Performance of a Parallel Transport Code for Molecular Electronics
Simulations

Brent Metz* Justin Wienckowski* Calvin Ribbens* Massimiliano Di Ventral

February 4, 2002

Abstract

We describe the sequential and parallel performance of a nonlinear transport simulation
code. This code is used by researchers at Virginia Tech to investigate phenomena underlying
the emerging field of molecular electronics. The computational requirements of the code are
summarized, and an initial distributed-memory parallel implementation of the code is evaluated.
We conclude with several suggestions for improving the parallel performance and scalability of
the code.

1 Introduction

The purpose of the experiments reported here was to evaluate and improve the parallel perfor-
mance of a simulation code known as transport. This code is used by faculty and students
in the Physics Department at Virginia Tech to do research in molecular electronics. Originally
written by N. D. Lang (IBM, T.J. Watson), transport has been modified and extended by
Massimiliano Di Ventra (VT, Physics) to include several new physical phenomena in the model.
The goal of transport is to calculate non-linear transport properties of molecular structures
using first-principles approaches [5, 8, 7, 4, 6]. Molecular electronics has received tremendous
attention recently as an approach to further miniaturization in device design [14]. Experimental
confirmations of Di Ventra’s theoretical predictions have recently been reported by Schon et al.
(Lucent Technologies) in Nature [16]. This combined theoretical and experimental work has led
to the realization of a molecular transistor with promise for practical molecular electronics.

The transport code has been parallelized for distributed memory parallel machines, using
the MPT [12] library for message passing. A typical numerical experiment enabled by transport
is the computation of the ‘IV-characteristic’ curve shown in Figure 1 (bottom left). Note from
the pseudocode in Figure 1 that transport must be run 100’s or 1000’s of times for one of these
experiments. The cost of each run is dominated by the solution of many large nonsymmetric
systems of linear algebraic equations—one or two for each energy level (loop 6 in Figure 1). Each
discretized Lippman-Schwinger equation is actually a matrix equation, i.e., there are multiple
right hand sides for each matrix. Typical values for transport are 32 to 128 energy levels and
100 right hand sides per energy level. In Figure 2 we give a more detailed description of the
energy level loop. This version is abstracted directly from the code and will help us in identifying
where the computational bottlenecks are; it leaves out many details.

The problem parameters that drive the computational cost of a run of transport are the
number of energy levels N, (nevals in Figure 2), and the number of plane waves in each direction

*Department of Computer Science, Virginia Tech, Blacksburg, VA 24061. Corresponding author: ribbens@vt.edu.
TDepartment of Physics, Virginia Tech, Blacksburg, VA 24061.

Current (pA)

Current (p A)

Figure 1: Top left: experimental I-V characteristic of benzene-1,4-dithiolate molecules between bulk
electrodes measured by Reed et al. [15]. Bottom left: theoretical I-V curve [8]. Right: algorithm
used to compute the theoretical curve. Ten or more bias levels are required (loop 1); for each bias
100 or more molecular configurations may be needed (loop 2). Steps 3-16 correspond to one run of
the transport code. Parallelism can be exploited at loops 1, 2, and 6 and within steps 7-8.

0.05

01

Conductance (uS)

o
o h M O NN O

Conductance (u S)

Voltage (V)

1 to nevals

1 to id
call store_ggz
call zgemm
call zgetrf
for ikapax =

for ie
for idirec

1 to nkapax

for iphi = 1 to nphi
call zgetrs
endfor
endfor
endfor
endfor

/*
/%
/*
/%
/%
/%
/*
/%

1. foreach bias level

2. foreach molecule configuration

3. initialize potential

4. while force not converged

D. while density not converged

6. foreach energy level

7. setup Lippman-Schwinger equation
8. solve for new wave functions
9. endfor

10. compute new density

11. compute new potential

12. check for convergence in density
13. endwhile

14. compute new force

15. check for convergence in force

16. endwhile

17. endfor

18.endfor

typical value of nevals is 32 or 128 x/

id is 1 or 2 %/

compute/restore Green’s function matrices */

matrix-matrix multiply */

LU factorization */

nkapax varies from 8 to 32 x/
nphi is always 8 */
triangular solves */

Figure 2: Important steps in the main loop over energy levels.

Table 1: Problem parameters and memory requirements (in Gb).

Ny Ny N. Npat Megt
8 1377 0.17
10 2541 0.58
12 4225 1.60
14 6525 3.81
16 9537 8.13
18 13357 15.95
10 10 20 18081 29.23

© 00 J O Ot
© 00 g O Ot

(Nz, Ny, N.). Typical values for N, are between 32 and 128. Typical values of (N, Ny, N.)
are shown in Table 1. For all experiments reported below N, is fixed at 32. Thus, problem
size for these results is completely determined by the number of plane waves; we use the simple
notation (N, Ny, N.) to indicate ‘problem size’ throughout. Table 1 also shows Ny, the
(one-dimensional) size of the linear systems that are solved for a given problem instance; and
Megt, an estimate of the total amount of memory required. The memory estimate is based on
the following:

Megt = (6 large arrays) * (16 bytes per double complex) Nr2nat'

This estimate is a lower bound in that it only includes the six largest arrays, each of which is
of dimension Nyt X Nyjat, where Npjar = (2% Ny +1) % (2% Ny +1) % (2% N, +1). Note that
the matrices in transport are essentially dense and so are stored as two-dimensional arrays.

Clearly, the memory and computational requirements of transport are substantial. (We
profile the performance of the code more carefully in the next two sections.) All of our exper-
imental results were run on the Anantham cluster located in Virginia Tech’s Laboratory for
Advanced Scientific Computing and Applications (LASCA). Each of the 200 compute nodes
of Anantham is a 1.0 GHz AMD Athlon running Linux, with 1 GB of memory. The nodes
of the cluster are interconnected by a 2.56 Gb/s Myrinet network. With transport’s current
parallelization scheme, the computation associated with a single energy level must fit on a single
compute node. This means that problem sizes larger than (5,5, 10) will not fit in main memory.
Furthermore, scalability is limited by the current parallelization strategy since there are no more
than N, tasks that can run in parallel. With N, = 32 or at most 128, this is a significant limit
on scalability. In Section 4 we discuss some possibilities for using more processors, motivated
both by memory constraints and parallel scalability issues.

2 Sequential Performance

Importance of Fast BLAS

Like many scientific applications, transport’s run time is dominated by a few simple linear
algebra operations. For many years the scientific computing community has relied on efficient
implementations of the Basic Linear Algebra Subprograms (BLAS) [13, 10, 9] to achieve high
performance on a variety of architectures. Since the transport code uses BLAS functions, an
efficient implementation of these kernels makes a substantial difference in performance. We
used the ATLAS [17] implementation of the BLAS for our experiments (ATLAS version 3.2.1).
The improvement over the reference (Fortran) implementation of the BLAS is significant. For
example, for problem size (3, 3, 6) the time for a 2-iteration test case is reduced from 3507 seconds

Mflops/Sec

BLAS Performance

1400 T T T T T T T
ref dgemv —+— i i i i ‘
atlas dgemv ---x--- 1 1 1 1
ref dgemm ---x--- j j j j
1200 | atlas dgemm ---g--- . =
: : : : B Eh
3 3 CoE. mad
. . . E . .
: : o
1000 - BEEBE 7
B"'D "'B-EE!’E :
P 1
800 .
600 .

400 o
,“*‘ >*'%<*/>

200 bt

H N H H X
e T L s
0 | | | I | | I
8 16 32 64 128 256 512 1024 2048
Problem Size

Figure 3: Performance of ATLAS and reference implementation of two BLAS kernels.

to 1618 seconds when ATLAS is used instead of the reference implementation, an improvement
of a factor of 2.17. For a (4,4, 8) test case the improvement is even greater: from 28468 seconds
to 8764 seconds, a factor of 3.25. (The benefit of fast BLAS is greater for larger problem sizes
because a greater percentage of the overall computing time is spent in BLAS calls as problem
size grows.) For the remainder of this report, all results use the ATLAS BLAS.

Before turning to profiling the sequential performance of transport, we summarize the per-
formance of ATLAS BLAS compared to the reference implementation in Figure 3. Performance
for two standard BLAS kernels is shown—matrix-vector multiplication (dgemv) and matrix-
matrix multiplication (dgemm). The x-axis in Figure 3 gives the one-dimensional size of the
square matrices used in each test. The results are consistent with well-understood properties of
hierarchical memories. The advantages of block-oriented level-3 BLAS operations, which bene-
fit from favorable ‘computation-to-communication’ ratio, is obvious when one compares dgemm
performance to that of dgemv. We observe that both ATLAS implementations achieve relatively
stable performance as the problem size grows, with dgemm reaching an asymptotic limit of over
1 Gflop. The only exception is a small performance problem at n = 1024; cache mapping con-
flicts are the likely cause of this glitch. We also observe that the reference implementation of
dgemm performs reasonably well until about n = 175, at which point the performance degrades
substantially, to the point where it is no better than dgemv. Again, cache management is the
obvious culprit.

Table 2: Sequential performance of transport: time in seconds for three test problems.

(3,3,6) (4,4,8) (5,5,10)
Phase Time Percent | Time Percent | Time Percent
Initialization 38 2.4 84 1.0 157 0.4
Iteration (2 iters) | 1547 97.6 | 8576 99.0 | 37361 99.6
Energy Loop 1305 82.3 | 8072 93.2 | 36143 96.3
Linear Algebra 704 44.4 | 5359 61.9 | 26839 71.5
Total 1585 100.0 | 8660 100.0 | 37518 100.0

Profiling the Code

Recall from the pseudocode in Figures 1 and 2 that the algorithm implemented in transport
is basically an outer iteration (toward convergence in force and density), with each iteration
dominated by a loop over some number of energy levels. In the current parallel implementation
of transport, only the energy loop is parallelized, i.e., loop 6 in Figure 1, expanded in Figure 2.
To evaluate parallel performance, it is useful to determine which sections of the code dominate
the sequential performance. Table 2 gives timing results for three test problems, each run for
only two iterations. The table gives time (in seconds) and percent of the total time for various
phases of the computation. Note first that the initialization time is negligible compared to the
time spent in the main iteration; this is especially true as problem size grows and when we recall
that a typical computation may run for 10 or 20 iterations rather than just two. Within the
iteration, the time spent in the energy loop is increasingly dominant as problem size grows. (The
time reported for the ‘Energy Loop’ is a subset of the ‘Iteration’ time; and the time reported
as ‘Linear Algebra’ is in turn a subset of the ‘Energy Loop’ time.) However, we already see
a hint of scalability limitations in the current implementation. For example, for problem size
(5,5,10), almost 4% of the iteration time is not in the parallelized energy loop; so by Amdahl’s
Law, we know we will never see parallel speedup of more than about 25 on this problem with
this parallel implementation. Finally, the time reported as ‘Linear Algebra’ includes only the
calls to the BLAS (zgemm) and LAPACK [1] (zgetrf and zgetrs) routines (see Figure 2). We
total these separately because there are parallel implementations of these codes which we plan
to use in an attempt to increase the scalability of transport. Notice that the Linear Algebra
time is substantial, and growing with problem size; but there is considerable work being done
outside these calls as well.

3 Parallel Performance

We now turn to the parallel performance of transport. Figure 4 shows fixed problem-size
parallel speedup for problem sizes (3,3,6) and (4,4, 8) considered. We show results for both a
statically scheduled and a dynamically scheduled version of the code. The scheduling strategy
refers to how the energy levels are distributed to processors. There are 32 energy levels for all of
the test problems used in this report. In the statically scheduled version, each processor simply
gets the same number of energy levels (or close to the same number, depending on how evenly
the number of processors divides the number of energy levels). The dynamically scheduled
version uses a ‘master/worker’ paradigm, where energy levels are assigned to processors one
at a time. In the current implementation, one processor serves as the master and does none
of the work corresponding to an energy level. The ‘Number of Processors’ shown in Figure 4
actually corresponds to the number of ‘workers’; one additional processor was used in the role
of ‘master.’

Speedup

Parallel Speedup for Problem Sizes (3,3,6) and (4,4,8)

(3,3,6) Static
(3,3,6) Dynamic

(4,4,8) Static ---
(4,4,8) Dynamic -

T
[T—

Y S,
X---
T I

=
=
HKeonee D
e

6 8 10
Number of Processors

Figure 4: Parallel speedup.

12

14

16

Time per Energy Level
200 T T T T T T

180 - 1 1

160 - —Tr .

Time
[
N
o

T
1

100 - — .

80 - 1

60 - 1

40W ! L - s - !

0 5 10 15 20 25 30
Energy Level

Figure 5: Time (in seconds) for various energy levels, for problem size (4,4,8), first iteration.

As can be seen from Figure 4, dynamic scheduling is clearly better, both in terms of speedup
and in terms of efficiently using any number processors. This result is not surprising since
different energy levels require different amounts of computation. For example, in Figure 5 we
see that the relative cost of a single energy level computation can vary by more than a factor
of 3. Since there are only 32 energy levels, we can also see that using more than 16 worker
processes is not likely to be helpful; as long as at least one worker is assigned 2 energy levels,
that worker is likely to be the bottleneck. With 32 workers we can assign only one energy level
to each worker; but Figure 5 shows that this case corresponds to considerable processor idle
time as well. (Although not shown in Figure 4, we did run problem size (4,4, 8) with 32 worker
processors, achieving a speedup of only 8.8—very little improvement over the speedup of 7.6
achieved with 16 workers.) With 16 or fewer workers the dynamic scheduling strategy yields a
fairly balanced workload. For example, Figure 6 illustrates the load balance for 8 and 12 worker
processes. Clearly the 8-worker case is better; but even with 12 workers the load imbalance is
less than 20%—quite acceptable considering the large granularity of the tasks being assigned.
Finally, we make the obvious point that any load balancing problems are relative to the number
of energy levels and the number of worker nodes, i.e., as the number of energy levels grows with
respect to the number of workers, the load balancing problems are reduced.

In terms of parallel speedup, the peak performance shown in Figure 4 is only a speedup of
7.6 on 16 processors. Even with a larger problem size ((5,5,10), not shown in Figure 4), the
best observed speedup was 11.3 with 32 worker processors. These less-than-ideal results are
not surprising considering the size of the remaining sequential portion of the code and the load
imbalance issues just discussed. The remaining sequential portion of the code is the primary
culprit. For example, on problem size (4,4,8) with 16 worker processes, of the 1150 seconds total
wallclock time required to complete the computation, 591 seconds are spent in purely sequential
(redundant) work—86 seconds in the Initialization phase and 505 in the sequential portions of
the main iteration. In fact, the parallel speedup of the energy loop is relatively good— from 8072
seconds with 1 worker down to 559 with 16 workers, a speedup of 14.4. Only some relatively
minor load imbalance causes this speedup in the energy loop to be less than a perfect 16.0; and
this load imbalance cannot be avoided unless the parallel algorithm is changed.

600

500 1

) Il III |

300

100 b

200

100

400

350

300

250

200

150

50 b

Figure 6: Total work (time in seconds) assigned to each worker node during first iteration of problem
(4,4,8): 8 nodes (top), 12 nodes (bottom). Different shading represents different energy levels.

4 Future Directions

For current problem sizes the obvious next step is to attempt to parallelize the portion of the
main iteration that lies outside the energy loop. We have not seriously investigated this issue
yet. The only other thing that may be worth doing with respect to the current code is to
investigate whether a more sophisticated dynamic scheduling strategy would be useful. Since
the approximate cost of the computation associated with each energy level is known (either
a priori or from previous iterations), one could schedule the most expensive energy levels first
and the least expensive ones last, yielding a simple but nearly optimal dynamic load balancing
scheme for the energy loop.

In order to achieve more parallel scalability with transport our next step will be to exploit
parallelism at more levels. This will also be necessary in order to investigate new scientific
questions, since the physicists who use transport need to solve larger problems, e.g., with
(10,10,20) plane waves. In either case—using more processors efficiently on current problem
sizes, or handling larger problem sizes—it will be necessary to exploit parallelism within an
instance of the energy loop. This will involve distributing the largest data structures and the
work associated with them across a number of processors. The obvious starting point for the
‘Linear Algebra’ portion of the energy loop is the distributed memory implementations of BLAS
and LAPACK—PBLAS [3] and ScaLAPACK |[2], respectively. However, as can be seen from
Table 2, there is considerable additional work within the energy loop that will need to be
parallelized. Furthermore, it is probably not the best strategy to spread a single energy level
computation across all p processors, for large p. The dominant computations for a given energy
level are linear algebra operations on matrices on the order of 10* x 10%; this is not large when
spread across 100 or more processors. Instead, we will explore using two levels of parallelism—
assigning each energy level to a small ‘team’ of processors, with each team working in parallel
on the computations for that energy level. The team sizes should probably only be big enough
so that a single energy level fits in main memory when distributed across the team.

As problem sizes grow, we anticipate transport being an excellent motivating application
for research in grid computing [11]. The master/worker paradigm is a natural one in the com-
putational grid context, but challenging new issues will arise as we move from the comfort of
a homogeneous cluster like Anantham to the dynamic and heterogeneous world of a grid, e.g.,
cluster-to-cluster MPI, fault tolerance, and code migration.

Finally, there are several algorithmic ideas that we hope to pursue. These ideas include
adaptive selection of energy levels (rather than the equal-spaced energy levels currently used),
initial iterations using fewer plane waves, and iterative linear solvers (with all the consequent
opportunities for preconditioning strategies).

References

[1] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz,
A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen. LAPACK Users’ Guide.
Society for Industrial and Applied Mathematics, Philadelphia, PA, third edition, 1999.

[2] L. S. Blackford, J. Choi, A Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra,
S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C. Whaley. Scal A-
PACK Users’ Guide. STAM, Philadelphia, PA, 1997.

[3] J. Choi, J. Dongarra, S. Ostrouchov, A. Petitet, D. Walker, and R. C. Whaley. A pro-
posal for a set of parallel basic linear algebra subprograms. Technical Report CS-95-292,
University of Tennessee, 1995.

[4] M. Di Ventra, S-G. Kim, S.T. Pantelides, and N.D. Lang. Temperature effects on the
transport properties of molecules. Phys. Rev. Lett., 86:288, 2001.

[5]

M. Di Ventra and N.D. Lang. Transport in nanoscale conductors from first principles. Phys.
Rev. B, 65:045402, 2002.

M. Di Ventra and S.T. Pantelides. Hellmann-feynman theorem and the definition of forces
in quantum time-dependent and transport problems. Phys. Rev B, 61:16207, 2000.

M. Di Ventra, S.T. Pantelides, and N.D. Lang. The benzene molecule as a resonant-
tunneling transistor. Appl. Phys. Lett., 76:3448, 2000.

M. Di Ventra, S.T. Pantelides, and N.D. Lang. First-principles calculation of transport
properties of a molecular device. Phys. Rev. Lett., 84:979, 2000.

J. J. Dongarra, J. DuCroz, S. Hammarling, and I. Duff. A set of level 3 basic linear algebra
subprograms. ACM Trans. Math. Softw., 16:1-17, 1990.

J. J. Dongarra, J. DuCroz, S. Hammarling, and R. J. Hanson. An extended set of FOR-
TRAN basic linear algebra subprograms. ACM Trans. Math. Softw., 14:1-17, 1988.

Tan Foster and Carl Kesselman, editors. The Grid: Blueprint for a New Computing Infras-
tructure. Morgan Kaufmann, Orlando, FL, 1999.

W. Gropp, E. Lusk, and A. Skjellum. Using MPI. MIT Press, Cambridge, MA, second
edition, 1999.

C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. Basic linear algebra subpro-
grams for FORTRAN usage. ACM Trans. Math. Softw., 5:308-323, 1979.

M.A. Reed and J.M. Tour. Computing with molecules. Scientific American, 282(86):86-93,
June 2000.

M.A. Reed, C. Zhou, C.J. Muller, T.P. Burgin, and J.M. Tour. Conductance of a molecular
junction. Science, 278:252, 1997.

J.H. Schon, H. Meng, and Z. Bao. Self-assembled monolayer organic field-effect transistors.
Nature, 413:713-715, 2001.

R. C. Whaley, A. Petitet, and J. Dongarra. Automated empirical optimization of software
and the ATLAS project. Technical Report CS-00-448, University of Tennessee, Knoxville,
TN, 2000.

10

