
Multifaceted Web Services: An Approach to Secure and
Scalable Grid Scheduling

Sandeep Prabhakar Calvin Ribbens Prachi Bora

 sprabhak@vt.edu ribbens@vt.edu pbora@vt.edu

Department of Computer Science
Virginia Tech

660 McBryde Hall
 Blacksburg, Virginia-24061

Abstract

A multifaceted or multi-interface web service is a web service that offers interfaces to
clients and to other peer web services. The multifaceted web service uses a generic parameter-
based approach developed in this paper to allow for collaboration between web servers. This
parametric approach solves security and scalability problems and is found to be applicable in many
situations. Such an approach is necessary to permit easy collaboration and secure resource
sharing. We describe one instantiation of such an approach in the form of a global grid scheduler for
data parallel (or Single Program Multiple Data) programs. This scheduler demonstrates the
usefulness of our approach in current business environments where administrative policies are a
major factor in scheduling decisions.

Keywords: Parameterized Scheduling, Secure Scheduling, Scalable Scheduling, Global
Scheduling, Multi Interface Web Service, Application-Specific Scheduling

1. Introduction

A wide variety of application domains are using web services as a paradigm for enabling
loosely coupled and extensible systems [20, 23]. In the web services framework, there are
software components running on web servers, each providing a different service. Current web
services are standalone entities that do not interact with other web services to better provide its
own service. This means that current web services delegate complete modules of responsibility to
other web services. If a service provided to a client requires the service of another module, it
contacts the third party service to make use of its facilities. A typical example of this might be a
vendor asking to use �Microsoft passport� for authentication during purchase of a product. But
what if one web service required information from other services to perform its function
effectively? There is a need for multiple web services of the same type to interact with each other
within the constraints of administrative policies. Thus there is a need for multi-interface (or
multifaceted) web services. These multi-interface web services offer one interface by means of
which clients can request a service and receive replies. They offer another interface to peer
components which they talk to in order to provide better service. Such a model of service is very
similar to branch office - main office connectivity. If the branch office can provide the service by
itself, it does so. But if it cannot due to lack of stock, then it would need to contact its peer branch
offices or main office to verify if stocks are available.

Multi-interface web services can be used in grid scheduling. For example, suppose a
user (or client) has an application to be run on the grid. He contacts the scheduler web service. If
the scheduler web service can satisfy the request by itself, it does so. Otherwise it interacts with
peer scheduler web services to satisfy the request. In this paper, we propose a method to
facilitate peer interaction that is secure and scalable. It is secure because the web server in your
domain that makes scheduling decisions for that domain. Thus, complete information about the
structure of an organization�s resources is not exposed in any way. Our method is scalable
because each peer is not overwhelmed with resource information from all over the world. In our
approach, schedulers decide which peers to contact by means of a few parameters extracted
from each domain that represent how suitable a domain is for scheduling. Since the number of

parameters is small, the overhead of information gathering is low; hence, scheduling can take
place on a truly global basis.

The rest of the paper is organized as follows. Section 2 relates our work to the enormous
body of work being done in scheduling. This section shows how our work is different in a
fundamental way with regard to tackling some of the basic security problems. Section 3 first gives
general principles on which our solution rests and identifies the fundamental reasoning behind
this solution. The rest of Section 3 applies these principles to the global scheduling problem
constrained by security and administrative concerns. It gives the steps followed in getting a job
scheduled and provides an intuitive argument as to why scheduling time is reduced. Sections 4
and 5 summarize our contributions and identify how it can be extended to other domains.

2. Related Work

Typically schedulers exist at two levels [14, 18]. The first level is that of the local
scheduler. At this level, decisions are made for each individual resource. The second level is that
of the meta-scheduler. At the meta-scheduler level, several parallel applications are scheduled
and undesirable interaction between these applications eliminated [15]. There have been many
efforts with regard to meta-scheduling. The most notable of those efforts is the scheduler
produced by the GrADS project. As part of this project, application characteristics have been
used [3] to produce heuristically good schedules. Also efforts like [4] focus on the interplay
between many parallel programs and have carried out simplified experiments to see how
preemption of parallel programs affects job completion time. Performance characterization of data
parallel programs at the second level has been done by Walker [17]. Our work would serve as the
third level of this hierarchy. The meta-scheduler in the second level presumes that information
about all resources is readily available and that there will not be any problem collecting it.
However, this is not always realistic, and a means to getting around this assumption is required.
Also, all of the existing work fits nicely into one �zone� (defined in Section 3.2.1). Thus our work
represents a higher level of abstraction. Existing meta-scheduling work can be leveraged to do
scheduling a smaller scope, e.g., within a single administrative domain.

In order to schedule a parallel program, two pieces of information are required:
information about resources and information about the application. Considerable work has been
done in obtaining information about an application and making it of manageable proportions.
There have been many efforts to characterize an application�s structure by means of compile-time
and run-time analysis of the program [2, 5, 6, 7]. Information about resources has been a subject
of interest and there are many existing systems that collect this information. There are tools like
NWS that monitor and report information about network traffic. The globus [1, 2] project has
developed the MDS protocol to store dynamic information about resources (processors and
network) and GIIS [1] to provide a query interface to locate resources of interest.

Schopf [12, 16] defines �superscheduling� to consist of three phases: resource discovery,
resource mapping and job startup. Our mechanism for scheduling fits into the resource discovery
and resource mapping phases. We are not concerned with job startup; we make our framework
generic enough to use any job startup mechanism. Our technique is a means to identify potential
resources quickly and securely, even when the number of potential resources is large.

3. System Architecture

3.1 General Principles of the Architecture

The crux of the multifaceted web services solution rests on the identification of the
parameters to be exchanged amongst the servers and the ranking of their importance. The
parameters give a summarized view of the information in the administrative influence of a peer
web server. Effective decisions will depend upon the choice of parameters. Once these
parameters are identified, it is important to be able to prioritize them and weight them accordingly
in calculations. This weighting of parameters can either be done statically by the system
administrator or dynamically determined by means of feedback from the system. Static weighting
is acceptable because we assume that such weighting will be done by experts in the field for the

class of applications under consideration. In case such a weighting is not available for the
application under consideration, dynamic methods need to be used. Some form of reinforcement
learning [22] algorithm could be used to reinforce the more important parameters. However,
accurate dynamic feedback is hard to obtain, as there are sources of noise in the results.

3.2 Case Study: Scheduling of SPMD Parallel Programs

We show the credibility of the principles described above by means of a prototype
implementation for one area that can benefit from a multifaceted web service: a global scheduler
on the grid. We use applications whose data-flow graphs contain highly connected sub-graphs
[11] as our motivating family of applications. These applications have a master and slave task
graph. Each slave is actually a team of processes which communicates intensively within the
team but relatively infrequently across teams.

3.2.1 Zones and Administrative Domains

A zone is defined to be one area over which complete information is collected and
processed to obtain parametric information. Normally an administrative domain would correspond
to a single zone. However, there might be many zones within one administrative domain if the
administrative domain has a large number of resources. Each zone has a web server running the
scheduler. We call each of these schedulers a zonal scheduler (ZS). This can be visualized as in
Figure 1. A zonal scheduler needs some information about peer schedulers as it might need to
schedule some processes whose resource requests cannot be satisfied locally. The zonal
schedulers find out about the existence of other zonal schedulers by using a discovery
mechanism. Such discovery services exist in practice and they use protocols like UDDI and
GRRP [1]. The use of such a mechanism extends the concept of virtual organizations [8] to
dynamic virtual organizations. This means that virtual organizations can be formed on the fly as
and when there is a match between demand and supply. This would eliminate the need for any
human effort to establish collaborations between organizations.

Once a zonal scheduler finds other interesting zonal schedulers, it registers with each of
them. Registering with a zonal scheduler makes a request for the zone�s parameters to be
passed periodically. Additional authorization control schemes and policy information might be
provided at this stage. Authorization entails the zone communicating information about which
certificate authorities it trusts. Thus the user will be able to verify if he has a certificate from one of
those authorities. Policy information communicates the priority of external processes and whether
reservations can or cannot be made.

FIGURE 1: Partitioning of resources into zones

After the registration stage, communication takes places between the zonal schedulers to
exchange certain parameters representing the state of resources in the zones. These parameters
are sufficient to make informed decisions about whether that zone is fertile to be scheduled on.
These parameters do not reveal any of the internal structure of resources in that zone. This is
important to protect the privacy of information about resources within one zone or administrative
domain.

The important question to answer is when and how frequently will the parameters be
communicated. The mechanism used is event-driven. During setup, the parameters are
communicated between zones. After this stage, re-communication takes place only when the
state of the resources within a zone changes by over a threshold limit. If no such change takes
place then a simple �keep alive� message is communicated to peer-zones interested in it.

3.2.2 Parameter Identification

The parameters that represent the state of a zone must meet the following criteria: they must be
small, they must facilitate identifying the fertility of a zone and they must not divulge resource
structure information. Based on parallel application characterization experience, we identified the
following parameters.

• Distance Factor (DF): This gives an idea of how far the �target� ZS is from the �home� ZS.
A home ZS is defined to be the zone in which the program and input data are present
and to which the output data will go. If separated by a large network distance, i.e., high
latency and low bandwidth, staging files and bringing program and input files to that zone
will be costly. Another reason why such a factor is important is that tasks in parallel
programs might be scheduled on different zones. Thus there will be some communication
between zones, even though such a situation will be reduced as far as possible by the
scheduling algorithm. For tightly coupled applications this may not always be possible
and the scheduler might be forced to schedule them on different zones. This parameter
will make zones between which there is large latency or low bandwidth less desirable to
the zone selector. A high value of this factor makes a zone less desirable for scheduling.

Distance Factor = Delay-Bandwidth product between home ZS and remote ZS

• Resource Density (RD): This parameter represents the intensity of computing power per
unit communication bandwidth. The lower this value, the more bandwidth between every
pair of nodes. This signifies that the resources in that zone are tightly coupled. For
parallel programs that have a communicator in which a small group of processes
communicate a lot, a zone with a low value of RD is important. For example, a SMP will
have low RD whereas a network of workstations will have high RD. A similar parameter
has been used to represent the computation to communication ratio in schedulers of
parallel programs [19].

Resource Density =
∑

∑
thionBandwidCommunicat

edocessorSpePr

• Load Factor (LF): This gives the overall load at some instant in that zone. This is

important to take care of the computation component of the parallel program. Thus
parallel processes that have a high computation aspect compared to communication
would prefer a better value for LF than for RD.

Load Factor = ∑

i
iProcessor ofon UtilizatiPercentage

These parameters would be number calculated from information about the state of resources in a
particular zone.

Since XML is used in the transfer of zone state parameters, if a new parameter is identified,

or a certain parameter cannot be revealed for security reasons, modifying the model and
scheduler code is trivial since we can simply adapt the XML parser appropriately.

3.2.3 Identification of the Best Zone

Each zonal scheduler has a set of other viable zones with the state of resources in those
zones. The ZS ranks the zones using the parameters obtained. One instance of a static weighting
is described in Section 3.3. The internal structure of how such a zone selector will work is shown
in Figure 2. Currently we use a statically weighted parameter set in determining the relative
importance of a zone. This is suited for applications in which the structure of communication and
computation is well known. Supplying this information would be done by experts in the field only
once for the class of applications under consideration and hence would not be a tremendous
overhead. Learning algorithms can be used to dynamically assign weights to parameters for
cases in which the application structure is not known.

FIGURE 2: Internal Structure of the Zone Selector

3.2.4 Structure of the Global Scheduler Service

The scheduling takes place as follows. The client contacts the ZS on the zone in which it
is present with a request to schedule a parallel program. XML is used as a means to
communicate application characteristics to the ZS. The ZS does the scheduling and returns a
mapping of processes to processors. This mapping is generic and represented in XML format.
This XML can be translated at the client into any existing job submission language, e.g., ground
RSL [1]. The overall structure of the global parametric scheduler is shown in Figure 3.

The characteristics of the application are important to the scheduler. There have been
many efforts in the past to characterize the application�s structure [2, 5, 6, 7, 24, 25]. For the
purpose of the prototype global scheduler, we use a very simple model to characterize the
parallel application. There are two components of interest in Single Program Multiple Data
(SPMD) type of applications: computation of each process and communication between each pair
of processes. Thus our definition of an application�s characteristics consists of a vector

representing computation of each process and a two-dimensional matrix representing
communication between every pair of processes. The scheduler uses the vector and the matrix to
first select a zone that can provide the required resources and then to select machines within the
selected zone that best satisfy the application requirements (through communication with remote
schedulers). There have been lots of efforts to characterize an application based on computation.
However, some recent efforts take into account communication patterns in addition to
computation [9, 10, 11, 17]. We feel that in a wide-area environment both these factors will be
important. Since the vector and matrix represent the relative proportions of the computation and
communication, algorithms can use them to identify which of these is important. This would be
used in appropriately weighting the various parameters.

Three separate components, each providing pieces of information that together form a
cogent picture of the application�s characteristics, will help in obtaining the vector and matrix data.
First, the compiler [7] can extract certain information like the static task graph. The problem here
is that at compile time not all information about branch direction and number of times loops are
executed is known. Second, the run-time system [6] can actually profile the application and obtain
the dynamic task graph. The problem here is that there might be noise on both processors and
networks that make inferring information difficult. Third, and perhaps most important, is the
programmer. A graphical tool is needed by means of which he or she specifies the structure of
the application, if known. This graphical tool will give some indication as to what the application�s
structure is. The reason to include the programmer in this phase is that he knows the high level
structure of the program. Using a combination of all 3 components will provide the best results.
However, this implies that the application is of a parameter-sweep type where information about
previous runs is available. Since run time information is not available for non-parameter-sweep
type applications, we have to use programmer or compiler-supplied information.

FIGURE 3: (left) Overall Structure of the Scheduler and (right) Internal Structure of the Scheduler

The scheduler does the scheduling as follows (see Figure 3). When an application
request arrives, it is queued. The scheduler processes a single application�s request at a time.
The controller module contacts the Zone Selector module, which returns the best zone to
schedule the next x processes. The number x represents one team or communicator in the
parallel program that communicates a lot within itself. For the current application�s requirements,
the learning algorithm in the Zone Selector selects the best zone where the x processes could be
scheduled. If the zone selected happens to be the current zone, the scheduler invokes some local
scheduler and obtains a mapping of resources in the current zone. This can be done because the
scheduler knows the details of resources in the current zone. If the zone selected is some other
zone, the scheduler contacts the ZS of that zone through some inter zone protocol and requests
scheduling of x processes on that zone. Since only the remote zone�s scheduler makes the
decision about which resources to schedule the processes on, complete security of each zone�s
resources is guaranteed. The other zone returns the mapping of processes to resources if it can

satisfy the request. This entire process is repeated till all the processes in the application are
scheduled.

Once all the processes have been assigned physical resources, the current scheduler
now reserves or locks those resources in order that it is guaranteed what it asked for. Deadlock is
resolved by means of a mechanism shown in the next paragraph. If reservation is not present, a
best effort scheduling is done, but no guarantees on job completion time can be obtained.

Each zonal scheduler has a unique Uniform Resource Identifier (URI). This is used in
many places in the design of our system. First, it is used to publish the existence of a ZS in a
directory to be used during discovery. Second, zonal schedulers use it to exchange parameters
and inter zone protocol messages. Third, the URI is used to resolve deadlocks in scheduling.
Since a URI is unique, deadlocks can be avoided by simple means of performing reservations in
increasing order of sorted URIs. This is similar to the Siena event system [21] that uses a URI to
uniquely identify event servers.

3.3 Steps to getting the SPMD program scheduled

1. Get application�s structure from programmer/ compiler/ runtime system (in XML).
2. Send application structure to get it queued at the scheduler.
3. Scheduler selects best zone on which to run groups of processes of the application

a. If best zone is current zone, run scheduling algorithm and obtain mapping of
tasks to resources.

b. If best zone is not current, contact peer scheduler in that zone and get the
mapping in that zone.

c. Repeat 3a and 3b for all groups of processes in the SPMD program.
4. Return mapping to client (in XML).
5. Client converts the mapping to RSL or any other job submission specific format.

Our most important contribution in this sequence of steps is the selection of the best zone.

We illustrate this process by means of weighting parameters in one specific physics application
�transport�. This program is used to find the conductance of molecules in various orientations.
This program uses MPI as its message-passing library. The application structure is a master-
slave team structure, where each slave team performs large matrix operations using the
SCALAPACK library. Thus, a slave team corresponds to a group which is communication
intensive and there is relatively little communication amongst groups. At each iteration of step 3,
the number of processes sent to the zone selector corresponds to the number of processes in the
current slave team. Since each team internally communicates a lot, the resource density
parameter is weighted the most. Solving sets of linear equations is computation intensive and
hence the load factor is also given a high weight. This is an example of static weighting where we
use the intuition of the programmer to weight parameters depending on application
characteristics.

3.4 Performance Issues

The performance of a global scheduler is measured based on three metrics that have to
be obtained from benchmark problems like the SCALAPACK application:

• Information Gathering time = Tend_collection - Tstart_collection
• Scheduling time = Tmapping_done � Tapplication_arrival

• Job Completion time = Toutput_arrives - Tjob_startup

The best scheduling algorithm is one which minimizes total time, where

Total Time = Information Gathering Time + Σ(Scheduling Time i + Job Completion Time i)

3.4.1 Information Gathering Time

Since we require no global collection of information about resources, the amount of

information transferred is reduced. Information is also timely because the resources are closer to
the local zone schedulers. As a result, more complete information or more frequent resource
information updates are possible.

3.4.2 Scheduling Time

 The time complexity of a scheduling algorithm is proportional to the number of resources
and the number of tasks being scheduled, i.e.,

Scheduling Time = Ω(nk), where n = number of resources and k = number of tasks.

Because only one zone is considered at a time, the number of resources �n� is always
kept within bounds and since the input to the zone selector is a subset of processes that can be
scheduled at each step, the number of application processes �k� is also under control. The
algorithm in the previous section is an instance of divide and conquer strategy. Thus the
scheduling time for the zone based algorithm is,

Scheduling Time = Ω(n1k1) + Ω(n2k2) + � + Ω(nxkx) + overhead of contacting other zones

 <= Ω(nk)

where,
ni = number of resources in the ith zone
ki = number of application processes requested to be scheduled in the ith zone

The overhead of contacting other zones is negligible compared to scheduling time. This overhead
can be further reduced by sending out a request to more that one zone at a time. For example,
the request could be sent out to the best three zones, and the zone that replies the fastest could
be used.

The optimal value for number of resources to be present in a zone is to be determined by
further experimentation. However, there might be problems with having an optimal number of
resources within a zone due to administrative policies and management issues.

3.4.2 Job Completion Time

In order to measure this some form of feedback is required. Noiseless experiments are
required to be able to measure job completion time accurately. This project is a work in progress
and these experiments represent the next step that would be required to evaluate the approach
suggested here.

4. Future Work

We have analyzed the model for scheduling parallel applications and have obtained
parameters for collaboration of peer schedulers. The parameters identified in Section 3.2.2 are a
preliminary version of the set of parameters that would be required to identify the state of
resources in a zone. Further research is required to identify how other parameters like cost [13]
and presence of requisite software libraries affect scheduling decisions. The effects of these and
other parameters need to be further analyzed.

We have tried to make the framework for global scheduling as generic as possible.
Different scheduling algorithms might require different representations of the application�s
characteristics. Using XML for representing this and defining an XML schema for it, allows the
framework to accommodate schedulers requiring application characteristics in a different format.

As noted earlier, the underlying problem structure is found in many practical situations.
We illustrate how this approach could be used in other problem domains. The key to the
approach is in reducing large sets of information to a small number of parameters. These

parameters would then be used to select peer services to which work can be delegated. Dynamic
software detection is one such situation. Suppose a user wants to use a specific piece of software
to perform some task on a set of data. Where does such a search start? A �software detection
service� could be used to have a complete index of such software and all searches could be
routed there. A more elegant way of performing such a search might be to have parameters that
indicate how likely it is to find software from specific companies running in that domain. Thus peer
software detection servers would delegate such responsibility of finding the required software to
other domains where the likelihood of that software being present is high.
 We have striven to make our solution fit in with existing job startup mechanisms, e.g.,
DUROC. This may not be the best strategy, especially when scheduling applications for
reservation-based execution in the future. In such a setting a just-in-time RSL generation should
take place where a zone scheduler promises a certain number of resources and the actual
binding to physical resources takes place only at execution time.

5. Conclusions

We strive to provide two improvements to scheduling on the grid. The first is to provide a
scheduler that takes into account security of resources in a domain. This improvement is
qualitative and no quantitative information can be given to prove it. This is an important issue and
the concept of virtual organizations cannot be realized without tackling this problem. The second
improvement is to provide for scalability of meta-schedulers. Even if information about all
resources in the world could be accumulated in one place (a tremendous undertaking since the
information has to be timely), the scheduling time would become large as scheduling algorithms
run in time proportional to the number of resources and the number of tasks. In the case of a
global grid and massive applications, both of these numbers are huge. Using zones, the number
of resources and the number of tasks under examination are reduced, thereby reducing task
scheduling time. We also believe that there are many similar situations where the principles
applied to deriving a solution to global grid scheduling can be applied. The same principles can
be applied effectively if a small set of parameters that represent the problem under question can
be obtained.

6. References

[1] Czajkowski, K., Fitzgerald, S., Foster, I., Kesselman, C., (2001) Grid Information Services for
Distributed Resource Sharing, Proceedings of the 10th IEEE Symposium on High Performance
Distributed Computing, IEEE Press.
[2] Czajkowski, K., Foster, I., Kesselman, C., Sander, V., Tuecke, S., (2002) SNAP: A Protocol for
Negotiating Service Level Agreements and Coordinating Resource Management in Distributed
Systems, 8th Workshop on Job Scheduling Strategies for Parallel Processing.
[3] Dail, H., (2002) A Modular Framework for Adaptive Scheduling in Grid Application
Development environments, Masters Thesis, University of California, San Diego, Department of
Computer Science.
[4] Vaidhiyar, S. S., Dongarra, J. J., (2002) A Metascheduler for the Grid, Proceedings of the 11th
IEEE International Symposium on High Performance Distributed Computing HPDC-11.
[5] Chang, F., Karamcheti, V., Kedem, Z., (2000) Exploiting Application Tunability for Efficient,
Predictable Resource Management in Parallel and Distributed Systems, Journal of Parallel and
Distributed Computing 60, 1420-1445.
[6] Adve, V. S., (1993) Analyzing the Behavior and Performance of Parallel Programs, Computer
Sciences Technical Report #1201, University of Wisconsin-Madison.
[7] Adve, V. S., Vernon, M. K., (2002) Parallel Program Performance Prediction Using
Deterministic Task Graph Analysis, ACM Transactions on Computer Systems.
[8] Foster, I., Kesselman, C., Tuecke, S., (2001) The Anatomy of the Grid: Enabling Scalable
Virtual Organizations, International Journal of Supercomputer Applications, 15(3).
[9] Orduna, J. M., Arnau, V., Ruiz, A., Valero, R., (2000) On the Design of Task Communication-
Aware Task Scheduling Strategies for Heterogeneous Systems, Proceedings of the 2000
International Conference on Parallel Processing.

[10] Arnau, V., Duato, J., (2000) Characterization of Communications Between Processes in
Message-Passing Applications, Proceedings of the IEEE International Conference on Cluster
Computing.
[11] Taura, K., Chien, A., (2000) A Heuristic Algorithm for Mapping Communicating Tasks on
Heterogeneous Resources, Heterogeneous Computing Workshop 102-115.
[12] Schopf, J. M., (2001) Ten Actions When Superscheduling, Scheduling Working Group,
Scheduling Request For Comments.
[13] Buyya, R., (2002) Economic Based Distributed Resource Management and Scheduling for
Grid Computing, PhD Thesis, Monash University, Melbourne, Australia.
[14] Weissman, J. B., Grimshaw, A. S., (1996) A Federated Model for Scheduling in Wide Area
Systems, Proceedings of the IEEE High Performance Distributed Computing.
[15] Raman, R., Linvy, M., Solomon, M., (1998) Resource Management through Multilateral
Matchmaking, Proceedings of the 7th IEEE Symposium on High Performance Distributed
Computing.
[16] Schopf, J. M., (2002) A General Architecture for Scheduling on the Grid, Submitted to
Special Issue of JPDC on Grid Computing.
[17] Walker, M., (2001) A Framework for Effective Grid Scheduling of Data Parallel Applications in
Grid Systems, Masters Thesis, University of Virginia.
[18] Krauter, K., Buyya, R., Maheshwaran, M., (2000) A Taxonomy and Survey of Grid Resource
Management Systems, Technical Report 2000/80: Mannitoba University and Monash University.
[19] Chingchit, S., Kumar, M., Bhuyan, L.N., (1999) A Flexible Clustering and Scheduling Scheme
for Efficient Parallel Computation, 13th International Parallel Processing Symposium and 10th
Symposium on Parallel and Distributed Processing.
[20] Coyle, F. P., (2002) XML, Web Services and the Data Revolution, Addison-Wesley
Information Technology Series,Indianapolis.
[21] Carzaniga, A., Rosenblum, D. S., Wolf, A. L., (1998) Design of a Scalable Event Notification
Service: Interface and Architecture, University of Colorado, Department of Computer Science,
Technical Report CU-CS-863-98.
[22] Sutton, R. S., Barto, A. G., (1998) Reinforcement Learning: An Introduction, MIT Press,
Cambridge, MA.
[23] Tuecke, S., Czajkowski, K., Foster, I., Frey, J., Graham, S., Kesselman, C., (2002) Grid
Service Specification draft 3, http://www.gridforum.org/ogsi-wg.
[24] Aggarwal, A., Chandra, A. K., Snir, M., (1990) Communication Complexity of PRAM,
Theoretical Computer Science.
[25] Culler,D.E., Karp, R.M., Patterson, D.A., Sahay, A., Santos, E.E., Schauser, K.E.,
Subramonian, R., von Eicken, T., (1996) LogP: A Practical Model of Parallel Computation,
Communications of the Association for Computing Machinery.

