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ABSTRACT 

With optimization increasingly used in engineering applications, a series of optimization runs may be required, and 

it may be too expensive to converge them to very high accuracy. A procedure for estimating average optimization 

convergence errors from a set of poorly converged optimization runs is developed.  A probabilistic model is fitted to 

the errors in optimal objective function values of poorly converged runs. The Weibull distribution was identified as 

a reasonable error model both for the Rosenbrock function problem and the structural optimization of a high speed 

civil transport. Once a statistical model for the error is identified, it can be used to estimate average errors from a set 

of pairs of runs. In particular, by performing pairs of optimization runs from two starting points, accurate estimates 

of the mean and standard deviation of the convergence errors can be obtained.  

 

1. Introduction 

 

Optimization is an iterative procedure, which is rarely allowed to converge to high precision due to 

computational cost considerations. In design optimization of a complex system, sub-optimization problems are often 

solved within the system level optimization. Consequently, the optimization results are usually a noisy function of 

the parameters of the design problem [1]. When a single optimization is flawed, it may be difficult to tell. However, 

when many optimization results are available, such as when building a response surface model based on the sub-

optimization results, statistical methods can be used to identify runs with very large errors [1] and estimate the 

average error of the multiple optimization runs [2]. It is certainly possible to estimate the convergence error by 

performing accurate optimization with tightened convergence criteria, but this can be very expensive. This paper 

shows that a probabilistic model can estimate average optimization error without performing very accurate 

optimization. 

Numerical optimization errors are deterministic in that computer simulation gives the same output for the 

same input for repeated runs. However, when an optimization procedure experiencing convergence difficulties is 

very sensitive to small changes of input parameters, it is difficult to predict the magnitude of the error. Therefore, a 

probabilistic model can be useful to characterize the optimization error. Errors in computational simulations are an 

important source of design uncertainties and it is important to estimate the magnitude of the errors. Another 
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advantage of probabilistic modeling is that the error models can be readily used in the framework of design under 

uncertainty. 

In this paper the utility of a probabilistic model of optimization convergence errors is demonstrated for 

optimization used to obtain wing structural weight (Ws) for various configurations of a high-speed civil transport 

(HSCT) [3]. The structural optimization was a sub-optimization within a configuration design optimization of the 

HSCT, and was performed a priori on a carefully selected set of HSCT configurations to build a response surface 

model (cf. Ref. [4]) of Ws.  The structural optimization had substantial errors because it was difficult to find good 

convergence criteria. The objective of the present work is to demonstrate that such convergence errors can be 

estimated by performing the optimization runs in pairs. In previous work [2], the authors successfully estimated 

average errors by using two sets of optimization runs with different convergence criteria. Change of convergence 

criteria may require expert knowledge of the optimization algorithm and depend on specifics of the optimization 

program. In contrast, changing the initial design point is straightforward and can be used for most optimization 

programs. Here it is shown that optimization results from two different sets of initial design points can serve to 

estimate the average optimization error. 

 

2. Error from Structural Optimization 

 

The application problem in this paper is a HSCT design model developed by the Multidisciplinary Analysis 

and Design (MAD) Center for Advanced Vehicles at Virginia Tech. A simplified version of the problem is used 

following Knill et al. [5] with five configuration design variables including wing root chord, wing tip chord, inboard 

leading edge sweep angle, airfoil thickness ratio, and fuel weight. Takeoff gross weight is minimized at the system 

level as a function of the five configuration variables. To improve wing weight equations based on historical data, 

GENESIS [6] structural optimization software based on finite element models is used. The finite element model has 

1127 elements at 226 nodes with a total number of 1242 degrees of freedom. The structural optimization is a sub-

optimization within a system level configuration optimization, and wing structural weight (Ws) is minimized in 

terms of 40 structural design variables, including 26 to control skin panel thickness, 12 to control spar cap areas, and 

two for the rib cap areas [3]. The structural optimization is performed a priori for many aircraft configurations and a 

response surface model of the optimum structural wing weight is constructed for use in the configuration 

optimization.  For the response surface construction, the five design variables are coded so that each ranges between 

–1 and +1. 

The structural optimization resulted in a noisy Ws in terms of the HSCT configuration variables [3], [1]. 

Figure 1 shows the Ws response for 21 HSCT configurations generated by a linear interpolation between two 

extreme designs. Design 1 corresponds to (-1, -1, -1, -1, -1) (all configuration variables at their lower bounds) and 

design 21 corresponds to (1, 1, 1, 1, 1) (all configuration variables at their upper bound) in a coded form of the 

HSCT configuration variables. Case 1 corresponds to the original results obtained by using the default convergence 

criteria of GENESIS. A conservative structural design from a previous study is used as an initial design point for all 

of the structural optimization runs of Case 1. Designs 13, 16, and 19 of Case 1 seem to have relatively large errors. 
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For Case 2, an initial design point perturbed from that of Case 1 by multiplying each of the 40 structural design 

variables by random factors between 0.1 – 1.9, was used. It is seen that the results are still noisy, and that the noise 

error tends to be one-sided (Ws greater than the true minimum). That is because the noise error comes from 

incomplete convergence of minimization. 

Efforts have been made to reduce the convergence error of the HSCT structural optimization. Papila and 

Haftka [7] repaired erroneous optimizations by changing optimization algorithms or trying different initial designs. 

After extensive experiments with convergence criteria, it was found that the most effective way to improve the 

optimization was to tighten one of the convergence criteria [2], [8]. However, it was not trivial to choose the right 

convergence tolerances, and the tightened convergence tolerances more than doubled the cost of the optimization. 

 Define optimization error  

 

e = Ws - Ws
t,            (1) 

 

where Ws is the calculated optimum and Ws
t is the true optimum, which is unknown for many practical engineering 

optimization problems. Note that we are mainly interested in the convergence error and Ws
t represents a true 

physical optimum of the computer model of the optimization problem. Another source of error can be inaccurate 

computational simulation models, which we do not address here. To estimate Ws
t, we need to perform fully 

converged optimization runs with properly tightened convergence criteria, which can be expensive. For the HSCT 

problem, computational cost was seen to be more than double for properly tightened convergence criteria compared 

to the default setting [2]. In practice, we estimated Ws
t by taking the best of repeated GENESIS runs: Case 1 and 

Case 2 with different initial designs as described above and additional six cases with different sets of convergence 

criteria [2]. To study the error in Ws from the structural optimization, we used a mixed experimental design of 126 

HSCT configurations [8], intended to permit fitting a quadratic or cubic polynomial to create a Ws response surface 

approximation for the five-variable HSCT design problem. The optimization error, e, was calculated for each of the 

126 HSCT configurations. Then, the mean and standard deviation of e were estimated for each case of different 

GENESIS parameters, 
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where n is the sample size. Table 1 shows that the average errors were not very different between Case 1 and Case 2, 

5.51% and 5.34%, respectively. In terms of computational cost, Cases 1 and 2 took almost the same CPU time per 

GENESIS run since the only difference was the initial design point.  

As seen in Figure 1, the results of Cases 1 and 2 did not match, because both of them are poorly converged 

optimizations. The magnitude of the difference in Ws between Cases 1 and 2 is an indication of the level of the 

convergence error; we expect the difference to be large when optimization runs have large errors. The average 

difference of Ws between Cases 1 and 2 was 5942 lb., which was 7.3% of the average of estimated true Ws and the 
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largest magnitude of the difference was 58715 lb. (72.1%). In the next section, we will introduce a probabilistic 

modeling technique to use the differences to estimate the average optimization errors. 

 
3. Probabilistic Modeling of Optimization Error 

 

Applying MLE to Establish a Probabilistic Model of Error 

 

With multiple optimization runs available, we can obtain a data driven model of the optimization error by 

fitting a probability distribution to the actual error obtained from Eq. 1. This approach is denoted an error fit. This 

approach requires fully converged high fidelity optimization runs to calculate error data, which are not always 

available. However, once the probabilistic distribution of the error is known, as we discuss later in this section, the 

model can be used to estimate the average errors even when fully converged results are not available. We use the 

maximum likelihood estimation [9] (MLE) method for the distribution fit. In MLE, we find a vector of distribution 

parameters β to maximize the likelihood function l(β), which is a product of the probability density function f over 

the sample data xi (i = 1, …, n), 
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The quality of fit is checked via the χ2 goodness-of-fit test [9], which is essentially a comparison of histograms 

between the data and the fit. The test results will be given in terms of the p-value. A p-value near one implies a good 

fit and a small chance that the data is inconsistent with the distribution. Conversely, a small p-value implies a poor 

fit and a high chance that the data is inconsistent with the distribution. 

 Considering the one-sidedness of the optimization error, we selected the Weibull distribution [9], [10], 

which is defined by a shape parameter α and a scale parameter β. The probability density function (PDF) of the 

Weibull distribution is 
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Once we obtain the distribution parameters α and β via MLE, estimates of the mean and standard deviation of e can 

be calculated from 
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where Γ is the gamma function. 
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Error Statistics from Differences of Poorly Converged Optimization Runs 

 

When fully converged results are available, estimating errors in the poorly converged results is of use in 

that it can provide information for the more common case where converged results are not available. In particular, 

the statistical model identified from the error fit using fully converged data can be used to estimate error statistics for 

poorly converged optimization runs. Indeed, using the knowledge that the errors can be fit well by a Weibull 

distribution, we estimated the distribution parameters from the differences of optimal values from two different 

convergence settings [4]. Here, we propose to use different initial points (e.g., Cases 1 and 2 of the HSCT structural 

optimization) instead of convergence criteria. Changing convergence settings may require expert level knowledge 

depending on the optimization software, whereas it is much simpler to change initial designs to generate other sets 

of optimization results.  

 For the pair of optimization results, Ws
1 with optimization parameter setting #1 and Ws

2 with optimization 

parameters setting #2, model the optimization errors as random variables s and t,  

 

  s = Ws
1 – Ws

t,                                (6) 

  t = Ws
2 – Ws

t.        

 

Note that the true optimum Ws
t is not random, although it may be unknown for many practical engineering 

optimization problems. Random properties of the errors are due to noisy Ws
1 and Ws

2. Since we want to avoid 

expensive calculation of Ws
t, the difference of s and t is defined as the optimization difference, 

 

     x = s – t = (Ws
1 – Ws

t) – (Ws
2 – Ws

t) = Ws
1 – Ws

2.               (7) 

 

If s and t are independent, the probability density function (PDF) of x can be obtained from the following integration 

of the PDF functions g(s; β1) and h(t; β2), 
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Note that the optimization difference x is easily calculated from Ws
1 and Ws

2 that are readily available. Then, we can 

fit Eq. 8 to the optimization differences via MLE. This difference fit does not require estimation of true optima, and 

the error distributions of the two cases involved are obtained simultaneously. 
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4. Test Problem Study of Probabilistic Modeling of Optimization Error 

 

 Before addressing the HSCT problem, we demonstrate the estimation of the optimization error statistics for 

a simple optimization problem, the generalized Rosenbrock function [11] in five dimensions: 
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The unconstrained minimization problem has a unique optimum x* = (1, 1, 1, 1, 1) at which f(x*) = 0. Optimization 

was performed from randomly selected initial design points using DOT [12], MATLAB [13], and PORT [14], all 

with finite difference gradients. DOT and MATLAB produced incorrect results in 7 and 27 runs, respectively, out of 

500 runs. All failures occurred at essentially the same point x = (-0.962, 0.936, 0.881, 0.778, 0.605). The condition 

number of the Hessian matrix at the point was about 2400, which is an indication of ill-conditioning of the problem. 

The routine DMNF of the PORT mathematical library produced incorrect results for most of the 500 runs, 

converging to a different design point for each run. This unexpected failure was traced to a programming error on 

our part: the name of the Fortran function calculating f(x) was not declared as double precision, while the double 

precision PORT optimization routine was used. When the programming error was corrected, PORT found the true 

optimum for all the 500 runs. 

The programming error caused loss of significant figures in the objective function values passed to DMNF 

and the optimization terminated prematurely for many runs. In this particular problem, the programming error 

caused convergence errors. Since user’s programming errors are not an uncommon source of optimization error, we 

selected this problem for initial demonstration of the low-fidelity fit. 

In order to generalize the problem to produce a set of runs, we added parameters b to Eq. 9 [1] so that the 

Rosensbrock function becomes 
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We define 

);(min)( bxb
x

ff o ≡ ,      (11) 

 

and there are two levels of optimization; b* is sought to minimize fo(b) in the upper level, and x* is sought to 

minimize f for a given b to find fo(b) in the lower level. b corresponds to the configuration design variables of the 

HSCT in the system level and x corresponds to the design variables of the structural optimization, the sub-

optimization. In this section, we will estimate optimization errors when the erroneous PORT was applied. 

We elected to change only b1, b2, and b3, while keeping b4 = 1, to make fo(b) have a minimum of zero at (b1, 

b2, b3 ) = (1, 1, 1). The ranges of bk’s are chosen to be between 0.9 and 1.1. For a given set of bk’s, the parameterized 

Rosenbrock function is minimized from an initial design point x = (1.1, 0.9. 1.1, 0.9. 1.1). Figure 2 is a design-line 
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plot of fo showing the noisy response of fo(b1, b2, b3) when PORT with the programming error was used. It is a one-

dimensional cut of the fo response on eleven data points linearly interpolated between b = (0.9, 0.9, 0.9) and b = (1.1, 

1.1, 1.1). The true response corresponds to results of PORT without the programming error. We can see that PORT 

with the programming error gave satisfactory results for only two out of the eleven runs.  Following Eq. 1, we define 

optimization error as 

 
t

o
e

o ffe −= ,      (12) 

 

where fo
e is the result of the erroneous PORT and fo

t is the result of the correct PORT. It is apparent that poor 

optimizations result in heavier designs and the optimization error is one-sided. 

To measure the average error of PORT on the parameterized Rosenbrock function, we need a sample set of 

optimization runs. We used 125 (= 5×5×5) data points from a full factorial experimental design of five levels in b. 

PORT with the programming error was used to calculate fo for each of the 125 variants of the parameterized 

Rosenbrock function. Two sets of 125 data points were generated by using two different initial x’s: Case 1 using x0 

= (1.1, 0.9, 1.1, 0.9, 1.1) and Case 2 using x0 = (0.9, 1.1, 0.9, 1.1, 0.9). Also, PORT without the programming error 

(denoted Case 0) was used to calculate the error of Case 1 and Case 2 according to Eq. 12. Table 2 summarizes the 

average errors. The errors were large compared to the true fo, whose average is 0.00399; the average errors of Case 1 

and Case 2 were 0.00658 (165%) and 0.00505 (127%), respectively. The average difference of fo between Cases 1 

and 2 was 0.00797 (200%) and the largest difference was as high as 1965%.  

 

Check of the Weibull Model 

 

We first check that the convergence errors for the Rosenbrock problems can be modeled by the Weibull 

distribution. A Weibull model was fit to the distribution of the optimization errors of Case 1 and Case 2 using the 

weibfit routine of MATLAB, and the results are summarized in Table 3. According to the p-values of the χ2 

goodness-of-fit test, the fit to Case 1 was marginally rejected at the 0.05 significance level, while the fit to Case 2 

was reasonable. The overall characteristics of the error can be described by fitµ̂  and fitσ̂  from the MLE fit. On the 

other hand, the mean and standard deviation can be estimated directly from e by Eq. 2. In Table 3, fitµ̂  and 

fitσ̂ were compared with dataµ̂  and dataσ̂ . The agreement is good except for the standard deviation of Case 1, with 

35.6% discrepancy.  

The histograms in Figure 3 compare the shape of the error distribution to the Weibull fit results. The 

optimization error is nonnegative, and the probability for large error decreases rapidly to zero. Although the fit to 

Case 1 was marginally rejected by the χ2 test, the frequencies predicted by the error fit (solid line) show a reasonable 

match with the error data in Figure 3(a). The error fit to Case 2 in Figure 3(b) describes the error well. We conclude, 

therefore, that the Weibull model may be good enough to estimate the errors from pairs of poorly-converged runs, 

which we test in the next section. 
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Difference Fit for the PORT Optimization Error 

 

Given the Weibull model for the error, we can use the pair of Cases 1 and 2 to estimate the error from only 

poorly-converged optimization data. Note that the initial x of Case 2 was selected such that it is a vertex point 

diagonally located with respect to the initial x of Case 1, to reduce possible dependence of the errors between Case 1 

and Case 2.   The correlation between e1  (error of Case 1) and e2  (error of Case 2) was low,  -0.0371. 

The results of the poorly converged data fit using the Weibull model are shown in Table 4. Note that the 

distribution parameters α and β of Case 1 and Case 2 are simultaneously estimated. Because there is no closed form 

for the probability density of the difference for the Weibull model, Eq. 8 was numerically integrated using Gaussian 

quadrature. According to the χ2 test, the difference fit was reasonable with a p-value of 0.4357. 

From results of the difference fit, we can estimate the mean and standard deviation of the optimization error 

of the two cases involved (Table 4), which can be compared to the estimates from data using Eq. 2. The estimates 

for Case 1 were reasonable, with 2.7% discrepancy for the mean (µ) and 6.1% discrepancy of the standard deviation 

(σ). The estimates for Case 2 were in closer agreement with a 2.0% discrepancy for µ and a 0.9% discrepancy for σ.  

The results demonstrate the usefulness of the probabilistic model for the optimization error. By incorporating the 

difference data in the probability model, we were able to estimate the average error and standard deviation without 

obtaining accurate optimization results. Figure 3 shows that the error distributions predicted by the difference fit 

(dashed lines) describe well the error distribution and the difference fits are comparable to the error fits. 

 

5. Estimation of Errors from the HSCT Structural Optimization 

 

In the previous section, probabilistic modeling was applied to the optimization error due to programming 

error. An interesting observation for the Rosenbrock example was that the programming error happened to cause 

convergence error. We found that the Weibull distribution successfully modeled the convergence error. For the 

HSCT structural optimization, we have a more typical situation where inadequate convergence criteria resulted in 

convergence error.  Unlike the Rosenbrock example, we do not know the true optimum for this practical engineering 

problem. 

The authors [2] applied the probabilistic models to the errors of the HSCT structural optimization and 

showed that the Weibull distribution successfully modeled the error for several cases of different GENESIS 

convergence criteria. In addition, the difference fit approach was applied to sets of optimization results with 

different convergence criteria and gave reasonable estimates of the average error. Here we will show that the 

difference fit can also be applied to optimization runs with two different initial designs. Changing the initial design 

of the optimization is straightforward and has a computational advantage over tightening the convergence criteria. 

 

 

 



 9

 

Check of the Weibull Model 

 

The Weibull model was fitted to Case 1 and Case 2, where the only difference is the choice of initial design 

point, and the results are summarized in Table 5. p-values of the χ2 test indicated a poor fit for Case 1, while the fit 

was acceptable for Case 2 with a 5% confidence level. Figure 4 compares histograms of the optimization error e 

with the predicted frequencies from the fitted Weibull models. It is seen that the error distribution has a mode near 

zero and decreases rapidly for large error. The Weibull fits give reasonable descriptions of the error distributions for 

both Case 1 and Case 2, although the χ2 test implied an unsatisfactory fit for Case 1.  

The average errors 
fitµ̂  estimated from the fit were in reasonable agreements with 

dataµ̂ : -5.63% and –8.54% 

discrepancies for Case 1 and Case 2, respectively. The estimates of standard deviation 
fitσ̂  from the fits were less 

accurate, particularly for Case 2, with a discrepancy of –14.6% and –23.4% for Case 1 and Case 2, respectively. 

Figure 4, comparing histograms of the error e data (bars) and the error fit (solid line), indicates that the Weibull 

model is suited for the optimization errors for both Case 1 and Case 2 

 

Difference Fit of the Weibull Model 

 

 The difference fit was performed using the Weibull distribution on the pair of Cases 1 and 2. Recall that 

relatively large perturbations (multiplication factors between 0.1 – 1.9) were applied to the initial design point. The 

large perturbation was intended to reduce dependence of errors between Case 1 and Case 2, and the correlation 

coefficient was estimated to be 0.0565. The χ2 test on the optimization difference indicated a reasonable fit with a p-

value of 0.5494. From the difference fit, we estimate the mean and standard deviation of the optimization error of 

each of the two cases involved. Table 6 shows that the estimates of mean error 
fitµ̂  by the difference fit have 

reasonable agreements with 
dataµ̂ : -14.7% and –19.4% discrepancies for Case 1 and Case 2, respectively. The 

estimates of standard deviation 
fitσ̂  are also in a reasonable match with 

dataσ̂ : 12.0% and 0.704% discrepancies for 

Case 1 and Case 2, respectively. Figure 4 shows that the error distributions predicted by the difference fit (dashed 

lines) are in reasonable agreement with the data, and the difference fits are comparable to the error fits. 

For both the Rosenbrock function results and the HSCT structural optimization results, the Weibull model 

was useful in estimating convergence errors causing noisy optimization results. This information about the error 

distribution family helped us to use the difference fit effectively to estimate errors of low fidelity optimizations. In 

practice, some preliminary knowledge about the error distribution family may be sufficient for the difference fit, 

because parametric families of distributions like the Weibull and gamma offer considerable flexibility for 

representing data. Furthermore, a posteriori tests like χ2 test can be used to validate a distribution choice. 
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6. Concluding Remarks 

 

This paper showed that a probabilistic model of optimization convergence errors can be used to obtain 

statistics of these errors from two sets of optimization runs with different starting points. Both the previous results 

based on varying convergence criteria and the examples presented in this paper indicated that the Weibull 

distribution may model optimization convergence errors sufficiently well for this purpose. One test problem was the 

parameterized Rosenbrock function, where a programming error caused convergence error. A second problem was 

structural optimization of the HSCT wing, where the optimal wing structural weight was inaccurate due to 

inadequate convergence criteria.  

For both problems the Weibull model allowed estimation of the average error in poorly converged 

optimizations without requiring any fully converged runs. The approach of fitting the differences of pairs of poorly 

converged runs successfully estimated the averages and standard deviations of the errors. The difference fit can be 

applied by changing the convergence criteria, or by changing the initial design points. Since initial design points are 

simple and straightforward to change, one may easily apply the difference fit to estimate error statistics of various 

optimization problems.  
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Table 1: Average error of the HSCT structural optimization runs on 126 HSCT configurations for two cases of 
different initial design points. 

Set of optimization runs Case 1 Case 2 
Description Using the original initial 

point  
Using a perturbed initial 
point from the original 

Average Ws  85340 lb. 85202 lb. 
Average error  

(% compared to the average of true Ws) 
4458 lb. 
(5.51%) 

4321 lb. 
(5.34%) 

Average CPU time on a SGI Origin 75.5 sec. 76.5 sec. 
Average of absolute differences of Ws 

between Cases 1 and 2 
(% compared to the average of true Ws) 

5942 lb. 
(7.3%) 

Maximum of absolute differences of Ws 
between Cases 1 and 2 

(% compared to the average of true Ws) 

58715 lb. 
(72.1%) 

 

Table 2: Summary of PORT runs for 125 variants of the parameterized Rosenbrock function. 
Set of optimization runs Case 1 Case 2 

Description With programming error, 
x0 = (1.1, 0.9, 1.1, 0.9, 1.1) 

With programming error, 
x0 = (0.9, 1.1, 0.9, 1.1, 0.9) 

Average error of fo 
(% compared to the average of true fo) 

0.00658 
(165%) 

0.00505 
(127%) 

Average of absolute differences of fo 
between Cases 1 and 2 

(% compared to the average of true fo) 

0.00797 
(200%) 

Maximum of absolute differences of fo 
between Cases 1 and 2 

(% compared to the average of true fo) 

0.0784 
(1965%) 
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Table3: Check of the Weibull model to the PORT optimization error of the parameterized Rosenbrock function.  

Set of optimization runs Case 1 
x0 = (1.1, 0.9, 1.1, 0.9, 1.1) 

Case 2 
x0 = (0.9, 1.1, 0.9, 1.1, 0.9) 

dataµ̂  0.00658 (165%)* 0.00505 (127%) 

fitµ̂  0.00692 (173%) 0.00496 (124%) 

( fitµ̂ - dataµ̂ )/ dataµ̂  5.2% -1.8% 

dataσ̂  0.00752 (189%) 0.0110 (276%) 

fitσ̂  0.0102 (256%) 0.0102 (256%) 

( fitσ̂ - dataσ̂ )/ dataσ̂  35.6% -7.3% 

α  (shape parameter) 0.6941 0.5297 
β  (scale parameter) 0.005421 0.002744 

p-value of χ2 test 0.0392 0.6989 
* Percentage with respect to the average of true fo 

 
 

Table 4: Difference fit to optimization error of the parameterized Rosenbrock function. 
Set of optimization runs Case 1 Case 2 

dataµ̂  0.00658 (165%)* 0.00505 (127%) 

fitµ̂   0.00676 (169%)  0.00515 (129%) 

( fitµ̂ - dataµ̂ )/ dataµ̂  2.7% 2.0% 

dataσ̂  0.00752 (189%) 0.0110 (276%) 

fitσ̂  0.00798 (200%)  0.0111 (278%)  

( fitσ̂ - dataσ̂ )/ dataσ̂  6.1% 0.9% 

α 0.8507 0.5134 
β 0.006214 0.002698 

p-value of χ2 test 0.4357 
 * Percentage with respect to the average of true fo 



 15

 
 

Table 5: Check of the Weibull model to the errors of the HSCT structural optimization. 
Set of optimization runs Case 1 Case 2 

dataµ̂  4458 lb. (5.51%)* 4321 lb. (5.34%) 

fitµ̂  4207 lb. (5.20%) 3952 lb. (4.88%) 

( fitµ̂ - dataµ̂ )/ dataµ̂  -5.63% -8.54% 

dataσ̂  8383 lb. (10.4%) 9799 lb. (12.1%) 

fitσ̂  7157 lb. (8.85%) 7505 lb. (9.28%) 

( fitσ̂ - dataσ̂ )/ dataσ̂  -14.6% -23.4% 

α 0.6161 0.5646 
β 2891 2415 

p-value of χ2 test 0.0005 0.0925 
     * Percentage with respect to the average of true Ws 

 
 

Table 6: Difference fit to the errors of the HSCT structural optimization. 
Set of optimization runs Case 1 Case 2 

dataµ̂  4458 lb. (5.51%)* 4321 lb. (5.34%) 

fitµ̂  3804 lb. (4.70%)  3481 lb. (4.30%)  

( fitµ̂ - dataµ̂ )/ dataµ̂  -14.7% -19.4% 

dataσ̂  8383 lb. (10.4%) 9799 lb. (12.1%) 

fitσ̂  9393 lb. (11.6%) 9868 lb. (12.2%) 

( fitσ̂ - dataσ̂ )/ dataσ̂  12.0% 0.704% 

α 0.4666 0.4262 
β 1659 1236 

p-value of χ2 test 0.5494 
     * Percentage with respect to the average of true Ws 
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Figure 1: Noisy Ws response from structural optimization along a line connecting two extreme configurations.  

Case 1 and Case 2 used different initial design points. 
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Figure 2: Design line plot of the optimal values (fo) for the parameterized Rosenbrock function. The line is between 

b = (0.9, 0.9, 0.9) and b = (1.1, 1.1, 1.1). 
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(b) For Case 2 

 
Figure 3: Comparison of histograms between the optimization error data and the Weibull fits for the parameterized 

Rosenbrock function problem. 
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(b) For Case 2 

 
Figure 4: Comparison of histograms between the optimization error data and the Weibull fits for the HSCT 

structural optimization problem. 
 

 


