
Beyond Harvesting:  
Digital Library Components as OAI Extensions 

 

Hussein Suleman 
Department of Computer Science 

Virginia Tech, Blacksburg, VA, USA 
 +1 540 231 3615 
hussein@vt.edu 

Edward A. Fox 
Department of Computer Science  

Virginia Tech, Blacksburg, VA, USA 
 +1 540 231 5113 

fox@vt.edu 
 
 

ABSTRACT 
Reusability always has been a controversial topic in Digital 
Library (DL) design.  While componentization has gained 
momentum in software engineering in general, there has 
not yet been broad DL standardization in component 
interfaces.  Recently, the Open Archives Initiative (OAI) 
has begun to address this by creating a standard protocol 
for accessing metadata archives.  It is proposed that this 
protocol be extended to act as the glue that binds together 
various components of a typical DL.  In order to test the 
feasibility of this approach, a set of protocol extensions was 
created, implemented, and integrated as components of 
production and research DLs.  The performance of these 
components was analyzed from the perspective of 
execution speed, network traffic, and data consistency.  On 
the whole, this work has simultaneously revealed the 
feasibility of such OAI extensions for component 
interaction, and has identified aspects of the OAI protocol 
that constrain such extensions. 

Keywords 
Interoperability, architecture, protocols, componentization 

BACKGROUND AND MOTIVATION 
Digital libraries have challenged software engineers 
because of their loosely defined parameters and ever-
changing requirements.  One of these parameters has been 
the requirement for interoperability.  The solution most 
recently adopted by many practitioners is the Protocol for 
Metadata Harvesting (PMH) [1], developed by the Open 
Archives Initiative (OAI).  The development of this 
protocol was a direct response to the need for simple 
standards [2], and this simplicity has led to adoption of the 
standard by many existing and new archives. 
The OAI-PMH, commonly referred to as the OAI protocol, 
is a client-server protocol that is used to transfer XML-
encoded records, with mechanisms for periodic updating.  

 
 

 
 

 Page 
Service Request Expected Response 
Identify Description of archive - standards 

and protocols implemented 
ListMetadataFormats List of supported metadata 

formats 
ListSets List of archive sets and subsets 
ListIdentifiers List of record identifiers, 

optionally corresponding to a 
specified set and/or date range 

GetRecord Single metadata record 
corresponding to a specified 
identifier and in a specified 
metadata format 

ListRecords List of metadata records 
corresponding to a specified 
metadata format and, optionally, a 
set and/or date range 

Table 1. OAI-PMH service requests and expected 
responses 
Table 1 lists the 6 service requests of this protocol that can 
be issued to obtain archive or record-level metadata.   
Archives that function as data providers implement the 
server end of this protocol as responses to these service 
requests, while those who wish to import or harvest data 
from data providers implement the client logic.  These two 
pieces fit together to support simple metadata-transfer 
interoperability between archives. 
This does not, however, ease the task of building and 
maintaining digital library (DL) software.  In keeping with 
current practices in software engineering, it long has been 
argued that DLs may benefit from software models based 
on object-oriented technology in general and 
componentization in particular [3].  Any such approach 
relies on an underlying component framework or set of 
application programming interfaces that are well defined 
and commonly known.  Prior efforts have looked at various 
such mechanisms for inter-component communication. 

1 



Dienst [4] is a protocol (and software package) that uses 
HTTP and XML to provide for inter-component 
communication.  Members of the Networked Computer 
Science Technical Reference Library [5] used this 
successfully for many years.  (A lightweight version of 
Dienst was in fact the precursor to the current OAI 
protocol.)  The complexity of Dienst as a complete 
package, however, led to an unwillingness of archivists to 
adopt the protocol and software.    The FEDORA project 
[6] further developed the Dienst repository architecture by 
defining abstract interfaces to structured digital objects, 
initially implemented over a CORBA communications 
medium. 
The University of Michigan Digital Library Project [7] 
built DLs as collections of autonomous agents, with 
protocol-level negotiation to perform tasks collaboratively.  
The Stanford InfoBus project [8] wrapped its components 
into objects, with remote method invocation for 
communication. 
All of these component models are built upon popular 
syntactic layers, such as HTTP and CORBA, and define 
additional semantics where necessary.  This need for a 
common communications mechanism is a driving force 
behind interoperability protocols such as the OAI-PMH, 
which is used in this work as an alternative glue to bind 
together components in a larger DL. 
Like any other communications mechanism, the OAI-PMH 
requires specialized semantics for particular components.  
These extensions, because of the OAI philosophy of 
simplicity, have the potential for greater impact on system 
developers because they build upon a baseline set of 
semantics that are becoming increasingly well known in the 
DL community.  With these extensions, the OAI-PMH 
fulfils the role of a Repository Access Protocol, as defined 
by Kahn and Wilensky [9], in each component of the DL.  
Components then can be integrated into a configurable 
network of loosely connected and independent data and 
service providers, referred to as an Open Digital Library 
(ODL).  Such a loose network of components, illustrated in 
Figure 1, has many advantages over tightly coupled 
systems – notably simplicity, reusability, and flexibility 
[10]. 
 

 

Browse 

Metadata Repository 

Search Recommend 

Resource Discovery 

 

 

User Interface 
 

OAI/ODL archive 
 

OAI/ODL protocol 

Data Input 

Figure 1. Example ODL network of components 
 

This paper analyzes extensibility of the OAI protocol and 
then proposes a generalized extension and two specific 
protocols that support componentized DLs.  Initial 
implementations and experiments are discussed and 
analyzed, leading to a natural course of ongoing work on 
this approach to DL architecture. 

EXTENSIBILITY OF THE OAI PROTOCOL  
In order to create DL component interaction protocols 
based on the OAI protocol it is first necessary to analyze 
features that make this feasible or infeasible.  Table 2 lists 
protocol features that were identified as supporting 
extension, those that need to be added to support extension, 
and those that inhibit extension. 

1
O
a
o
d
a

2
T
a
n
o
r

3
A
c
a
n
s
m

4
T
a
T
th

 Page 2 
Supporting Missing Inhibiting 
1. Set 

organization 
2. GetRecord 

access 
3. Metadata 

containers 
4. Identification 

containers 

5. Response-
level 
containers 

6. Submission 

7. Harvesting 
granularity 

8. DC 
requirement 

Table 2. Features of OAI protocol that affect 
extensibility 
. Set Organization (Supporting) 
AI-PMH allows for archives to associate records with 

rbitrary sets.  This can be exploited easily to select ranges 
r subsets of records from archives.  If sets are generated 
ynamically, they also provide a mechanism to respond to 
rbitrary run-time queries. 

. GetRecord Repository Access (Supporting) 
he GetRecord and ListMetadataFormats verbs allow 
ccess to one specific record in the archive.  While this is 
ot as useful as ListRecords for large-scale harvesting 
perations, it does provide a complete mechanism to 
etrieve records, in a random-access fashion. 

. Metadata Containers (Supporting) 
ny format of metadata (that can be expressed in XML) 

an be transmitted using the OAI protocol.  Thus, in 
ddition to traditional metadata records, transactional data 
ormally associated with the workflow of a DL can be 
tored in OAI-compliant archives if the data is cast into 
etadata records. 

. Identification Containers (Supporting) 
he Identify verb supports the notion of containers, where 
dditional information about an archive may be stored.  
hese containers can be used to specify what extensions to 
e OAI protocol are supported. 



5. Response-Level Containers (Missing) Harvesting Granularity 
Each OAI record has an XML container for embedding 
metadata about the record (such as rights information).  
However, no container exists to transmit information about 
the act of creating the response as a whole.  This could be 
indispensable to return information such as result set 
cardinality or the total number of records in the response 
(when the response is broken up into chunks). 

All datestamps used for the purposes of harvesting, 
including datestamp tags and from and until parameters, 
may use the "Complete date plus hours, minutes and 
seconds" variant of ISO8601.  The format of this is 
“YYYY-MM-DDThh:mm:ssTZD”, as described in section 
3.2 of the OAI-PMH specification. 

Identify Container 
A response to “Identify” should contain information about 
the semantics understood by the component, in the form of 
a protocol name and version.  This is to be encoded as 
follows: 

6. Submission (Missing) 
The OAI protocol was designed to support exporting of a 
collection, but no mechanism was defined for data to be 
added.  There are many issues related to security and 
quality control that are currently avoided because there is 
no way to add records to an archive.  However, in the 
controlled environment of a single DL, these concerns are 
not as grave.  With the introduction of a data input 
operation, archives could support local repository and 
database-like operations while still providing controlled 
global access at the level of the read-only OAI protocol. 

<odl-description> 

   <protocol>ODL-Union</protocol> 

   <version>1.0</version> 

</odl-description> 

In the case of multi-function components, this can be 
repeated. 

7. Harvesting Granularity (Inhibiting) 
Response-Level Containers The OAI protocol uses a datestamp in order to support 

harvesting by date, but the granularity is a single day since 
these datestamps contain only dates and not times.  After 
taking into account the differences in timezones, a 
harvester has to overlap harvesting dates by at least one day 
in order not to miss any new entries.  This is problematic 
for applications involving rapidly growing content or for 
situations in which there are frequent changes.  One other 
solution is to use a finer granularity (e.g., time as well as 
date) and this is advocated as a simpler and more efficient 
solution.  

All responses may have additional containers to hold 
information pertaining to the creation of the response as a 
whole.  These containers appear at the end of the response 
and take the form of “responseContainer” tags containing 
any valid XML. For example: 

<responseContainer> 

   <hits>hitsCount</hits> 

</responseContainer> 

Service Request Addition 
8. DC Requirement (Inhibiting) PutRecord (new optional service request) 
Every metadata record disseminated by the OAI protocol 
must have an equivalent Dublin Core Metadata Set [11] 
version.  For gross-level interoperability among archives 
containing document-like objects this makes sense, but 
when the records stored in the archive are neither exposed 
to the outside world nor correspond to documents, it is 
irrelevant to map them to Dublin Core. 

Semantics: 
Add, modify, or delete a record from the archive.  If a 
record exists with the same identifier and metadataPrefix, 
replace it with the given one.  Update the datestamp on the 
record to reflect the current local date/time of the archive.  
If the status parameter is used to indicate deletion, delete all 
metadata for the record from the archive.   

THE EXTENDED OAI-PMH (XOAI-PMH) Parameters: Many DL services can be encapsulated into Open Archives 
(archives supporting the OAI-PMH), with relevant 
extensions and specific semantics to support specialized 
functionality.  Since some of this functionality is common 
to multiple components, these features are factored out into 
the general-purpose XOAI-PMH extension.  This extension 
to the existing OAI-PMH exploits its inherent extensibility 
and attempts to overcome its limitations.  XOAI-PMH 
involves four general changes and one service request 
addition to OAI-PMH. 

identifier 
The identifier associated with the record.  This is 
an optional field (if status is not “deleted”) and if 
not specified, the archive must assign a new and 
unique identifier for the record. 

sets 
A comma-separated list of sets that the record is to 
become a part of.  This is an optional field and if 
not specified, the record does not belong to any 
sets. General Changes 

DC Requirement 
Dublin Core is not a required metadata format. 

 Page 3 



metadataPrefix 
The metadata prefix associated with the metadata 
format of the record. 

metadata 
The metadata record as an XML fragment.  
Complete schema and namespace information 
must be provided but the XML header must be 
omitted.  If the metadata field is not trivially 
small, the HTTP POST operation should be used 
instead of HTTP GET to avoid limits on URL-
encoded query lengths that are common in Web 
servers. 

status 
This is an optional parameter – if it is provided 
and its value is “deleted” then all parameters but 
identifier are ignored and all metadata records 
corresponding to this record are deleted. 

Return Values: 
The response is a minimal OAI-PMH response containing 
just the requestURL and responseDate. 

Exceptions: 
If any required parameters are missing or in an invalid 
format, then an HTTP status-code of 400 is returned to 
indicate illegal parameters. 

Example Request: 

Verb=PutRecord&metadataPrefix=oai_dc&identifier
=oai:ABC:123&metadata=<test%20xmlns%3D”
testns”%20xsi%3AschemaLocation%3D”testn
s%20testschema”><title>aTitle<%2Ftitle>
<%2Ftest> 

Example Response: 

<?xml version="1.0" ?> 

<PutRecord> 

<responseDate>2001-10-27T19:20:30-
05:00</responseDate> 

<requestURL>http://an.oa.org/OAIscript?verb=Put
Record&metadataPrefix=oai_dc&identifier=oai:ABC
:123&metadata=&lt;test%20xmlns%3D”testns”%20xsi
%3AschemaLocation%3D”testns%20testschema”&gt;&l
t;title&gt;aTitle&lt;%2Ftitle&gt;&lt;%2Ftest&gt
;</requestURL> 

</PutRecord> 

THE ODL-UNION COMPONENT 

Description 
In some instances metadata from multiple archives can be 
coalesced into a single archive to support specific 
requirements such as a reduction in network traffic where 
multiple services require the use of the metadata from 
remote locations.  Also, where the archives are established 
to parallel an organization that is itself hierarchical, it may 
be useful to gather all the metadata into root nodes to 

provide centralized services across the entire organization 
(or subsets of it).  Figure 2 illustrates a simple ODL 
network using the ODL-Union component. 
 

Archive X 

Archive Y 

ODL-Union 

 
 

OAI/ODL archive 
 

OAI/ODL protocol 
Archive Z 

Figure 2. Simple ODL network using ODL-Union 
 

The ODL-Union component harvests metadata from 
multiple sources and republishes it via a single XOAI-PMH 
interface.  Parameters may be set to select the metadata 
formats and sets to harvest from each source archive.  From 
the perspective of the ODL-Union component, the whole 
archive could be harvested, thus losing set information 
(unless extra processing is employed), or individual sets 
could be harvested with a more sophisticated algorithm. 

Interface Protocol 
XOAI-PMH, with the following additional semantics: 

ListMetadataFormats 
ODL-Union Results:  

List of metadata formats representative of all records 
currently in archive. 

ListSets 
ODL-Union Results:  

List of pairs of archive identifiers and source sets, 
where each pair is separated by a slash. For any 
archive harvested only as a whole, the source set 
will be omitted, resulting in just archive 
identifiers. 

XOAI Response Encoding: 

<set> 

   <setSpec>archive1</setSpec> 

   <setName>archive1</setName> 

</set> 

<set> 

   <setSpec>archive2/set</setSpec> 

   <setName>archive2/set</setName> 

</set> 

THE ODL-SEARCH COMPONENT 

Description 
One of the most popular services provided by DLs is the 
ability to perform search operations across one or more of 
the DL’s collections.  This service is often integrated into 
the DL to leverage internal data representations.  However, 

 Page 4 



XOAI Request Encoding: the search engine can just as easily be abstracted into a 
component, into which a data stream is fed using the OAI 
protocol.  The ODL-Search component is built upon this 
philosophy, with queries and results communicated using 
an extension to the OAI protocol to cast search result sets 
into OAI sets.  Queries may be specified in any language, 
with an identifier specifying the query language embedded 
in the request.  Figure 3 shows a simple ODL network 
using ODL-Search. 

Verb=ListIdentifiers&set=qlang/query/start/stop 

Verb=ListRecords&set=qlang/query/start/stop 

Additional ODL-Search Results: 

hits 
Estimated or actual total number of hits. 

XOAI Response Encoding: 

Search Interface 

ODL-Search  

 

User Interface 
 

OAI/ODL archive 
 

OAI/ODL protocol OA 

Figure 3. Simple ODL network using ODL-Search 
 

<responseContainer> 

   <hits>hitsCount</hits> 

</responseContainer> 

Interoperability Issues 
Search engine interoperability is usually equated with the 
concept of federated or meta-searching – where queries are 
sent to remote sites, from which results are gathered and 
merged.  In the NDLTD project, Powell and Fox built a 
system to support federated searching among collections of 
theses and dissertations [12].  Disparities in search 
interfaces presented one major obstacle, which can be 
avoided to some degree by using the ODL-Search protocol.  
ODL-Search thus can form the basis of a federated system 
of search engines.  Differences in query languages will not 
be fully accommodated but mapping from one keyword-
based query syntax to another is possible. 

Interface Protocol 
XOAI-PMH, with the following additional semantics: 

ListSets 
ODL-Search Results:  

Empty list. 

ListIdentifiers / ListRecords 
ODL-Search Parameters: 

Query Language: odlsearch1 
qlang 

Name of query language used to indicate the 
semantics for the query that follows, e.g., 
odlsearch1. 

Syntax 
( ‘+’ | ‘-’  ) ? ( field ‘:’ ) ? term ( space ( ‘+’ | ‘-’ ) ?  

( field ‘:’ ) ? term )* 

Parameters query 
Search query in language understood by search 
engine. 

field 
The name of a tag in the original XML data.  In 
the case of Dublin Core records, this could be 
“title”, “creator”, or any of the other 13 tags. start 

Index of first item to return from complete list of 
results, ranked in order of decreasing estimated 
relevance of the identifier/record to the query.   
This, along with the next parameter, allows 
selection of a range of results from within the 
complete list. 

term 
A single word, that forms part of the query. 

space 
The character used to represent a space. 

stop 
Index of last item to return from complete ranked 
list of results. 

Description 
The results of a search correspond to those documents that 
contain one or more of the query terms, ranked in a 
consistent manner based on a model of relevance specific 
to the search engine.  Query terms that are prefixed with a 
field designator must be searched for in only the 
corresponding document nodes and their children.  If a 
query term is prefixed with “+” then all results must 
contain that term, and if it is prefixed with “-” then no 
results may contain that term. 

XOAI Parameter Encoding: 

set 
qlang/query/start/stop 

 Page 5 



For early testing, these prototype components were all 
derived from the original OAI protocol rather than the 
XOAI protocol, to allow for the use of existing testing and 
validation tools like the Repository Explorer [15].  Thus, 
instead of response-level containers, such information was 
embedded into other unused fields in the responses. 

Examples 
• computer science 
• +language:ger -description:computer 

Example ODL-Search Requests 
Verb=ListIdentifiers&set=odlsearch1/computer%20

science/1/10 Implementation Details 
Verb=ListRecords&set=odlsearch1/%2Blanguage%3Ag

er/11/20 Platform 
Each component was built as a separate set of scripts using 
the Perl language, with data stored in mySQL databases.  
The implementation used standard Perl modules such as 
XML::DOM.  All coding was done on a Linux platform, 
with some testing on Digital Unix as well.  Wherever 
possible object-oriented programming was adopted to 
maximize the use of common components, like modules 
that assist in harvesting and publishing data through an 
OAI interface. 

EXPERIMENTS  
In order to test the feasibility of the proposed 
componentized architecture for DLs using real world 
scenarios, a suite of components was implemented to 
support basic DL services. 

Methodology  
The following components were implemented: 
• ODL-Union, to merge together data from multiple 

OAI-compliant sources Customization 
The configurable information for each component was 
stored in an appropriate configuration file, in a well-defined 
XML format specific to each component.  This 
configuration was used to define the archives from which 
to harvest data as well as the harvesting parameters, the 
databases to use and how to access them, as well as any 
parameters needed for the internal operation of the 
component.  Figure 5 shows an extract of the configuration 
file for an ODL-Union component.  
 <unionconfig> 

 
   <database>DBI:mysql:etdunion</database> 
   <dbusername>etdunion</dbusername> 
   <dbpassword></dbpassword> 
   <table>unioncat</table> 

• ODL-Filter, to filter OAI sources for illegal characters 
and non-unique identifiers 

• ODL-Search, to index words in metadata and permit 
search operations 

• ODL-Browse, to sort and categorize data and permit 
browse operations 

• ODL-Recent, to keep track of recently added items 
Then, all components were integrated into a simple user 
interface for the NDLTD system as shown in Figure 4, 
using metadata corresponding to Electronic Theses and 
Dissertations [13].  Further, the ODL-Browse component 
was incorporated into the Computer Science Teaching 
Center [14]. 

 
   <archive> 
      <identifier>VTETD</identifier> 
      <url>http://oai.dlib.vt.edu/cgi-bin/VTETD/VTETD.pl</url> 
      <metadataPrefix>oai_dc</metadataPrefix> 
      <interval>0.25</interval> 
      <interrequestgap>15</interrequestgap> 
   </archive> 
 
</unionconfig> 

Figure 5. Extract from ODL-Union configuration 

Component Composition 

 Figure 4. User interface for NDLTD ODL 
 

The sequence of interactions corresponding to a typical use 
of an ODL-Search component is illustrated in Figure 6.  
The simplified ODL network consists of a source of data in 
the form of an OAI-compliant archive and an ODL-Search 
component.  The user interface layer is made up of a 
client’s Web browser and the Web server, with scripts to 
generate HTML pages and forward requests to the ODL 
network. 

 Page 6 



 

    

ODL Network User Interface 
Web Server Web Browser ODL-Search OAI Archive 

Periodic indexing 
of data stream  

Harvest: 
ListRecords 

requests 

Data is formatted 
and sent to client  

User submits 
query  

Records are 
extracted and 
merged  

ODL request is 
formulated and 
sent to ODL-
Search  

User loads search 
query page  

Search is 
conducted and 
records are 
requested from 
the source 
archive 

HTML Page 

Submit query 

Submit  
ODL-Search 

request 
(ListRecords) 

GetRecord 
request 

<GetRecord> 
response  

<ListRecords> 
response 

HTML Page 

. . . 
. . . 

Perform 
search 

IN
D

EX
 

SE
AR

C
H

 

<ListRecords> 
responses 

Figure 6. Interface and component interaction during indexing and search operations 

There are two functions performed: indexing of the data 
and searching.  In the former case, the ODL-Search 
component harvests data from the source archive using a 
typical harvesting algorithm, such as periodic ListRecords 
requests with the date range used to obtain only new or 
updated records. 
To perform a search, the user submits a query by filling in a 
form on an HTML page.  This query is then sent to the 
Web server, which invokes a script (or handler) to process 
it.  The script extracts the parameters, formulates an ODL-
Search ListRecords request and submits this to the ODL-
Search component.  Upon receiving the request, the ODL-
Search component performs a search using its internal 
indices and then proceeds to obtain each metadata record 
from the source OAI archive.  The metadata records are 
merged together and returned to the script as a single 
ListRecords response.  The script then formats this 

response for display and it is sent back to the user in the 
form of a “search results” HTML page. 

ANALYSIS  
Interacting components inherit some of the performance 
characteristics of the OAI protocol, but also incur 
additional penalties that stem from the chaining together of 
components where each behaves asynchronously and, 
perhaps, remotely.  We explore some of the concerns and 
related solutions. 

Complexity of Harvesting 
Let the time (in days) between harvesting operations = t 
Let the average number of records harvested in one 
operation = n 
Define a batch as the group of records or identifiers sent in 
a response before a resumptionToken is issued.  Let the 
maximum size of a batch = k 

 Page 7 



Duplication of Data Then, the number of batches, b =  n / k  
Suppose that the minimum difference between two 
datestamps (granularity) is g (in days).  Then, the 
maximum difference between the datestamp and the actual 
time of modification of a record is g.  This implies that in 
order to ensure data consistency, a harvester has to overlap 
harvesting operations by at least g.  (When archives operate 
in different timezones, the interpretation of a datestamp 
differs by at most a day, necessitating an overlap of (1+g) 
days.) 

Let the average size (in bytes) of an OAI response header 
(XML namespace information, responseDate, requestURL, 
and containers) = h 
Let the average size (in bytes) of a record = R 
Let the average size (in bytes) of an identifier = I 

Harvesting Algorithm A 
If we choose a harvesting algorithm that uses a single 
ListRecords request to transfer records, then When component A harvests data from a source archive, it 

has to update all datestamps so that changes will propagate 
to any downstream components.  Thus, component B that 
harvests from component A will deal with a new system of 
dates, necessitating an additional overlap of g.  Compared 
to the source archive, there will now be a time interval 
overlap of 2g in the records being harvested.  Table 3 
illustrates this incremental duplication when 2 components 
are connected in a chain to a source archive and there is an 
overlap of 1 day.  In the illustration items are added at the 
source, Component A harvests daily from the source, and 
Component B harvests daily from Component A.  

the number of network requests  
= number of batches  
=  b  
=  n / k  

and the quantity of data transferred 
= size of header + (size of record * number of records) 
= h + nR 

Harvesting Algorithm B 
If we choose a harvesting algorithm that first issues 
ListIdentifiers and then issues GetRecord for each record, 
the number of network requests 

= number of batches for ListIdentifiers + number of 
GetRecord requests 
=   n / k  + n 

and the quantity of data transferred 
= size of ListIdentifiers header + (size of identifier * 
number of records) + number of records * (size of 
GetRecords header + size of record) 
= h + nI + n ( h + R ) 
= ( h + nR ) + n ( I + h ) 

Thus, the number of network requests as well as the 
quantity of data transferred will be higher for the second 
algorithm.  The simpler first algorithm was selected for 
most harvesting operations to avoid this performance 
penalty. 

Propagation of Change 
Suppose that t(A) is the time, in seconds, between 
harvesting operations performed by component A.  This 
implies that component A is at most t(A) seconds out of 
synchronization with the source from which it is harvesting 
data.  Now, suppose that component B harvests the same 
data from component A, at an interval of t(B) seconds.  
Then component B is at most t(B) seconds out of 
synchronization with component A, and transitively, 
t(A)+t(B) seconds out of synchronization with the original 
source archive. 
Similarly, each archive in a chain contributes its harvesting 
interval to the delay in propagating changes.  Where 
changes have to propagate more quickly within a DL, it is 
desirable to use smaller harvesting intervals.  However, 
since smaller harvesting intervals cause more network 
requests, where network performance is a limiting factor, 
delays in propagation are a necessary compromise.  

 Page
 Source 
Item (Date) 

Component A 
Item (Date) 

Component B 
Item (Date) 

Mon Item 1 (Mon) Item 1 (Mon) Item 1 (Mon) 
Tues Item 2 (Tues) Item 1 (Tues) 

Item 2 (Tues) 
Item 1 (Tues) 
Item 2 (Tues) 

Wed Item 3 (Wed) Item 2 (Wed) 
Item 3 (Wed) 

Item 1 (Wed) 
Item 2 (Wed) 
Item 3 (Wed) 

Thu Item 4 (Thu) Item 3 (Thu) 
Item 4 (Thu) 

Item 2 (Thu) 
Item 3 (Thu) 
Item 4 (Thu) 

Table 3. Illustration of duplication due to overlapping 
Each component in a chain similarly contributes to the 
overlap in the datestamp range during harvesting.  With 
frequent harvesting and/or frequent updates at the source, 
this will result in greater duplication of data.  Selecting a 
harvesting granularity that is as small as possible 
(minimizing g) will minimize the duplication due to 
chaining of components. 

Component Speed Enhancements 
A query issued to the ODL-Search component requires a 
single ListRecords request as well as one GetRecord 
request, issued to the source archive, for each record in the 
result set.  The records returned from these GetRecord 
requests are merged to form the response to ListRecords. 
Let the number of records in the result set = n 
Then, the number of network requests = 1 + n 

 8 



and the quantity of data transferred  
= size of ListRecords header + (size of record * 
number of records) + number of record * (size of 
GetRecords header + size of record) 
= h + nR + n * ( h + R ) 
= h + nh + 2nR 
= h + n ( h + 2R ) 

SpeedyCGI 
Without modification to the Web server, it is possible for a 
component to stay resident in memory and be glued into the 
Web server whenever necessary by a much smaller script.  
This is the approach taken by the SpeedyCGI toolkit, which 
significantly improves performance without any 
modification of the source code.  Unlike the other 
approaches, this toolkit only worked with the Perl 
language, but the technique is generally applicable to any 
development environment. 

While the aim of componentization is to make development 
simpler and repeatable, this cannot be at the expense of 
reduced functionality or efficiency.  The quantities 
calculated can be reduced either by reducing the number of 
network requests or by changing the types of requests to 
maximize network utilization. 

FUTURE WORK AND CONCLUSIONS  

Development and Refinement of Component Libraries 
We have developed sample protocol designs for many 
existing digital library use cases, including threaded 
discussions, peer review, and recommendation and rating 
systems.  These and additional components will be 
integrated into existing and new DL systems to test for 
reusability and portability.   

Various approaches were investigated to increase speed 
without sacrificing the advantages of a componentized 
system. The most severe penalty was incurred when a list 
of records needed to be fetched from the ODL-Union 
component by any of the other components.  As illustrated 
above, the number of additional HTTP requests was 
proportional to the number of records needed.  The most 
successful and general solutions found to maximize 
network utilization and minimize the processing delay 
normally associated with executing Web applications are 
discussed below. 

This set of designs will be re-evaluated in light of recent 
developments in the OAI-PMH.  Some of the issues that 
currently need to be addressed by the XOAI protocol may 
be irrelevant if they are incorporated into a future OAI 
protocol, as we have suggested by way of our involvement 
in the OAI technical and steering committees. 

Caching Our prototyping work has demonstrated some feasible 
component designs.  These will be extended to other 
components, with additional generality introduced 
wherever possible.  Further work will be done on 
separating instances of components from configuration 
information – ultimately allowing for the possibility of a 
suite of components servicing multiple DLs, and visual 
composition of components.  

Using caching at various levels within the experimental 
systems resulted in significant speed improvements.  For 
example, the ODL-Browse component cached the results 
from ODL-Union, thus minimizing the number of recurring 
requests.  Secondly, the user interface cached the responses 
to most requests; thus speeding up the process of browsing 
through a list of returned items.  Together, these had more 
of an effect on system performance than most other 
optimizations.  One problem that manifested itself was that 
of stale data in a cache.  It is still being investigated – there 
are ways to force a refresh from the Web browser to 
propagate to the server’s scripts, but this apparently only 
works for Netscape browsers and works differently in each 
version. 

Component Testing and Validation 
Testing of the OAI protocol is largely supported by the 
Repository Explorer [15], which we developed specifically 
for the purposes of validation of requests and responses and 
standardization of implementations. 
This software will be extended to support the additional 
functionality of the ODL protocols by building in support 
for the XOAI protocol.  This tool would then support the 
development of components using the ODL protocols.  
Particular support for individual ODL protocols is also an 
option if the software can be specialized to test for more 
specific semantics based on specifications. 

FastCGI 
FastCGI is an add-on kit that provides persistent script 
capabilities to a Web server, independently of the 
programming language.  Scripts need to be modified 
slightly by encapsulating them in a simple loop but this is 
relatively minor and for some components it was possible 
to create both regular and FastCGI versions without much 
change.  FastCGI provides an add-on server module that 
loads a script on demand and keeps it persistent, with 
support for dynamic reloading and dynamic load balancing.  
This was tested and worked very well.  There were 
additional security problems that needed to be resolved 
since FastCGI enforced a higher level of security than 
regular scripts, but better programming discipline and 
security is good for component development, so this can be 
seen as another advantage.   

Evaluation 
Further evaluation of the feasibility of building Digital 
Libraries as networks of extended Open Archives will be 
carried out in terms of their equivalence to monolithic 
systems, extensibility of components, and usability of the 
component model.  Performance evaluation is an ongoing 
process, and further work is being done on: 
• Communications and protocol overhead incurred by 

OAI/XOAI protocols. 

 Page 9 



5. Leiner, B. M. The NCSTRL Approach to Open 
Architecture, in D-Lib Magazine (December 1998). 
Available http://www.dlib.org/dlib/december98/leiner/ 
12leiner.html 

• Stability of the communications protocols relative to 
the datestamp granularities – evaluation of the trade-
off between duplication of records and the possibility 
of missing records. 

6. Payette, S., and Lagoze, C. Flexible and Extensible 
Digital Object and Repository Architecture, in 
Proceedings of Second European Conference on 
Research and Advanced Technology for Digital 
Libraries (Heraklion, Crete, Greece, September 21-23 
1998), Springer, 1998, (Lecture notes in computer 
science; Vol. 1513). 

• Speed of the ODL networks compared with 
monolithic systems. 

• Storage required for components and the effects of 
data duplication. 

• Consistency among various copies of data stored on 
different nodes. 

7. Birmingham, W. P. An Agent-Based Architecture for 
Digital Libraries, in D-Lib Magazine, (July 1995). 
Available http://www.dlib.org/dlib/July95/07birmingh 
am.html. 

• Harvesting algorithms and their efficiencies in terms 
of speed and network utilization. 

Conclusions 
It is hoped that the ongoing results of this work will change 
the way people build digital libraries, so they can utilize 
simple and reusable component models based on already 
established standards.  In particular, we hope our work will 
help lead to “DL-in-a-box” solutions that can be tailored to 
classes of applications, such as the National STEM Digital 
Library (www.nsdl.nsf.gov). 

8. Baldonado, M., Chang, C. K., Gravano, L., and 
Paepcke, A. The Stanford Digital Library Metadata 
Architecture, in International Journal on Digital 
Libraries 1, 2 (1997), 108-121. Available http://www-
diglib.stanford.edu/cgi-bin/get/SIDL-WP-1996-0051. 

9. Kahn, R., and Wilensky, R. A Framework for 
Distributed Digital Object Services, CNRI, 1995. 
Available http://www.cnri.reston.va.us/k-w.html. Building upon a foundation of extensibility, it then will be 

possible to work on providing more interesting services to 
users, thus bridging the wide gap between current research 
and production systems, and ultimately making information 
more accessible to people. 

10. Suleman, H., and Fox, E. A. A Framework for Building 
Open Digital Libraries, in D-Lib Magazine 7, 12 
(December 2001). Available http://www.dlib.org/dlib/ 
december01/suleman/12suleman.html. 

ACKNOWLEDGEMENTS 11. Dublin Core Metadata Initiative. Dublin Core Metadata 
Element Set Version 1.1: Reference Description, 1997. 
Available http://www.dublincore.org/documents/dces/. 

Thanks are given for the support of NSF through its grants: 
IIS-9986089, IIS-0002935, IIS-0080748, IIS-0086227, 
DUE-0121679, DUE-0121741, and DUE-0136690. 

12. Powell, J., and Fox, E. A. Multilingual Federated 
Searching Across Heterogeneous Collections, in D-Lib 
Magazine 4, 8 (September 1998). Available 
http://www.dlib.org/dlib/september98/powell/09powell.
html 

REFERENCES 
1. Van de Sompel, H., and Lagoze, C. The Open Archives 

Initiative Protocol for Metadata Harvesting. Open 
Archives Initiative, 2001. Available at http://www. 
openarchives.org/OAI_protocol/openarchivesprotocol.ht
ml. 

13. Suleman, H., Atkins, A., Gonçalves, M. A., France, R. 
K., Fox, E. A., Chachra, V., Crowder, M., and Young, J. 
Networked Digital Library of Theses and Dissertations: 
Bridging the Gaps for Global Access - Part 1: Mission 
and Progress, and Part 2: Services and Research, in D-
Lib Magazine 7, 9 (September 2001). Available 
http://www.dlib.org/dlib/september01/suleman/09sulem
an-pt1.html and http://www.dlib.org/dlib/september01/ 
suleman/09suleman-pt2.html. 

2. Lagoze, C., and Van de Sompel, H. The Open Archives 
Initiative: Building a low-barrier interoperability 
framework, in Proceedings of JCDL 2001 (Roanoke 
VA, June 2001), ACM Press, 54-62. 

3. Gladney, H., Ahmed, Z., Ashany, R., Belkin, N. J., Fox, 
E. A., and Zemankova, M. Digital Library: Gross 
Structure and Requirements (Report from a Workshop), 
IBM Almaden Research Center, Research Report 
RJ9840, May 1994. Available http://www.ifla.org.sg/ 
documents/libraries/net/rj9840.pdf and  

14. Computer Science Teaching Center; www.cstc.org/ 
15. Suleman, H. Enforcing Interoperability with the Open 

Archives Initiative Repository Explorer, in Proceedings 
of JCDL 2001, (Roanoke, VA, June 2001), ACM Press, 
63-64. 

4. Lagoze., C., and Davis, J. R. Dienst – An Architecture 
for Distributed Document Libraries, in Commun. ACM 
38, 4 (April 1995), 47. 

 

 Page 10 


	ABSTRACT
	Keywords

	BACKGROUND AND MOTIVATION
	EXTENSIBILITY OF THE OAI PROTOCOL
	1. Set Organization (Supporting)
	2. GetRecord Repository Access (Supporting)
	3. Metadata Containers (Supporting)
	4. Identification Containers (Supporting)
	5. Response-Level Containers (Missing)
	6. Submission (Missing)
	7. Harvesting Granularity (Inhibiting)
	8. DC Requirement (Inhibiting)

	THE EXTENDED OAI-PMH (XOAI-PMH)
	General Changes
	DC Requirement
	Harvesting Granularity
	Identify Container
	Response-Level Containers

	Service Request Addition
	PutRecord (new optional service request)
	Semantics:
	Parameters:
	Return Values:
	Exceptions:
	Example Request:
	Example Response:



	THE ODL-UNION COMPONENT
	Description
	Interface Protocol
	ListMetadataFormats
	ODL-Union Results:

	ListSets
	ODL-Union Results:
	XOAI Response Encoding:



	THE ODL-SEARCH COMPONENT
	Description
	Interface Protocol
	ListSets
	ODL-Search Results:

	ListIdentifiers / ListRecords
	ODL-Search Parameters:
	XOAI Parameter Encoding:
	XOAI Request Encoding:
	Additional ODL-Search Results:
	XOAI Response Encoding:


	Interoperability Issues
	Query Language: odlsearch1
	Syntax
	Parameters
	Description
	Examples

	Example ODL-Search Requests

	EXPERIMENTS
	Methodology
	Implementation Details
	Platform
	Customization


	Component Composition
	ANALYSIS
	Complexity of Harvesting
	Harvesting Algorithm A
	Harvesting Algorithm B

	Propagation of Change
	Duplication of Data
	Component Speed Enhancements
	Caching
	FastCGI
	SpeedyCGI


	FUTURE WORK AND CONCLUSIONS
	Development and Refinement of Component Libraries
	Component Testing and Validation
	Evaluation
	Conclusions

	ACKNOWLEDGEMENTS
	REFERENCES

