
Parallel Global Aircraft Configuration Design
Space Exploration

CHUCK A. BAKER, LAYNE T. WATSON, BERNARD GROSSMAN, WILLIAM H. MASON
Multidisciplinary Analysis and Design (MAD) Center for Advanced Vehicles

Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061-0203

USA
ltw@cs.vt.edu http://www.aoe.vt.edu/mad/mads.html

RAPHAEL T. HAFTKA
Department of Aerospace Engineering, Mechanics and Engineering Science

University of Florida
Gainesville, Florida 32611-6250

USA
haftka@ufl.edu

Abstract: – The preliminary design space exploration for large, interdisciplinary engineering problems is
often a difficult and time-consuming task. General techniques are needed that efficiently and methodically
search the design space. This work focuses on the use of parallel load balancing techniques integrated
with a global optimizer to reduce the computational time of the design space exploration. The method is
applied to the multidisciplinary design of a High Speed Civil Transport (HSCT). A modified Lipschitzian
optimization algorithm generates large sets of design points that are evaluated concurrently using a variety
of load balancing schemes. The load balancing schemes implemented in this study are: static load balancing,
dynamic load balancing with a master-slave organization, fully distributed dynamic load balancing, and
fully distributed dynamic load balancing via threads. All of the parallel computing schemes have high
parallel efficiencies. When the variation in the design evaluation times is small, the computational overhead
needed for fully distributed dynamic load balancing is substantial enough so that it is more efficient to use
a master-slave paradigm. However, when the variation in evaluation times is increased, fully distributed
load balancing is the most efficient.

Key-Words: – Nonlinear programming, Global optimization, Parallel computation, Aerospace

1 Introduction
Previous work [1] has shown that the design space of the HSCT configuration is complex. Local minima
occur because the feasible design domain is nonconvex. Running local optimizations from a sufficient number
of starting points distributed throughout the design space requires a large number of function evaluations
and still does not guarantee that the promising regions of the design space will be explored. A global
optimizer is needed that is able to judiciously balance the local and global searches, insuring a complete
space investigation, while keeping the number of function evaluations to a minimum.

Global optimization in high dimensional spaces requires many thousands of analyses, and this may
not be possible without parallel computation. Fortunately, many global optimization algorithms can take
advantage of analyzing many design points in parallel, thus allowing relatively simple course grain paral-
lelization. However, the question of how to best manage the evaluation and distribution of points on parallel
computers is unresolved for exploratory multidisciplinary engineering design studies. The objective of the
present paper is to explore several options for distributing the work among the nodes of a parallel computer.

Section 2 describes the aircraft design problem, Section 3 gives the direct search global optimization
algorithm, and Section 4 presents detailed pseudo code for the parallel version of the algorithm from Section
3. Sections 5 and 6 give parallel load balancing and termination detection strategies. Parallel performance
results are presented and discussed in Section 7. Sections 8 and 9 describe a modified, more aggressive,
global optimization algorithm and its parallel performance. All the results are for large SGI Origin 2000
systems. Section 10 summarizes the results.

1



Fig. 1. Typical HSCT configuration.

2 HSCT Design Problem
The design problem considered is the optimization of a HSCT configuration [10], [11] to minimize takeoff
gross weight (TOGW) for a range of 5500 nautical miles and a cruise Mach number of 2.4, while carrying 251
passengers. A typical HSCT configuration is seen in Figure 1. The choice of gross weight as the objective
function directly incorporates both aerodynamic and structural considerations, in that the structural design
directly affects aircraft empty weight and drag, while aerodynamic performance dictates drag and thus the
required fuel weight.

To successfully perform aircraft configuration optimization, it is important to have a simple, but mean-
ingful, mathematical characterization of the geometry of the aircraft. This paper uses a model that defines
the HSCT design problem using the twenty-eight design variables listed in Table 1. Twenty-four of the
design variables describe the geometry of the aircraft and can be divided into six categories: wing planform,
airfoil shape, tail areas, nacelle placement, and fuselage shape. In addition to the geometric parameters,
four variables define the idealized cruise mission: mission fuel, engine thrust, initial cruise altitude, and
constant climb rate used in the range calculation.

For the optimizer used here, upper and lower bounds had to be set on all n of the design variables.
These bounds form a n-dimensional rectangular shaped set in the design space, referred to as the design
box. In order to ensure that a thorough design space exploration was being conducted, the bounds were
chosen to include as wide a range of designs as realistically possible. The edges of the design box were
set near the limits of physically impossible designs (overlapping geometries, negative chord lengths) or the
assumptions of the numerical analyses being used.

Sixty-eight geometry, performance, and aerodynamic constraints, listed in Table 2, are included in the
optimization. Aerodynamic and performance constraints can only be assessed after a complete analysis of
the HSCT design; however, the geometric constraints can be evaluated using algebraic relations based on
the 28 design variables.

Methods of varying fidelity are used for the aerodynamic and structural analyses in the constraint
evaluations. The methods used to calculate the drag components used in the drag calculation and their
corresponding ranges are described in [6], [7]. The aerodynamics calculations are based on the Mach box
method [4], [3], and the Harris wave drag code [5]. A simple strip boundary layer friction estimate is
implemented as in [7]. A vortex lattice method with vortex lift and ground effects included [2] is used to
calculate landing angle of attack. Structural weights are calculated by the FLOPS [12] weight equations.
Each of these analysis methods uses iterative loops or discretization methods that can cause differences in
the computational time needed to evaluate (calculate the objective function and constraint values) different
HSCT designs.

3 Lipschitzian Global Optimizer (DIRECT)
The global optimizer selected to explore the design space is a Lipschitzian unconstrained optimization
algorithm that (effectively) uses all possible values of the Lipschitz constant [8]. By using different values
of the constant, which can be viewed as an upper limit on the variation of the function, equal emphasis is

2



Table 1. HSCT configuration design variables.

Index Description Index Description
1 Wing root chord (ft) 15 Fuselage restraint 2, x (ft)
2 Leading edge (LE) break point, x (ft) 16 Fuselage restraint 2, y (ft)
3 LE break point, y (ft) 17 Fuselage restraint 3, x (ft)
4 Trailing edge (TE) break point, x (ft) 18 Fuselage restraint 3, y (ft)
5 LE wing tip, x (ft) 19 Fuselage restraint 4, x (ft)
6 Wing tip chord (ft) 20 Fuselage restraint 4, y (ft)
7 Wing semi-span (ft) 21 Nacelle 1 location (ft)
8 Chordwise location of max. thickness 22 Nacelle 2 location (ft)
9 LE radius parameter 23 Vertical tail area (ft2)
10 Airfoil t/c ratio at root, (%) 24 Horizontal tail area (ft2)
11 Airfoil t/c ratio at LE break, (%) 25 Thrust per engine (lb)
12 Airfoil t/c ratio at LE tip, (%) 26 Flight fuel (lb)
13 Fuselage restraint 1, x (ft) 27 Starting cruise/climb altitude (ft)
14 Fuselage restraint 1, y (ft) 28 Supersonic cruise/climb rate (ft/min)

Table 2. HSCT optimization constraints.

Index Constraint Index Constraint
1 Fuel volume ≤ 50% wing volume 35 CL at landing speed ≤ 1
2 Wing root TE ≤ Tail LE 36–53 Section CL at landing ≤ 2
3–20 Wing chord ≥ 7.0 ft 54 Landing angle of attack ≤ 12◦
21 LE break within wing semi-span 55–58 Engine scrape at landing
22 TE break within wing semi-span 59 Wing tip scrape at landing
23 Root chord t/c ratio ≥ 1.5% 60 TE break scrape at landing
24 LE break chord t/c ratio ≥ 1.5% 61 Rudder deflection ≤ 22.5◦
25 Tip chord t/c ratio ≥ 1.5% 62 Bank angle at landing ≤ 5◦
26–30 Fuselage restraints 63 Tail deflection at approach ≤ 22.5◦
31 Wing spike prevention 64 Takeoff rotation to occur ≤ Vmin

32 Nacelle 1 inboard of nacelle 2 65 Engine-out limit with vertical tail
33 Nacelle 2 inboard of semi-span 66 Balanced field length ≤ 11000 ft
34 Range ≥ 5500 nautical miles
67–68 Mission segments: thrust available ≥ thrust required

placed on the local and global search being performed by the optimizer. This algorithm is called DIRECT
because the algorithm is a direct search technique and as an acronym for dividing rectangles, one of the
primary operations in the procedure.

The algorithm begins by scaling the design box to a n-dimensional unit hypercube. The center point
of the hypercube is evaluated and then points are sampled at one-third the cube side length in each
coordinate direction from the center point. Depending on the direction with the smallest function value,
the hypercube is then subdivided into smaller rectangles, with each sampled point becoming the center of
its own n–dimensional rectangle or box. All boxes are identified by their center point and their function
value at that point.

From there the algorithm loops in a procedure that subdivides each of the boxes in the set in turn until
termination or convergence. By using different values of the Lipschitz constant, a set of potentially optimal
boxes is identified from the set of all boxes. These potentially optimal boxes are sampled in the directions
of maximum side length, to prevent boxes from becoming overly skewed, and subdivided again based on
the directions with the smallest function value. If the optimization continues indefinitely, all boxes will
eventually be subdivided meaning that all regions of the design space will be investigated. The algorithm
[8] is as follows:
1. Normalize the search space to be the unit hypercube. Let c1 be the centerpoint of this hypercube and
evaluate f(c1).

2. Identify the set S of potentially optimal rectangles (those rectangles defining the bottom of the convex
hull of a scatter plot of rectangle diameter versus f(ci) for all rectangle centers ci) as in Figure 2.

3



0.05 0.1 0.15 0.2 0.25
Rectangle diameter

3.5

4

4.5

5

5.5

6

f�
c�

Potentially optimal
Not considered

Fig. 2. DIRECT point selection.

3. For all rectangles j ∈ S:
3a. Identify the set I of dimensions with the maximum side length. Let δ equal one-third of this

maximum side length.
3b. Sample the function at the points c± δei for all i ∈ I, where c is the center of the rectangle and ei

is the ith unit vector.
3c. Divide the rectangle containing c into thirds along the dimensions in I, starting with the dimension

with the lowest value of f(c ± δei) and continuing to the dimension with the highest f(c ± δei).
4. Repeat 2.–3. until stopping criterion is met.
Two important issues in using the algorithm are how to determine convergence and incorporate con-

straint values. For this study, the algorithm was run for a fixed number of loops or iterations. Since
the purpose of the optimization was to identify promising regions of the design space, it was unnecessary
to tightly converge to a global optimum. Constraints were accounted for through the use of a simple
penalty function, as follows. Let x be the 28-dimensional design vector, f(x) the TOGW, and gi(x) ≤ 0 the
constraints in Table 2. The constrained optimization problem

minf(x) subject to gi(x) ≤ 0, i = 1, ..., 68,

is converted to the unconstrained optimization problem

min f(x) + 10
68∑

i=1

max
{
0, gi(x)

}
.

4 Parallel DIRECT
Since DIRECT generates large sets of points to be evaluated at each iteration, parallel computers can easily
be used to reduce the computation time. The parallel implementations that were studied employ a variety
of methods to control processor work distribution, to generate the point set, and to balance the function
evaluation work load. Below is pseudo code for a parallel implementation of DIRECT using Np processors,
incorporating fully distributed control (DLBDC), which is described in the next section.

iteration : = 1

while iteration ≤ maximum iteration
find potentially optimal point set, local Copt, from previously evaluated box center points, Ceval

if P0 then
gather Copt from all processors
find global Copt from local Copt sets
broadcast global Copt set to all processors

end if
remove points in local Copt not in global Copt

if number of points in global Copt ≤ Np logNp, then
total tasks Ntasks : = number of points in local Copt; task counter itask : = 1

4



while termination not detected
if itask ≤ Ntasks then

sample around all Copt(itask) to create Cnew(itask)

evaluate function at all Cnew(itask)
itask : = itask + 1

else
if outgoing work request is not pending, then

generate random processor number, Prand; send work request to Prand

end if
end if
process message of each type (incoming work request, outgoing work request reply,

token pass, etc.) received;
if outgoing work request reply received then increment Ntasks by number of tasks received;
if work request received then

if Ntasks − itask > 1 then
send �(Ntasks − itask)/2� tasks to requesting processor;
decrement Ntasks by �(Ntasks − itask)/2� tasks;

else
send 0 tasks to requesting processor;

end if
end if

end while
else

sample around all Copt to create Cnew

total tasks Ntasks : = number of points in Cnew; task counter itask : = 1
while termination not detected

if itask ≤ Ntasks then
evaluate function at Cnew(itask)
itask : = itask + 1

else
if outgoing work request is not pending, then

generate random processor number, Prand; send work request to Prand

end if
end if
process message of each type (incoming work request, outgoing work request reply,

token pass, etc.) received;
if outgoing work request reply received then increment Ntasks by number of tasks received;
if work request received then

if Ntasks − itask > 1 then
send �(Ntasks − itask)/2� tasks to requesting processor;
decrement Ntasks by �(Ntasks − itask)/2� tasks;

else
send 0 tasks to requesting processor;

end if
end if

end while
end if
if P0 then

gather Cnew from all processors
sort Cnew points by parent processor rank
scatter each Cnew point to its parent processor

end if
set new box side lengths for Cnew and its parent Copt points; append all Cnew to Ceval

iteration : = iteration + 1
end while

5



5 Load Balancing Strategies
As the potentially optimal boxes are sampled in their respective directions during the DIRECT optimization,
a typically large set of new design points, or tasks, that need to be evaluated is created. It is these tasks in
this set of designs that are load balanced. Processor communications were performed in the optimization
algorithm through the use of the Message Passing Interface (MPI) [13], a message passing standard. MPI
was chosen because, as a communications protocol, it is platform independent, thread-safe, and a widely
accepted standard.

In the master-slave implementation of dynamic load balancing, one processor, the master, makes all of
the calculations for box manipulation in DIRECT and controls the distribution of tasks to be evaluated
by the HSCT code on the slave processors. The master processor begins with the set of all boxes, finds
the potentially optimal boxes, and then samples inside of these boxes to generate the set of tasks. It then
distributes one task to each slave processor. When a slave processor completes the evaluation of its task it
returns the function value back to the master and receives another task, if available. The biggest potential
drawback to using this method is that there is a chance for a communication bottleneck caused by slave
processors simultaneously requesting work from the master. To investigate this effect, a version of the
master-slave implementation was also used that distributes the tasks in bins of 10.

For the static load balancing case, the processors only communicate with each other when finding the
set of potentially optimal boxes and initially distributing the tasks. At the start of a DIRECT loop each
processor finds its own local set of potentially optimal boxes. The root processor, P0, gathers all of the local
potentially optimal sets from the other processors and finds the global set of potentially optimal boxes.
This processor creates the set of new tasks from the global set of potentially optimal boxes. The new tasks
are equally distributed to all of the processors and the individual processors evaluate every task in their
set of new tasks. The problem inherent to static load balancing is that differences in evaluation times can
cause some processors to finish their tasks early and sit idle, while other processors continue to work on
their tasks.

The interprocessor communications used for the DIRECT box manipulation by the fully distributed
version of dynamic load balancing are the same as those performed by the static version, with the added
capability of task migration to processors that have finished their tasks. The dynamic load balancing
algorithm is based on that of previous work [9], employing random polling for the redistribution of tasks
and token passing to terminate the load balancing process. Once task evaluation is started by a processor,
it evaluates a single task and then processes any messages received during the evaluation of the task. The
cycle of evaluating and communicating is continued until the processor runs out of work, in which case it
begins sending work requests to a randomly selected processor either until work is found or the termination
is detected. If a work request is received by a processor, half of its remaining tasks are transferred to the
requesting processor.

A dynamic load balancing strategy is also implemented that uses threads in the fully distributed
version. Multi-threading in the distributed version is based on the POSIX (pthreads) package. In this
implementation, one thread is a worker responsible for evaluating tasks and sitting idle when no tasks are
available. A second thread handles all of the message passing and processing. By exploiting concurrency
at the processor level, messages can be processed at the same time as a task is being evaluated, instead of
the purely sequential operations used by the distributed version without threads.

In the subsequent discussion, these load balancing strategies are referred to as static (STATIC), dynamic
load balancing with the master-slave paradigm—bin size 1 (DLBMS01), dynamic load balancing with the
master-slave paradigm—bin size 10 (DLBMS10), dynamic load balancing with fully distributed control
(DLBDC), dynamic load balancing with fully distributed control using pthreads (DLBDCT).

6 Termination Detection
The termination detection scheme used for DLBDC and DLBDCT is the standard token wave algorithm
used in [9]. Suppose there are P processors. Each processor keeps track of its state in a local flag idle.
Initially, the flag idle is set to false if a processor has work or true otherwise. If at any time a processor
receives work, the idle flag is set to false. A token is passed around, in ring fashion, to all processors. If a
processor with idle = true receives the token, the token is less than P , and there are no pending requests
for incoming work, the token value is incremented and sent to the next processor in the ring; if the token

6



5 10 15 20 25 30 35 40
Iteration

100

200

300

400

500

N
um

be
r

of
ta

sk
s

Fig. 3. History of tasks per iteration.

1.5 2.0 2.5
Evaluation time �sec�

500

1000
1500

2000
2500

3000
3500

4000

N
um

be
r

of
ta

sk
s

1.5 2.0 2.5

Fig. 4. Time distribution for all 10,077 tasks evaluated.

received is equal to P , then that processor terminates, and broadcasts a termination message to all other
processors. If a processor with idle = false receives the token, the token is set to zero. When that processor
finishes its work, it passes the (zero) token along and sets idle = true. After all the tasks on all the processors
have been completed, the token makes two complete circuits of the ring of processors, terminating at the
end of the second circuit.

7 Parallel Performance, DIRECT
The parallel runs were conducted on an SGI Origin 2000 with a total of 256 CPUs. Runs were made on
4, 8, 16, 32, and 64 processors for each of the five load balancing methods. The DIRECT optimizer was
terminated after 37 iterations, performing 10,077 function evaluations. The history of total tasks for each
iteration is shown in Figure 3. The figure illustrates the amount of work that had to be distributed to the
processors during the load balancing. Figure 4 is a histogram of the evaluation times for the 10,077 tasks.
The variation in the evaluation times is relatively small, with most of the tasks taking around 1.75 seconds
to complete.

The parallel efficiencies for the runs are plotted in Figure 5. Efficiency is calculated relative to a serial
implementation of DIRECT. With static load balancing, the efficiency starts high (0.97) for 4 processors
and then linearly decreases to 0.83 with all 64 processors. The master-slave organization (DLBMS01) of
dynamic load balancing starts with a low efficiency, and then the efficiency gradually increases to be the
highest of the load balancing schemes for 64 processors. The initial low values of efficiency are because,
even though four processors are used, only the three slave processors are evaluating tasks. As the number
of processors increases, the increased number of slave processors minimizes this effect. The master-slave
organization with a bin size of 10 (DLBMS10) initially has a low efficiency like DLBMS01 then it peaks
at 0.80 for 8 processors. From then as the number of processors used increases, the efficiency plateaus at
0.57. The fully distributed version with dynamic load balancing performs the best up to 32 processors and
then the efficiency drops to 0.84 when using 64 processors, slightly below that of DLBMS01 and slightly
above that of STATIC. This is attributable to both the short average time per task and the relatively small
amount of total work assigned to each of the 64 processors. Also, a peculiarity was observed in that DLBDC
either ran at an efficiency of 0.84 or 0.78 (shown on plot). The distributed version with threads performs
the worst of all the methods, rapidly decreasing in efficiency as the number of processors used is increased.
This behaviour was not observed for pthreads on the Intel Paragon reported in [9], and thus is more likely
a reflection of the SGI pthreads implementation than of an inherent characteristic of pthreads.

To provide insight into why the distributed versions of the code were not performing as well as expected
for a large number of processors, a plot of the individual processor load for a complete optimization was
made (Figure 6) for the 64 processor case. From this plot it is clear that the master-slave organization
(DLBMS) does the best job of load balancing, the curve being nearly horizontal. The load distribution
for the distributed version without threads (DLBDC) falls directly on top of the curve for the static load
balancing case (STATIC). This is due to the variation in function evaluation times being small enough that
no tasks get transferred between processors, so DLBDC effectively becomes static load balancing. This
effect does not appear when the number of processors is small because each processor has a larger set and
with a large set the differences in evaluation times are magnified enough to where dynamic load balancing
does take place. The time spent evaluating tasks for the threaded code DLBDCT is almost double that
of all other methods. It was found that having the communicator thread running continuously sufficiently

7



10 20 30 40 50 60 70
Number of processors

0.5

0.6

0.7

0.8

0.9

1

E
ff

ic
ie

nc
y

DLBDC

DLBDC

DLBDCT

DLBMS10

DLBMS01

STATIC

Fig. 5. Parallel efficiencies for 4, 8, 16, 32, and 64 processor cases.

10 20 30 40 50 60 70
Processor number

250

300

350

400

450

500

550

600

T
as

k
tim

e
�s

ec
�

DLBDC

DLBDCT

DLBMS10

DLBMS01

STATIC

Fig. 6. Individual processor load, 64 processor case.

impeded the performance of each processor on the Origin to cause this noticeable rise in function evaluation
times.

An investigation of the two discrete run times for DLBDC revealed that the cause was the way that
memory is assigned for the Origin. The operating system assigns processes to memory banks (MLDs) and
to CPUs in nodes. Processes can migrate between nodes searching for free CPUs. For the slow runs,
about half the MPI processes have almost totally nonlocal memory allocation—the memory used by those
migrated processes is still allocated over on another node. The detrimental effect of nonlocal memory access
is apparent and significant.

8 Aggressive DIRECT
To observe the effect of larger sets of tasks for a large number of processors, a more aggressive version
of the DIRECT algorithm is implemented. For the aggressive DIRECT, the idea of using the Lipschitz
constants is discarded and the box with the smallest objective function for each box size existing is deemed
potentially optimal and subsequently subdivided. Consequently, for the example shown in Figure 2 there
will be a total of four potentially optimal boxes, instead of the three for the standard DIRECT algorithm.
This change in the algorithm typically results in a much larger set of new tasks to be evaluated and load
balanced at each iteration.

9 Parallel Performance, Aggressive DIRECT
The parallel runs were conducted on the same SGI Origin 2000 as the standard DIRECT. Runs were made
on 8, 16, 32, 64, and 128 processors for each of the five load balancing methods. Due to the large number of
points generated, the DIRECT optimizer was terminated after 20 iterations and performing 48,577 function
evaluations. The history of total tasks for each iteration is shown in Figure 7. The increase in number
of points at each iteration that the aggressive version provides is clearly illustrated in the figure, from an
average of 272 evaluations per iteration for the standard DIRECT to 2,429 for the aggressive version. After

8



5 10 15 20
Iteration

500

1000

1500

2000

2500

3000

N
um

be
r

of
ta

sk
s

Fig. 7. History of tasks per iteration.

1.5 2.0 2.5
Evaluation time �sec�

2500

5000

7500

10000
12500

15000

17500

20000

N
um

be
r

of
ta

sk
s

1.5 2.0 2.5

Fig. 8. Time distribution for all 48,577 tasks evaluated.

20 40 60 80 100 120
Number of processors

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
ff

ic
ie

nc
y

DLBDC

DLBDC

DLBDCT

DLBMS10

DLBMS01

STATIC

Fig. 9. Parallel efficiencies for 8, 16, 32, 64, and 128 processor cases.

four iterations the number of different box sizes becomes saturated; a new box size is being created while
another is being eliminated, resulting in a plateau in the number of new tasks. Figure 8 is a histogram of
the evaluation times for the 48,577 tasks. It can be seen that the variation in evaluation time has been
increased as well as the number of tasks with aggressive DIRECT. The aggressive version was also able
to find a better optimum HSCT design in fewer iterations than standard DIRECT, although of course the
total number of evaluations and aggregate CPU time are more (the aggressive case used 86,374 seconds of
serial CPU time versus 17,642 seconds for the standard DIRECT).

The parallel efficiencies for the runs using the aggressive DIRECT are plotted in Figure 9. All the load
balancing methods implemented exhibit similar trends as when used with the standard DIRECT except
that their efficiencies have been slightly improved. Due to the increase of variation in evaluation time,
DLBDC is now the most efficient method to 64 processors, where its efficiency is 0.94. The improvement in
load balancing of DLBDC over the other methods is also shown in Figure 10. The task time for DLBDCT,
not shown in Figure 10, hovered around 2300 seconds, well above all the other times. The memory problems
experienced with the standard DIRECT were experienced again here (Figure 9) and a valid run using 128
processors for DLBDC was not attained.

10 Conclusion
A variety of parallel load balancing strategies were successfully integrated into a global design space ex-
ploration method applied to a meaningful, complex aircraft design problem. The load balancing methods
implemented ranged from simple static load balancing to fully distributed dynamic load balancing via
threads. It was observed that the master-slave load balancing method was the most efficient for a large
number of processors, when the variation in function evaluation times for the test problem was small. When
the variation in function evaluation times is significant, as is the case for the aggressive DIRECT algorithm
or inherently in other aircraft design problems [9], or as here when using a small number processors, the fully
distributed dynamic load balancing method is most efficient. The use of pthreads greatly facilitates pro-
gramming, but the execution efficiency of pthreads varies greatly between system implementations—from
nearly invisible on the Intel Paragon to a factor of two slower on the SGI Origin.

9



10 20 30 40 50 60 70
Processor number

1340

1360

1380

1400

1420

T
as

k
tim

e
�s

ec
�

DLBDC

DLBMS10

DLBMS01

STATIC

Fig. 10. Individual processor load, 64 processor case.

References:
[1] C.A. Baker, B. Grossman, R.T. Haftka, W.H. Mason, and L.T. Watson, HSCT configuration design
space exploration using aerodynamic response surface approximations, in Proceedings of 7th AIAA/-
USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Saint Louis, MO,
1998, pp. 769–777.

[2] J. Bertin and M. Smith, Aerodynamics for Engineers, Prentice Hall, 1989.
[3] H. Carlson, R. Mack, and R. Barger, Estimation of attainable leading edge thrust for wings at subsonic
and supersonic speeds, Technical Report NASA TP-1500, 1979.

[4] H. Carlson and D. Miller, Numerical methods for the design and analysis of wings at supersonic speeds,
Technical Report NASA TN D-7713, 1974.

[5] R. Harris Jr., An analysis and correlation of aircraft wave drag, Technical Report NASA TM X-947,
1964.

[6] M.G. Hutchison, W.H. Mason, R.T. Haftka, and B. Grossman, Aerodynamic optimization of an HSCT
configuration using variable-complexity modeling, AIAA 31st Aerospace Sciences Meeting and Exhibit,
Reno, NV, AIAA Paper 93-0101, 1993.

[7] M.G. Hutchison, E.R. Unger, W.H. Mason, B. Grossman, and R.T. Haftka, Variable-complexity aero-
dynamic optimization of a high-speed civil transport wing, Journal of Aircraft, Vol. 31, No. 1, 1994,
pp. 110–116.

[8] D.R. Jones, C.D. Perttunen, and B.E. Stuckman, Lipschitzian optimization without the Lipschitz con-
stant, Journal of Optimization Theory and Application, Vol. 79, No. 1, 1993, pp. 157–181.

[9] D.T. Krasteva, C. Baker, L.T. Watson, B. Grossman, W.H. Mason, and R.T. Haftka, Distributed
control parallelism in multidisciplinary aircraft design, Concurrency: Practice and Experience, Vol. 11,
1999, pp. 435–459.

[10] P. MacMillin, O. Golovidov, W. Mason, B. Grossman, and R. Haftka, Trim, control, and performance
effects in variable-complexity high-speed civil transport design, Technical Report MAD 96-07-01, Vir-
ginia Polytechnic Institute and State University, Blacksburg, VA, 1996.

[11] P.E. MacMillin, O.B. Golovidov, W.H. Mason, B. Grossman, and R.T. Haftka, An MDO investigation
of the impact of practical constraints on an HSCT optimization, AIAA 35th Aerospace Sciences Meeting
and Exhibit, Reno, NV, AIAA Paper 97-0098, 1997.

[12] L.A. McCullers, Aircraft configuration optimization including optimized flight profiles, in Proceedings of
a Symposium on Recent Experiences in Multidisciplinary Analysis and Optimization, NASA CP-2327,
1984, pp. 395–412.

[13] M. Snir, S. Otto, S. Huss-Lederman, D.W. Walker, and J. Dongarra, MPI: The Complete Reference,
MIT Press, 1996.

10


