

Independent Study CS 5974

Srikanth Koneru skoneru@vt.edu homepage

Instructor : Dr. Edward Fox fox@vt.edu homepage

Department of Computer Science, Virginia Tech

August 2002

Introduction

Definition of open peer-to-peer

Peer-to-peer applications allow us to separate out the concepts of authoring information
and publishing that same information. It allows for decentralized application design,
something that is both an opportunity and a challenge.

All the peer-to-peer applications, in various ways, return the content, choice, and control
to ordinary users. Tiny end points on the Internet, sometimes even without knowing each
other, exchange information and form communities. In these applications there are no
more clients and servers, instead the communication takes place between cooperating
peers.

There are many applications nowadays which are being labeled as peer-to-peer. A way to
examine the distinction of whether an application is peer-to-peer or not is to check on the
owner of the hardware that the service runs on. Like Napster, if the huge part of the
hardware that Napster runs on is owned by the Napster users on millions of desktops then
it is peer-to-peer. Peer-to-peer is a way of decentralizing not only features, but costs and
administration also. By decentralizing data and therefore redirecting users so they
download data directly from other user's computers, Napster reduced the load on its
servers to the point where it could cheaply support tens of millions of users. The same
principle is used in many commercial peer-to-peer systems. In short peer-to-peer cannot
only distribute files. It can also distribute the burden of supporting network connections.
The overall bandwidth remains the same as in centralized systems, but bottlenecks are
eliminated at central sites and equally importantly, at their ISPs.

Search techniques are important to making peer-to-peer systems useful. But there is a
higher level of system design and system use. Topics like trust, accountability and
metadata have to be handled before searching is viable.

Usenet and DNS: Fathers of peer-to-peer in computers

Usenet is a news system, which has evolved some of the best examples of decentralized
control structures on the Net. There is no central authority that controls this news system.
Usenet is in someway the grandfather of today’s new peer-to-peer applications such as
Gnutella and Freenet. Usenet is a system with no central control and copies files between
computers. It has been around since 1979.

Another fixture, which has been using peer-to-peer networking from a long while, is the
DNS system. It blends peer-to-peer networking with a hierarchical model of information
ownership. DNS was built to distribute the data sharing (IP addresses and domain names)
across the peer-to-peer Internet and it scaled remarkably well.

The lessons from Usenet and DNS are directly applicable to many contemporary peer-to-
peer data sharing applications because the problems faced today by new peer-to-peer

applications systems such as file sharing are quite similar to the problems that Usenet and
DNS addressed 10 or more years ago.

Napster

Napster, an application that allows people to search for and share MP3 music
files, became a hot new Internet application on college campuses. In December
1999, the Recording Industry Association of America (RIAA) filed suit against
Napster, alleging "contributory and vicarious" copyright infringement.

Figure: 1:User A requests a file "xyz", 2:Central server returns the IP address of a user
who has file "xyz",3: User A requests "xyz" from User B,4: User B sends "xyz" to User

A.

Any system that translates names into Internet numbers is a name space. Napster
is a name space: When you register on Napster, you assign a name to your
computer. When another Napster user wants to communicate with you, the
Napster server translates this name into the Internet address of your computer.
The Napster server acts as a name server and a search engine, all using
proprietary protocols. (The underlying protocols are, of course, the standard
Internet protocols.)

Users sign up on a Napster server with whatever name they want to use. User
names are assigned on a first-come-first-served basis. Registration is instant,
free, and requires no contact or other personal information.

You can use the Napster name space only to exchange files and chat, but the
Napster system could easily be extended to handle web pages and e-mail, and
probably will be soon. Yet, Napster has substantial security weaknesses. These
limitations are described below.

Napster makes real what up until now has mostly been a straw man in the DNS
debate: The DNS needs the Internet, but the Internet does not need any particular

name space. If various entities create their own name spaces like Napster
does, anonymity will prosper and grow rapidly.

The famous problem Napster faced is the copyright problem. However,
discussion of intellectual property rights is not pursued further in this report,
since this document focuses more on the technical details involved with peer-to-
peer technologies like Napster.

Gnutella

Each piece of Gnutella software is both a server and a client in one, because it
supports bi-directional information transfer. You can be a fully functional
Gnutella site by installing any of several available clients. Many different
operating systems are supported. Next you have to find a few sites that are
willing to communicate with you: some may be friends, while others may be
advertised Gnutella sites. People with large computers and high bandwidth will
encourage many others to connect to them.

You will communicate directly only with the handful of sites you've agreed to
contact. Any material of interest to other sites will pass along from one site to
another in store-and-forward fashion.

Because Gnutella runs over the Internet, you can connect directly with someone
who's geographically far away just as easily as with your neighbor. This
introduces robustness and makes the system virtually failsafe.

The protocol for obtaining information over Gnutella is a call-and-response.

Figure: How Gnutella retrieves information

The figure shows the operation of the protocol. Suppose site A asks site B for data
matching "MP3." After passing back anything that might be of interest, site B passes the
request on to its colleague at site C -- but unlike mail or news, site B keeps a record that

site A has made the request. If site C has something matching the request, it gives the
information to site B, which remembers that it is meant for site A and passes it through
to Site A.

Each request has a unique number like an Ethernet MAC address. This helps in
avoiding multiple requests. Also each site lets requests time out, simply by
placing them on a queue of a predetermined size and letting old requests drop
off the bottom as new ones are added.

Gnutella runs over HTTP (a sign of Gnutella's simplicity). A major advantage of
using HTTP is that two sites can communicate even if one is behind a typical
organization's firewall, assuming that this firewall allows traffic out to standard
Web servers on port 80.

A Gnutella request has a time-to-live, which is normally decremented by each
site until it reaches zero. This way there is a limit to the searching on the
distributed system.

Gnutella only defines how a string is passed from one site to another, not how
each site interprets the string. So depending on the site, the string may be
handled by running fgrep or a SQL query or any other customized search. This
flexibility allows each site to contribute to a distributed search in the most
sophisticated way it can.

Limitations of Gnutella

Gnutella has problems scaling. The exponential spread of requests opens up the
most likely source of disruption: denial-of-service attacks caused by flooding the
system with requests. The developers have no particular solution at present, but
suggest that clients keep track of the frequency of requests so that they can
recognize bursts and refuse further contact with offending nodes.

Furthermore, the time-to-live imposes a horizon on each user. I may repeatedly
search a few hundred sites near me, but I will never find files stored a step
beyond my horizon.

Gnutella has already suffered service disruptions, mostly because of bugs in
clients, and in the future it is certain to be attacked with vicious and
sophisticated attempts to bring it down. While some groups of sites have slowed
down temporarily or become severed from other groups, the system has never
actually come down.

Another limitation of Gnutella is the difficulty in authenticating the source of the
data returned. But if a digital signature infrastructure becomes widespread,
clients could use that too.

Freenet

Freenet like Gnutella searches for information and returns information without
telling you where it came from. Both Freenet and Gnutella are innovative in the
areas of distributed information storage, information retrieval, and network
architecture. But Freenet differs significantly from Gnutella in both goals and
implementation.

The goals of Gnutella and Freenet are very different. Those of Freenet are more
explicitly socio-political. Freenet allows people to distribute material
anonymously, retrieve material anonymously, and also makes the removal of
material very difficult. Also one goal in which Gnutella and Freenet differ from
Napster is the goal of operating without any centralized control. Thus, a court
order can shut down Napster, but shutting down Freenet or Gnutella is nearly
impossible, because every user who exchanged copyrighted stuff using these
protocols would need to be caught.

In addition to serving the social goals listed above, Freenet offers an intriguing
possible solution to the problem of Internet congestion, because popular
information automatically propagates to many sites.

The Freenet architecture and protocol is similar to Gnutella in many ways. Each
cooperating person downloads a client and sends requests to a few other known
clients. Requests are uniquely marked, are handed from one site to another, are
temporarily stored on a stack so that data can be returned, and are dropped after
each one's time-to-live expires.

The main difference between the two systems is that when a Freenet client
satisfies a request, it passes the entire data to the requester. This is an option in
Gnutella but is not required. Even more important, as the data passes back along
a chain of Freenet clients to the original requester, each client keeps a copy. The
client keeps the data so long as other people keep asking for it, but discards the
data after some period of time when no one seems to want it. This achieves the
transience required to meet the goals of anonymity and persistence. It lets small
sites indirectly distribute large, popular documents without suffering bandwidth
problems. It rewards popular material and allows unpopular material to
disappear quietly. It tends to bring data close to those who want it. This is
because the first request from node A to node B may have to pass through many
other nodes, but the second and subsequent requests by nodes nearer to A can be
satisfied by node A directly without haing to pass through all the nodes from A
to B.

Freenet is more restrained in the traffic generated than Gnutella, perhaps because
it expects to transfer a complete file of data for each successful request. When a
Freenet client receives a request it cannot satisfy, it sends the request on to a
single peer; it does not multicast to all peers as Gnutella does. In brief, searching
is done depth-first and not in parallel. Freenet is being developed in Java and
requires the Java Runtime Environment to run. It uses its own port and protocol,
rather than running over HTTP as Gnutella does.

Freenet uses a unique identifier for each resource. This prevents malicious users
from replacing resources with hoaxes. This unique identifier is Freenet's current
weak point. Although someone posting material can assign any string as an
identifier, Freenet chooses for security reasons to hash the string. Two search
strings that differ by a single character (like "Human Rights" and “Human-
Rights") will hash to very different values, as with any hashing algorithm. This
hashing renders Freenet unusable for random searches. Free text searches
become difficult because unless you know the keyword the serving system used,
it is hard to make Freenet reach that server. For more information on Key
Hashing and Keywords please refer to http://freenetproject.org/cgi-
bin/twiki/view/Main/ICSI#SECTION00031000000000000000

OpenP2P

Some of the other P2P systems that have gained reputation are

Name Description and URL

Hailstorm

HailStorm is Microsoft's system aimed towards its .NET
initiative. It is a set of Web services whose data is contained in
a set of XML documents, and which is accessed from the
various clients (or "HailStorm endpoints") via SOAP (Simple
Object Access Protocol).

http://www.openp2p.com/topics/p2p/hailstorm/

Jabber

Jabber is a non-proprietary distribution model with wide
platform support (including even the Newton MessagePad),
wide choice of clients, interoperability with other instant
messaging systems, ease of setup/use, and a large number of
active subprojects ranging from clients and servers to custom-
built transport server applications and various Jabber
development tools.

http://www.jabber.org/

JXTA

JXTA technology is a set of open protocols that allow any
connected device on the network ranging from cell phones and
wireless PDA’s to PCs and servers to communicate and
collaborate in a P2P manner.

http://www.jxta.org/

Publius

Publius is a Web publishing system that is highly resistant to
censorship and provides publishers with a high degree of
anonymity.

http://publius.cdt.org/

SETI@home

SETI@home is a scientific experiment that uses Internet-
connected computers in the Search for Extraterrestrial
Intelligence.

http://setiathome.ssl.berkeley.edu/

P2P Architecture

The peer-to-peer explosion has reminded people of the power of decentralized systems.
The promise of robustness, open-endedness, and infinite scalability has made many
people excited about decentralization. But in reality, most systems we build on the
Internet are largely centralized.

Figure: Centralized Architecture

Four basic topologies are in use on the Internet: centralized and decentralized, but also
hierarchical and ring systems. These topologies can be used by themselves, or combined
into one system creating hybrid systems.

Figure: Ring Architecture Figure: Hierarchical Architecture

SETI@Home is a fully centralized architecture with the job dispatcher as the server. And
the original Napster's search architecture was centralized, although the file sharing was
not.

Figure: Decentralized Architecture

In decentralized systems, all peers communicate symmetrically and have equal roles.
Gnutella is probably the most "pure" decentralized system used in practice today, with
only a small-centralized function to bootstrap a new host. Many other file-sharing
systems also are designed to be decentralized, such as Freenet. Decentralized systems are
not new; the Internet routing architecture (http://www.icir.org/floyd/evolution.html) itself
is largely decentralized, with the Border Gateway Protocol
(http://www.cisco.com/univercd/cc/td/doc/cisintwk/ito_doc/bgp.htm) used to coordinate
the peering links between various autonomous systems.

There are limitless possibilities in combining various kinds of architectures. A centralized
system could have a hierarchy of machines in the role of server. Decentralized systems
could be built that span different rings or hierarchies. Systems could conceivably be built
with three or more topologies combined, although the resulting complexity may be too
difficult to manage.

By looking at systems in terms of their topology, it is possible to examine a wide
spectrum of systems we have on the Internet today, from centralized to decentralized and
with architectures in between.

Some of the properties that must be taken into consideration before designing the
system are:

Manageability

How hard is it to keep the system working? Complex systems require
management: updating, repairing, and log analysis.

Extensibility

How easy is it to grow the system, to add new resources to it? The Web is the
ultimate extensible system; anyone can create a new Web server or Web page and
immediately have that contribution be part of the Web.

Fault Tolerance

How well can the system handle failures? Fault tolerance is a necessity in large
distributed systems.

Security

How hard is it to subvert the system? Security covers a variety of topics, such as
preventing people from taking over the system, injecting bad information, or
using the system for a purpose other then for what the owners intend.

Resistance to lawsuits and politics

How hard is it for an authority to shut down the system? The designers of
Gnutella or Freenet consider their resistance to lawsuits to be one of their best
features. Other parties consider this property to be a danger.

Scalability

How large can the system grow? Scalability is often promoted as a key advantage
of decentralized systems over centralized, although the reality is more complex.

Conclusion on Topologies

A decentralized system is not always better or worse than a centralized system.
The choice depends entirely on the needs of the application. The simplicity of
centralized systems makes them easier to manage and control, while
decentralized systems may grow more easily and be more resistant to failures or
shutdowns.

As for scalability, the story is not clear. Centralized systems have limited
scalability, but that limit is easy to understand. In contrast, decentralized systems
offer the possibility of massive scalability, but in practice that can be very hard to
achieve.

The second conclusion is the power of creating hybrid topologies. In
centralized+ring systems, the ring covers many of the drawbacks of a purely
centralized approach, providing easy scalability and fault tolerance. And
centralized+decentralized systems are showing powerful scalability and
extensibility while retaining some of the coherence of centralized systems.

Figure: centralized+ring architecture, centralized+decentralized architecture.

Research into distributed applications and infrastructure has a very wide
application. Centralized systems are evolving towards decentralization, as they
grow larger and scale upward. A well-known example is how the host’s file on
the Internet became the Domain Name System. So centralized systems evolve
toward decentralization. In an intriguing, complementary operation,
decentralized or peer-to-peer sites are evolving toward centralization, also in
response to growth and the need to scale upward. Gnutella now has super peers.
Freenet provides gateways, JXTA Search creates a hierarchy of servers, and so
on.

System designers have to evaluate the requirements for their particular area and
pick a topology that matches their needs. We are not limited to a few simple
topologies; topologies can be combined to make hybrids. And while centralized
systems are doing a lot of the work on the Internet, there is a lot of exciting
potential in decentralized systems. In particular, combining decentralized
topologies with other simpler topologies is a powerful approach.

Issues in P2P

These are the issues that are involved in Peer-to-peer technologies which determine the
future of P2P technologies.

Accountability
Traditionally file systems and communication media use
accountability to maintain centralized control over their respective
resources.

Fault Tolerance
The ability of a system to respond gracefully to an unexpected
hardware or software failure.

Interoperability
Interoperability here refers to the ability to operate without
problems between two gateways.

Metadata

Data about data. Metadata describes how and when and by whom
a particular set of data was collected, and how the data is
formatted. Metadata is essential for understanding information
stored in repositories.

Performance
Performance determines the capability of the system, e.g., how
long will it take to download this file and how much bandwidth a
query will consume.

Reputation

Reputation is the memory and summary of behavior from past
transactions. In real life, we use it to help us set our expectations
when we consider future transactions. The same concept can be
applied to peer-to-peer systems.

Scalability Scalability refers to how well a system can adapt to increased
demands.

Security Refers to techniques for ensuring that data stored in a computer
can be read and not compromised.

Trust
Trust in peer-to-peer, collaborative or distributed systems is about
believing web sites or just surfing the web, when downloading and
installing software or buying a product.

P2P and Education

Open Peer-to-peer Technologies in Education.

P2p in Education is still in its nascent stages and lots of research needs to happen in this
area.

Rapid interaction, efficient data sharing, and the combined processing of inputs
from many different sources; all these are supported well by peer-to-peer
technologies. These features of peer-to-peer systems are amicable for the
formation of various study groups in academia. Students as well as professors
can make use of these features.

Kepler (http://kepler.cs.odu.edu/) is a digital library system for the individual,
and it is based on the peer-to-peer model. This allows average researchers at an
average university to publish results and disseminate them to a wide audience
quickly and conveniently. The registration service in Kepler keeps track of the
status of the registered archivelets in support of higher-level services. This is
similar to the Napster centralized model, where the central server keeps track of
active clients. In Kepler the publisher and the retriever of documents can be the
same and hence it is peer-to-peer in nature. Scalability and unreliability (when
machines go down) are issues for further research.

Kepler could be used by anyone to establish an OAI archive. Kepler's approach is
based on the OAI that defines the open interface between data provider and
service provider to implement digital library interoperability based on a
harvesting approach. The intention of OAI had been to support data providers or
archives that exist at the organizational level. To be a part of the OAI framework,
a data provider needs to be 'open' in so far as it needs to support the OAI
metadata harvesting protocol.

LOCKSS (Lots of copies keep stuff safe)
(http://lockss1.stanford.edu/uidemo/) It is an Internet “appliance”, or “easy to
use” software, designed to preserve access to authoritative versions of web-
published materials. The current version of LOCKSS software is restricted to
electronic journals. Web published materials are increasingly the authoritative
versions. There are no affordable, widely available techniques for preserving this
“written record”. The web is an effective publishing medium (data sets, dynamic
lists of citing papers, e-mail notification of citing papers, hyperlinks, searching).
As web editions increasingly become the ‘version of record’, paper versions of
the same titles are merely a subset of peer reviewed scholarly discourse.
Librarians need an inexpensive, robust mechanism, that they control, to ensure
their communities maintain long-term access to this important literature.

LOCKSS has the potential to become a sustainable, affordable, preservation tool
and archiving system for web delivered information. LOCKSS software
systematically caches content in a self-correcting P2P network. Using a
decentralized, peer-to-peer network of like holdings at other participating
libraries, the LOCKSS system would allow libraries to retain indefinite access to
subscribed journal issues, even if the publisher’s online site goes down or if he
goes out of business.

Internet2 (http://www.internet2.edu/)
This project focuses on next-generation high-speed connections, where
multimedia content is supported with suitable quality of service. In particular,
R&D is overcoming many barriers that are holding back the deployment of peer-
to-peer products in current corporate environments. Internet2 is a good test bed
for basic research that can benefit work on peer-to-peer architectures.

Conclusion

Gnutella and Freenet continue to loosen the virtual from the physical, a theme that
characterizes network evolution. DNS decoupled names from physical systems; URNs
will allow users to retrieve documents without domain names; virtual hosting and
replicated servers change the one-to-one relationship of names to systems. Perhaps it is
time for another major conceptual leap, where we let go of the notion of location.

Within the peer-to-peer systems model, a number of modifications and tradeoffs can be
used to tailor different sets of performance outcomes.

Freenet emphasizes high scalability and efficient searches under average conditions while
it sacrifices worse case performance. At the other end, Gnutella sacrifices efficiency for
faster searches and better worst-case guarantees. Ideas drawn from graph theory and the
small world model can help to quantify these trade-offs and to analyze systems in
concrete terms.

The peer-to-peer model encompasses a diverse set of approaches. By recognizing the
wide range of possibilities available, inventing new ideas and new combinations, and
using analytical methods to evaluate their behaviors, systems designers will be well
equipped to exploit the power of peer-to-peer.

Will peer-to-peer replace the client/server model entirely? Most probably it won’t.
Client/server model remains extremely useful for many purposes, particularly where one
site is recognized as the authoritative source for information and wants to maintain some
control over that information. Client/server is also a much simpler model than peer-to-
peer, and we should never abandon simplicity for complexity without a clear benefit.
Client/server rarely presents administrative problems except where the amount of traffic
exceeds the server’s capacity.

Peer-to-peer is useful when the goods you are trying to get at lie at many end points, i.e,
where the value of information lies in the contribution of many users rather than the
authority of one.

Peer-to-peer systems also can be a possible solution to bandwidth problems, when
designed carefully. They are particularly useful in disseminating popular information and
avoiding bottlenecks at the popular sites. But they can also cause bandwidth problems,
either because their design adds too much overhead or because people just want large
amount of data without paying for the bandwidth that can accommodate it.

The peer-to-peer models that are completely decentralized like Gnutella and Freenet are
extremely valuable for research purposes. Whether or not other systems move in their
direction, the viability of the most decentralized systems will help us judge the viability
of peer-to-peer technology as a whole.

References

Most recent guide to Disruptive Technologies

Peer-to-Peer, Harnessing the Power of Disruptive Technologies,
Edited by Andy Oram, O’Reilly, Cambridge, MA, USA, March

2001

Internet Routing Structure, BGP and other Networking Protocols

TCP/IP Illustrated, Volume 1: The Protocols, Addison-Wesley, New
Jersey, NJ, USA 1994, ISBN 0-201-63346-9

Links on the Internet

Border Gateway Protocol
www.cisco.com/univercd/cc/td/doc/cisintwk/ito_doc/bgp.htm

Freenet
http://www.openp2p.com/topics/p2p/freenet/
http://freenetproject.org/cgi-bin/twiki/view/Main/WebHome

Gnutella
http://www.openp2p.com/topics/p2p/gnutella/

Hailstorm
http://www.openp2p.com/topics/p2p/hailstorm/

Internet2
http://www.internet2.edu/

Jabber
http://www.jabber.org/

JXTA
http://www.jxta.org/

Kepler
http://kepler.cs.odu.edu/

LOCKSS
http://lockss.stanford.edu

Napster
http://www.openp2p.com/topics/p2p/napster

OpenAchives Initiative
http://www.openarchives.org/

Peer-to-peer technologies
http://www.openp2p.com/

Publius
http://publius.cdt.org/

Security in Peer-to-peer Systems
http://www.openp2p.com/topics/p2p/security/

SETI at home
http://setiathome.ssl.berkeley.edu/

