien-
tific simulation software. In Proceedings of the
Working Conference on Software Architectures
for Scientific Computing Applications, Ottowa,
Ontario, Canada, October 2000. International
Federation for Information Processing.

[11] I. Foster and C. Kesselman, editors. The Grid:
Blueprint for a New Computing Infrastructure.
Morgan Kaufmann, Orlando, FL, 1999.

[12] E.N. Houstis, A.C. Catlin, J.R. Rice, V.S.
Verykios, N. Ramakrishnan, and C.E. Houstis.
PYTHIA-II: A Knowledge/Database System for
Managing Performance Data and Recommend-
ing Scientific Software. ACM Transactions on
Mathematical Software, Vol. 26(2):pages 227–
253, June 2000.

[13] S. Kohn, G. Kumfert, J. Painter, and
C. Ribbens. Divorcing language dependencies
from a scientific software library. In C. Koel-
bel and J. Meza, editors, Proceedings of the
Tenth SIAM Conference on Parallel Process-
ing for Scientific Computing, Philadelphia, PA,
2001. SIAM.

[14] C. L. Lawson, R. J. Hanson, D. R. Kincaid,
and F. T. Krogh. Basic linear algebra subpro-
grams for FORTRAN usage. ACM Trans. Math.
Softw., 5:308–323, 1979.

[15] LLNL components research group. See
www.llnl.gov/CASC/components.

[16] Object management group homepage.
http://www.omg.org/.

[17] S. Prabhakar, C. Ribbens, and P. Bora. Mul-
tifaceted web services: An approach to secure
and scalable grid scheduling. Technical Report
02–26, Department of Computer Science, Vir-
ginia Polytechnic Institute & State University,
Blacksburg, VA, 2002.

[18] J. Pritchard. COM and CORBA Side by Side.
Addison Wesley, Reading, MA, 1999.

[19] N. Ramakrishnan and C. J. Ribbens. Mining
and visualizing recommendation spaces for el-
liptic PDEs with continuous attributes. ACM
Trans. Math. Softw., 26:254–273, 2000.

[20] M.A. Reed and J.M. Tour. Computing with
molecules. Scientific American, 282(86):86–93,
June 2000.

[21] M.A. Reed, C. Zhou, C.J. Muller, T.P. Burgin,
and J.M. Tour. Conductance of a molecular
junction. Science, 278:252, 1997.

[22] VT grid research group. See re-
search.cs.vt.edu/lasca/grid.

[23] R. C. Whaley, A. Petitet, and J. Dongarra. Au-
tomated empirical optimization of software and
the ATLAS project. Technical Report CS-00-
448, University of Tennessee, Knoxville, TN,
2000.

10

