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THEORY OF GLOBALLY CONVERGENT PROBABILITY-ONE

HOMOTOPIES FOR NONLINEAR PROGRAMMING*

LAYNE T. WATSON†

Abstract. For many years globally convergent probability-one homotopy methods have been

remarkably successful on difficult realistic engineering optimization problems, most of which were

attacked by homotopy methods because other optimization algorithms failed or were ineffective.

Convergence theory has been derived for a few particular problems, and considerable fixed point

theory exists, but generally convergence theory for the homotopy maps used in practice for nonlin-

ear constrained optimization has been lacking. This paper derives some probability-one homotopy

convergence theorems for unconstrained and inequality constrained optimization, for linear and non-

linear inequality constraints, and with and without convexity. Some insight is provided into why the

homotopies used in engineering practice are so successful, and why this success is more than dumb

luck. By presenting the theory as variations on a prototype probability-one homotopy convergence

theorem, the essence of such convergence theory is elucidated.
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1. Introduction. Continuation methods for optimization, as for nonlinear sys-

tems of equations, have been around for a long time and studied extensively. This

paper concerns only a recent variant known as globally convergent probability-one ho-

motopy methods. The words “continuation” and “homotopy” are often used inter-

changeably, but subtle and fundamental distinctions can be drawn between contin-

uation, homotopy, and probability-one homotopy methods. These distinctions have

been discussed numerous times in the literature [5], [8], [25], [28], [33]. The purpose

of this paper is to help close a gap in the convergence theory for globally convergent

probability-one homotopy methods applied to nonlinear programming, and to offer

some theoretical justification for the observed success of homotopies in engineering

practice.

From a high level perspective, all the fundamental convergence theory was done

by Chow, Mallet-Paret, Yorke [5], and Watson [23], and all that remains is to verify

that a particular homotopy map has the right properties. Alas, the devil is in the

details, which are indeed often nontrivial. It is appropriate to sketch out here what is

well understood and where gaps remain.

Much of the early work on computational homotopy algorithms was motivated by

Brouwer fixed point problems: given a continuous function f from a compact, convex

subset of finite dimensional Euclidean space into itself, find a fixed point x = f(x).

The algorithms and theory are elegant and well understood for both simplicial [3], [6],

[7] and continuous [3], [5], [20] approaches.
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For nonlinear systems of equations F (x) = 0 not derived from Brouwer fixed

point problems, the theory [3], [5], [25], [26] and algorithms [28], [33] are well de-

veloped in terms of properties of F . Special cases, such as when F is a polynomial

system, have a deep and rich supporting theory [13], and special, highly sophisticated

algorithms have been devised to exploit the structure of F [14], [15], [33]. How-

ever, except in rare instances that usually result in polynomial systems, a physical

model does not directly result in a finite dimensional nonlinear system of equations

F (x) = 0. Rather, F (x) = 0 results from a discretization, approximation, or itera-

tion step of another mathematical model of the physical phenomenon. The catch is

that abstract conditions on F (for a homotopy algorithm to converge) do not easily

translate into meaningful or verifiable conditions on the physical model or on the dis-

cretization/approximation/iteration process. The gap here is considerable: not many

homotopy convergence theorems are stated at the level of physical modelling or the

high level processes that spawn the nonlinear systems F (x) = 0 to be solved.

One notable exception is the solution of nonlinear two-point boundary value prob-

lems (BVPs). Conditions on the original two-point boundary value problem itself for

which an approximation F (x) = 0 is solvable by a globally convergent homotopy algo-

rithm have been derived in a series of papers. Convergence theorems directly address-

ing the nonlinear two-point boundary value problem exist for approximation processes

based on shooting [21], finite differences [23], collocation [31], and finite elements [32].

This is significant because many physical models reduce to two-point boundary value

problems, and thus convergence theory exists for a large class of problems of interest.

For nonlinear constrained optimization the gap has been large. Global conver-

gence theorems, stated in terms of conditions on the objective function and constraints,

for homotopy algorithms have been an elusive quarry. Some attempts include [16],

[22], [24], [27], [29], [30]. Recently Lin et al. [9], [10], using a particular classical ho-

motopy map (not a probability-one map) and constraint aggregation, have obtained

convergence results for general nonlinear programming problems with a strong “nor-

mal cone condition” assumption. The convergence theory presented here has compar-

atively weak assumptions, applies to homotopy maps actually used in practice, and

does not use constraint aggregation, which is numerically ill-conditioned in practice

[30]. Probability-one homotopy algorithms have been enormously successful in en-

gineering practice, notwithstanding the lack of theory. The goal of this work is to

narrow the gap by providing such theorems for inequality constraints, and to help

explain theoretically the observed success in practice [26]. Extending the theory for

nonlinear equality constraints seems to require a homotopy existence theory for un-

derdetermined nonlinear systems, and would at least involve a nontrivial extension

of the proofs here. Nonlinear equality constraints are undeniably important, which

mandates future work on homotopy theory for them.

There is a variant of probability-one homotopy theory for piecewise smooth func-

tions [1], [2], and this might seem like a more natural tool for constrained optimization.

Recent work along these lines includes [4], [18], and [19]. Despite the appeal of these

nonsmooth formulations, they are not yet seriously competitive with the existing so-

phisticated numerical implementations for smooth formulations on realistic large scale

problems [4].
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After some background in §2, the theory is presented as a series of refinements ap-

plied to successively more general optimization problems. Sections 3 and 4 summarize

some known results, but all the results after Theorem 4.1 are new. The progression is

from unconstrained (§3) to nonnegative constraints (§4) to linear constraints (§5) to

nonlinear convex constraints (§6) to general nonlinear constraints (§7). First convexity
is assumed and then finally dropped in §7. Section 7 also provides some insight into

why the homotopy maps used in engineering practice might (or might not) work.

2. Background and notation. Let En denote n-dimensional Euclidean space,

Em×n the set of real m × n matrices, and the ith component of a vector x ∈ En by

xi. The ith row of a matrix A ∈ Em×n is denoted by Ai·, and the jth column by

A·j . For sets of indices M and N , AMN is the submatrix of A with rows indexed

by M and columns indexed by N . Similarly xM is the subvector of the vector x

corresponding to the indices in M . No distinction is made between row vectors and

column vectors, except when matrix arithmetic is involved. Following Mangasarian’s

notation for x ∈ En, x > 0 means all xi > 0, x >
= 0 means all xi >

= 0, and x ≥ 0 means

x >
= 0 but x �= 0. ‖·‖ is the 2-norm unless otherwise indicated.

The gradient of a differentiable function f : En → E is the row vector ∇f(x) =(
∂f
∂x1

(x), · · · , ∂f
∂xn

(x)
)
. The Jacobian matrix of F : En → Em is

DF (x) = ∇F (x) =




∇F1(x)
...

∇Fm(x)


 .

The Hessian matrix of the C2 function f : En → E is

∇2f(x) = D(∇f(x)) =




∂2f
∂x2

1
(x) · · · ∂2f

∂xn∂x1
(x)

...
...

∂2f
∂x1∂xn

(x) · · · ∂2f
∂x2

n
(x)


 .

For open U ⊂ En, open V ⊂ Em, n > m, a C2 map ρ : U → V is said to be transversal

to zero if Dρ has full rank on ρ−1(0). Note that in the trivial case where ρ−1(0) is

empty, ρ is trivially transversal to zero.

The theoretical foundation of probability-one homotopies (referred to in early

work as the Chow-Yorke algorithm) was laid by Chow, Mallet-Paret, and Yorke [5],

and the algorithm was immediately recast as a practical computational procedure by

Watson [20]. The intent here is not to summarize or survey probability-one homotopy

developments—see the survey papers [25] (early history), [26] (applications), and [33]

for the latest numerical algorithms.

Depending on the context and intended use, the supporting theory is presented

differently. The best formulation for the work here is contained in Lemmas 2.1–2.3

from [22], which are restated here for convenience.
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Lemma 2.1. Let ρ : Em × [0, 1)×En → En be a C2 map which is transversal to

zero, and define

ρa(λ, z) = ρ(a, λ, z).

Then for almost all a ∈ Em, the map ρa is also transversal to zero.

Lemma 2.1 is known as a parametrized Sard’s theorem, and its significance is

partially given by:

Lemma 2.2. In addition to the hypotheses of Lemma 2.1, suppose that for each

a ∈ Em the system ρa(0, z) = 0 has a unique nonsingular solution z(0). Then for

almost all a ∈ Em there is a smooth zero curve γ ⊂ [0, 1)×En of ρa(λ, z), emanating

from (0, z(0)), along which the Jacobian matrix Dρa(λ, z) has rank n. γ does not

intersect itself or any other zero curves of ρa, does not bifurcate, has finite arc length

in any compact subset of [0, 1)× En, and either goes to infinity or reaches (has an

accumulation point in) the hyperplane λ = 1.

Lemma 2.3.Under the hypotheses of Lemma 2.2, if the zero curve γ is bounded,

then it has an accumulation point (1, z̄). Furthermore, if rank Dρa(1, z̄) = n, then γ

has finite arc length.

Conceptually, how all this relates to optimization is as follows: (1) convert an

optimization problem to a nonlinear system of n equations in n unknowns, F (x) = 0.

(2) Construct a homotopy map ρa(λ, x) satisfying the hypotheses of the above lem-

mas, and with ρa(1, x) = F (x). (3) Track the zero curve γ of ρa from the known point

(0, z(0)) to a point (1, x̄). x̄ then solves the original optimization problem. Each of

these steps can be fraught with theoretical and computational difficulties, and homo-

topy algorithms are often considered (with some truth) more art than science. The

third step, homotopy zero curve tracking, is close to routine, with robust, numerically

stable mathematical software [33] being available. The homotopy construction step

is definitely an art, but good maps ρa are known for large classes of problems, and

several books exist on the topic [13], [3]. The first step, conversion of an optimization

problem to a nonlinear system, is perhaps the least understood and most debatable.

Why convert a difficult optimization problem into a (possibly even more) difficult

nonlinear system? There are enough examples of such counterintuitive conversions

being successful (e.g., Karmarkar’s algorithm converts a linear program into a series

of nonlinear programs) to keep the question open.

3. Unconstrained convex optimization. The simplest possible case, convex

unconstrained optimization, is worth mentioning because it shows how everything

should work in the ideal case. While a homotopy algorithm is not advocated for

convex unconstrained optimization, it is nevertheless reassuring that the theory does

cover this case elegantly.

Theorem 3.1. Let f : En → E be a C3 convex map with a minimum at x̃,

‖x̃‖ <
= M . Then for almost all a, ‖a‖ < M , there is a zero curve γ of the homotopy

map

ρa(λ, x) = λ∇f(x) + (1− λ)(x− a),

along which the Jacobian matrix Dρa(λ, x) has full rank, emanating from (0, a) and

having an accumulation point (1, x̄), where x̄ solves

min
x

f(x).
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If the Hessian matrix ∇2f(x̄) is nonsingular, then γ has finite arc length.

Theorem 3.1 is proved in [24], but a sketch of the proof is repeated here for several

reasons. First, it illustrates that a simple proof suffices for the unconstrained case.

Second, this proof is a prototype for many homotopy convergence proofs. Often, the

essence of a homotopy convergence theorem proof is to construct a map ρa(λ, x) to

which this proof applies, or to generalize the prototype proof to apply to a particular

ρa.

Let (λ, x) be any point with 0 <
= λ < 1 and ‖x‖ = 3M . Now ‖a‖ < M and

‖x̃‖ <
= M give

(x− x̃)(x− a) > 0,

and the convexity of f at the minimum x̃ gives

(x− x̃)∇f(x) = (x− x̃)
(
∇f(x)−∇f(x̃)

)
>
= 0.

Combining these inequalities yields

(x− x̃)
[
λ∇f(x) + (1− λ)(x− a)

]
> 0,

which means that ρa(λ, x) �= 0 for 0 <
= λ < 1 and ‖x‖ = 3M . Hence γ is bounded,

being contained in the solid cylinder [0, 1]× {x | ‖x‖ <
= 3M}. The conclusion follows

from Lemma 2.3.

The essence of the above proof is that the zero curve γ of ρa(λ, x) emanating from

the trivially found start point (0, a) does not pierce the surface

[0, 1)× {x | ‖x‖ = r}

of some sufficiently large (solid) cylinder containing (0, a). Then γ must be contained

inside the solid cylinder, hence bounded, and must therefore pierce (or at least accu-

mulate at) the hyperplane λ = 1 at a point (1, x̄). This prototype convergence proof

reveals a fundamental difference between continuation, homotopy, and probability-one

homotopy algorithms. For the former two, a convergence theorem would have to ad-

dress the existence and connectivity of γ for 0 <
= λ <

= 1, requiring assumptions beyond

the mere boundedness of γ. In contrast, a probability-one homotopy convergence proof

essentially amounts to proving the connected component of ρ−1
a (0) containing

(
0, z(0)

)
is bounded. The other requirements—transversality of ρ, ρa(0, z) being a trivial map,

ρa(1, z) = F (z) —are normally trivially satisfied by the construction of ρ. Finally,

note that continuation and homotopy algorithms must typically explicitly deal with

singularities along γ, whereas a well constructed probability-one zero curve γ has no

singularities, theoretical or numerical.
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4. Nonnegatively constrained convex optimization. Let f : En → E be a

C3 convex function, and say that f is uniformly convex if there exists ν > 0 such that

x
[
∇2f(z)

]
x >

= ν ‖x‖2 for all x, z ∈ En. Consider next the constrained optimization

problem

minf(x) such that x >
= 0. (4.1)

Since f is convex and Slater’s constraint qualification is satisfied, the Kuhn-Tucker

optimality conditions are both necessary and sufficient. Hence (4.1) is equivalent to

the nonlinear complementarity problem

x >
= 0, F (x) >

= 0, x F (x) = 0, (4.2)

where F (x) = ∇f(x). There are numerous ways to rewrite (4.2) as a nonsmooth

[4] or smooth nonlinear system of equations, but the simplest way (meeting the C2

requirement for smooth probability-one homotopies), due to Mangasarian [12], is as

K(x) = 0, (4.3)

where

Ki(x) = −
∣∣Fi(x)− xi

∣∣3 + (Fi(x)
)3

+ x3i . (4.4)

This choice for K(x) permits the use of the canonical homotopy map

ρa(λ, x) = λK(x) + (1− λ)(x− a). (4.5)

Since (4.1), (4.2), and (4.3) are equivalent, ρa(1, x̄) = 0 gives a solution x̄ to (4.1).

A convergence theorem for (4.5) uses a general existence result for the nonlinear

complementarity problem from [24]:

Lemma 4.1. Suppose every zero of K(x) lies in the ball ‖x‖ < r, where r is such

that x >
= 0 and ‖x‖ >

= r imply xk > 0 and Fk(x) >
= 0 for some index k. Then there

exists δ > 0 such that for almost all a >
= 0 with ‖a‖ < δ there is a zero curve γ of

ρa(λ, x), along which Dρa(λ, x) has full rank, connecting (0, a) to (1, x̄), where x̄ is a

zero of K(x).

This lemma directly gives the result (from [24]):

Theorem 4.1. Let f : En → E be a C3 uniformly convex map. Then there exists

δ > 0 such that for almost all a >
= 0 with ‖a‖ < δ there is a zero curve γ of

ρa(λ, x) = λ K(x) + (1− λ)(x− a),

where

Ki(x) = −
∣∣∣∣∂f(x)∂xi

− xi

∣∣∣∣
3

+

(
∂f(x)

∂xi

)3

+ x3i ,

along which Dρa(λ, x) has full rank, connecting (0, a) to a point (1, x̄), where x̄ solves

the constrained optimization problem (4.1).

Note that homotopy convergence theorems are often also existence theorems, as

is the case with Theorem 4.1, and consequently the assumptions certainly cannot be

weaker than are required for existence of a solution. The uniform convexity assumption
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of Theorem 4.1 is one way to guarantee the existence of a solution to (4.1). If one

assumes that (4.1) has a solution, then a theorem like the following is possible.

Theorem 4.2. Let f : En → E be a C3 convex map, and assume that (4.1) has

a solution x̃, and that the level sets of f are bounded. Then there exists δ > 0 such

that for almost all a >
= 0 with ‖a‖ < δ there is a zero curve γ of

ρa(λ, x) = λ K(x) + (1− λ)(x− a),

where

Ki(x) = −
∣∣∣∣∂f(x)∂xi

− xi

∣∣∣∣
3

+

(
∂f(x)

∂xi

)3

+ x3i ,

along which Dρa(λ, x) has full rank, emanating from (0, a) and reaching a point (1, x̄),

where x̄ solves (4.1).

Proof. Since K(x) = 0 is equivalent to (4.2), which is equivalent to (4.1), it suffices

to verify the hypotheses of Lemma 4.1 for the nonlinear complementarity problem with

F (x) = ∇f(x). First note that by assumption the solutions of (4.1) are bounded, and

therefore all the zeros of K(x) lie in open some ball B(M) =
{
x ∈ En | ‖x‖ < M

}
.

That is, every solution x̃ of (4.1) satisfies ‖x̃‖ < M .

Observe that it suffices to consider only points (λ, x) with 0 <
= λ < 1 and x >

= 0,

since xi < 0, ai >
= 0 imply Ki(x) < 0 and xi−ai < 0, which then imply

[
ρa(λ, x)

]
i
< 0;

hence x >
= 0 along the zero curve γ of ρa. f(x) has a maximum at some point x̂ on

the compact set

S1 =
{
x ∈ En | x >

= 0, ‖x‖ =M
}
.

By assumption, the level set

S2 =
{
y ∈ En | y >

= 0, f(y) <
= f(x̂)

}
is contained in some closed ball

{
x ∈ En | ‖x‖ <

= r/2
}
. Since x̂ ∈ S1 ∩ S2, 0 < M <

=

r/2 < r. Now consider any z >
= 0 with ‖z‖ = r. It follows that

f(z) > f(x̂) >
= f

(
M

r
z

)
> f(x̃),

and from the convexity of f ,

f

(
M

r
z

)
>
= f(z) +∇f(z)

(
M

r
z − z

)
⇒(

1− M

r

)
z∇f(z) >

= f(z)− f

(
M

r
z

)
> 0 ⇒

z∇f(z) > 0 ⇒

zk > 0 and
(
∇f(z)

)
k
> 0 for some index k, the requirement of Lemma 4.1.

Using concepts like recession cones and indicator functions from convex analysis

[17], very short proofs can be given for the next two theorems. The essential fact from

[17] is that if one nonempty level set is bounded, then all the level sets are bounded.

In the interest of maintaining an elementary exposition, short direct proofs are given
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here. A variant of Theorem 4.2 can be obtained without reference to level sets. One

such possibility is the next theorem.

Theorem 4.3. Let f : En → E be a C3 convex map, and assume that (4.1) has

a solution x̃ at which f is strictly convex. Then the conclusion of Theorem 4.2 holds.

Proof. x̃ is the unique minimum point from strict convexity, and hence the zeros

of K(x) are bounded. The proof of Theorem 4.2 applies if it can be shown that the

level set S2 is bounded. Suppose not. Then there exists a sequence y(k) ∈ S2 with∥∥y(k)∥∥ → ∞. The vectors y(k)
/∥∥y(k)∥∥ lie on the compact unit sphere, and therefore

have a convergent subsequence y(ki)
/∥∥y(ki)

∥∥ → y >
= 0. Reduce to this subsequence.

For each k, choose 0 < tk < 1 such that∥∥∥(1− tk)x̃+ tky
(k)
∥∥∥ =M. (4.6)

Now by the strict convexity of f at x̃,

f
(
(1− tk)x̃+ tky

(k)
)
< (1− tk)f(x̃) + tkf

(
y(k)

)
<
= (1− tk)f(x̃) + tkf(x̂). (4.7)

Taking the limit as k → ∞ (
∥∥y(k)∥∥→ ∞ and (4.6) give tk → 0) yields

f(x̃+ αy) <
= f(x̃), (4.8)

where x̃ + αy >
= 0, ‖x̃+ αy‖ = M > ‖x̃‖, which contradicts the strict convexity of f

at the minimum point x̃.

The most general version of the homotopy convergence theorem for (4.1), whose

proof is a refinement of the previous proof, is given last. Theorems 4.2 and 4.3 could

have been dispensed with, but presenting the proofs as a series of refinements is

instructive.

Theorem 4.4. Let f : En → E be a C3 convex map, assume that (4.1) has

a solution x̃, and that every solution x̃ satisfies ‖x̃‖ < M . Then the conclusion of

Theorem 4.2 holds.

Proof. By assumption the zeros of K(x) are bounded. The proof of Theorem

4.3, after the first sentence, applies verbatim, with the following changes. Without

strict convexity, the strict inequality in (4.7) becomes inequality (<=), but this doesn’t

matter in the limit. (4.8) still obtains, but now the contradiction is that x̃+αy is also

a solution of (4.1), which does not satisfy ‖x̃+ αy‖ < M .

5. Linearly constrained convex optimization. Let f : En → E be a C3

convex function, let A ∈ Em×n, b ∈ Em. First consider the problem

minf(x) subject to g(x) = Ax− b <
= 0. (5.1)

Since both f and g are convex and g satisfies the Arrow-Hurwicz-Uzawa constraint

qualification, (5.1) is equivalent to the Kuhn-Tucker problem(
∇f(x)

)t
+Atu = 0, (5.2)

Ax− b <
= 0, (5.3)

u >
= 0, (5.4)

ut(Ax− b) = 0. (5.5)
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As before, the complementarity conditions (5.3)–(5.5) can be replaced by a nonlinear

system K(x, u) = 0, defined by

Ki(x, u) = −|bi − Ai·x− ui|3 + (bi − Ai·x)
3 + u3i .

One possible homotopy map, that has been successful in practice on some difficult

engineering optimization problems [30], is

ρa(λ, x, u) = λ

((
∇f(x)

)t
+ Atu

K(x, u)

)
+ (1− λ)

(
x− x0

u− u0

)
, (5.6)

where a = (x0, u0) is the random probability-one homotopy parameter vector, and

u0 > 0. This is the direct generalization of what was done for simple nonnegativ-

ity constraints x >
= 0, and one would expect it to work. For instance, it is known

that a quadratic programming problem with general linear inequality constraints is

equivalent to a quadratic programming problem with only nonnegativity constraints.

Unfortunately, the homotopy map (5.6) does not suffice. Qualitatively, it worked be-

fore because (with convex f)K(x, u) and u−u0 had the same sign for large arguments,

thus ρa(λ, x, u) could not be zero outside some large ball. This meant the zero curve

γ of ρa could not penetrate the surface of that ball, and hence had to reach a solution

of the original problem. In (5.6), x and u can play off against other permitting ρ−1
a (0)

to be unbounded.

As a simple example, consider f(x) = (1/2)x2 and g(x) = 1 − x <
= 0, and take

x0 = −1, u0 = 0.1. The zero curve γ of the homotopy map ρa in (5.6) is unbounded,

as shown in Fig. 1. Of course a lucky guess for (x0, u0) may still work. For (x0, u0) =

(0,−1), γ has several turning points but still reaches λ = 1 in finite arc length.

0 0.2 0.4 0.6 0.8 1
Λ0

2

4

6

8

10

u

Fig. 1. Example of unbounded homotopy zero curve.
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The idea behind the repair of (5.6) is to replace (5.3) by

Ax− b− (1− λ)b0 <
= 0, (5.7)

and because of the technical necessity to preserve transversality, replace λK(x, u) +

(1− λ)(u− u0) by

K(λ, x, u)− (1− λ)c0. (5.8)

Assume that the feasible set {x | Ax − b <
= 0} is nonempty and bounded (this is not

an obstacle in practice, because variable bounds can always be added). For some

arbitrary initial guess x0 ∈ En, choose b0 ∈ Em, b0 > 0 such that Ax0 − b − b0 < 0.

Also choose c0 ∈ Em such that c0 > 0. Define Sλ = {x | Ax− b− (1− λ)b0 <
= 0}, and

observe that

S0 ⊃ Sλ1
⊃ Sλ2

⊃ S1 �= ∅ for 0 <
= λ1 < λ2

<
= 1. (5.9)

It would be desirable if complementarity could be automatically enforced by defining

K with something like

Ki(λ, x, u, b
0, c0) = −

∣∣(1− λ)b0i + bi − Ai·x−
(
ui − (1− λ)c0i

)∣∣3
+
(
(1− λ)b0i + bi −Ai·x

)3
+
(
ui − (1− λ)c0i

)3
, i = 1, · · · , m,

(5.10)

and then

ρ(x0, b0, c0, λ, x, u) =

(
λ
[(
∇f(x)

)t
+Atu

]
+ (1− λ)(x− x0)

K(λ, x, u, b0, c0)

)
. (5.11)

As always for probability-one homotopies, technically 0 <
= λ < 1. Unfortunately this

K results in ρ in (5.11) not being transversal to zero, due to inherent cancellation in

the structure of K in (5.10). Something a bit more complicated is required, such as

Ki(λ, x, u, b
0, c0) = −

∣∣(1− λ)b0i + bi −Ai·x− ui
∣∣3 + ((1− λ)b0i + bi − Ai·x

)3
+ u3i − (1− λ)c0i , i = 1, · · · , m.

(5.12)

The complication is that given c0 > 0 and (1−λ)b0+b−Ax0 > 0, some work is required

to find the starting point at λ = 0: the value u0 for u such thatK(0, x0, u0, b0, c0) = 0.

However, it is easily verified that Ki is a strictly monotone increasing function of ui,

and thus u0 can always be uniquely determined.

Let a = (x0, b0, c0), and define ρa(λ, x, u) = ρ(x0, b0, c0, λ, x, u), using (5.11) and

(5.12).
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Theorem 5.1. Let f : En → E be a C3 convex function, let A ∈ Em×n,

b ∈ Em, and assume that S1 = {x | Ax − b <
= 0} is nonempty and bounded. Let

ρa(λ, x, u) = ρ(x0, b0, c0, λ, x, u) be defined from (5.11) and (5.12). Then for almost

all x0 ∈ En, almost all b0 ∈ Em such that b0 > 0 and Ax0 − b − b0 < 0, and almost

all c0 ∈ Em with c0 > 0, there exists a zero curve γ of ρa(λ, x, u) emanating from

(0, x0, u0), along which the Jacobian matrix Dρa(λ, x, u) has rank n+m, and reaching

a point (1, x̄, ū), where x̄ solves min
x∈S1

f(x). If rank Dρa(1, x̄, ū) = n +m, then γ has

finite arc length.

Proof. Several facts need to be verified first.

(i) Sλ is nonempty and bounded for 0 <
= λ <

= 1. This follows from the assumption

that S1 �= ∅, (5.9), and the fact that boundedness is unrelated to the constant term

b+ (1− λ)b0: Sλ is bounded if and only if {x | Ax <
= 0} = {0}. Furthermore, observe

that int Sλ �= ∅ for 0 <
= λ < 1.

(ii) ρ defined from (5.11) and (5.12) is transversal to zero, for 0 <
= λ < 1, and

c0 > 0. It is easily verified that full rank (n + m) comes from the Dx0 and Dc0

columns. This is a good illustration of the fact that the dimension of the probability-

one homotopy parameter vector a = (x0, b0, c0) need not equal the dimension of the

homotopy map ρ, and how this flexibility can be used to advantage.

(iii) There is a unique point (x0, u0) such that ρa(0, x, u) = 0. For λ = 0, clearly

x = x0 from (5.11). Now given x0, b0 such that b0 + b− Ax0 > 0, and c0 > 0, it can

be verified that K = 0 from (5.12) has a unique solution u0 > 0.

By Lemma 2.1, ρa(λ, x, u) is also transversal to zero for almost all a =

(x0, b0, c0) ∈ En × Em × (0,∞)m. The statement of the theorem restricts b0 to

depend on x0, but this is immaterial to the transversality of ρa, since the full rank

of Dρ does not depend on Db0 . The set of all (x0, b0, c0) described in the theorem is

open, and ρa is transversal to zero for almost all points a in this set.

From (iii), there is exactly one solution (x0, u0) to ρa = 0 at λ = 0. Therefore

Lemma 2.2 applies, and the existence (for almost all the prescribed points (x0, b0, c0))

of a zero curve γ and the full rank of Dρa along γ follow. γ emanates from the point

(0, x0, u0), and either reaches a solution point (1, x̄, ū), or wanders off to infinity. By

Lemma 2.3, it suffices to prove that γ is bounded. The finite arc length statement

about γ also follows from Lemma 2.3.

(iv) Consider an arbitrary point (λ, x, u) on γ for 0 < λ < 1. A careful exam-

ination of the signs of the terms in Ki in (5.12) reveals that Ki < 0 if ui < 0 or

(1 − λ)b0i + bi − Ai·x < 0. Therefore everywhere along γ, u >
= 0 and x ∈ Sλ ⊂ S0 is

bounded from (i) and (5.9). Furthermore, ui > 0 and (1− λ)b0i + bi −Ai·x > 0 along

γ.

Suppose that γ is not bounded, and let (λ(k), x(k), u(k)) → ∞ be a sequence of

points on γ. Since [0, 1]×S0 is compact,
{
(λ(k), x(k))

}∞
k=1

has a convergent subsequence(
λ(ki), x(ki)

)
→ (λ̂, x̂). Now from (5.11), this means that u(ki) >

= 0,
∥∥u(ki)

∥∥→ ∞, and

λ̂
[(
∇f(x̂)

)t
+ Atu(ki)

]
+ (1− λ̂)(x̂− x0) → 0, (5.13)

K(λ̂, x̂, u(ki), b0, c0) → 0. (5.14)
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If λ̂ = 1, then x̂ is a solution to (5.1), and ū corresponding to x̄ = x̂ can be constructed

from u(ki). In a degenerate case, γ converges to a (possibly unbounded) manifold of

solution points (1, x̄, ū). So now consider 0 <
= λ̂ < 1 and two cases.

Case 1: For some j, (1 − λ̂)b0j + bj − Aj·x̂ > 0 and lim supki→∞ u
(ki)
j = ∞.

As observed earlier, Kj is a strictly monotone increasing function of uj . Therefore∥∥u(ki)
∥∥ → ∞ implies

∥∥∥K(λ̂, x̂, u(ki), b0, c0)
∥∥∥
∞

is increasing, which contradicts (5.14).

Therefore γ is bounded and the theorem follows.

Case 2: (1− λ̂)b0j + bj −Aj·x̂ = 0 for every j with lim supki→∞ u
(ki)
j = ∞; denote

this set of indices by J. Suppose first that λ̂ = 0. Then from (5.13), Atλ(ki)u(ki) →
x0− x̂. A subsequence argument yields a vector w such that

(
AJ·
)t
w = x0− x̂, w >

= 0.

Combining the relationsAx0−b−b0 < 0 and
(
b0+b−Ax̂

)
J
= 0 gives AJ·(x

0−x̂) < 0.

Now all these relations result in

0 >
=

(
x0 − x̂

)t(
AJ·
)t
w =

(
x0 − x̂

)t(
x0 − x̂

)
> 0,

a contradiction. Therefore λ̂ �= 0. As observed in item (i), {x | Ax <
= 0} = {0}, which

is equivalent to the positive cone C(At) = {Aty | y >
= 0} = En. Therefore there exists

w such that

Atw = −
(
∇f(x̂)

)t − (1− λ̂)(x̂− x0)/λ̂, w >
= 0.

Writing u(ki) = w + v(ki) then gives Atv(ki) → 0 and
∥∥v(ki)

∥∥ → ∞. Recall that

u(ki) = w + v(ki) >
= 0, which means that any negative components of v(ki) must be

bounded by ‖w‖∞, and therefore negative components of v(ki)
/∥∥v(ki)

∥∥
∞ converge to

zero as
∥∥v(ki)

∥∥→ ∞. The bounded sequence
{
v(ki)

/∥∥v(ki)
∥∥
∞
}∞
i=1

has a subsequence

converging to some point v ∈ Em with ‖v‖∞ = 1, and v >
= 0 by the preceding

remark. FinallyAtv(ki) → 0 and
∥∥v(ki)

∥∥→ ∞ imply At
(
v(ki)

/∥∥v(ki)
∥∥
∞
)
→ 0 yielding

Atv = 0, v >
= 0, ‖v‖∞ = 1, or

(
AJ·
)t
vJ = 0, vJ ≥ 0. By Gordan’s Theorem of the

Alternative [11], AJ·z > 0 has no solution. However, since int Sλ̂ �= ∅, there is an

interior feasible point x so that combining the relations Ax − b − (1 − λ̂)b0 < 0 and(
(1− λ̂)b0 + b− Ax̂

)
J
= 0 yields AJ·(x− x̂) < 0. This contradiction proves that γ is

bounded, and the theorem follows.

Corollary 5.1. Suppose that the zero curve γ of ρa(λ, x, u) defined from (5.11)–

(5.12) has the property that ‖x‖ is bounded but ‖u‖ → ∞ along γ, for 0 <
= λ < 1. Then

there exists v ∈ Em such that Atv = 0, v ≥ 0, and every index i for which vi �= 0 has

|ui| → ∞.

It is instructive to consider why the proof of Theorem 5.1 worked, and how it

could have gone wrong. After all, homotopy methods don’t always work, and the

conclusion of Corollary 5.1 is a plausible situation. The structure of ρ in (5.11)–(5.12)

is important for transversality (Lemma 2.2) and the fact that γ (for this particular ρ)

cannot return to λ = 0. Yet many other choices for ρ could possess these properties

equally well. The boundedness of x along γ is especially opportune, being a direct

consequence of the relaxation (5.7) and the “interior” map (5.8), which forces points

(λ, x, u) along γ to be strictly feasible (interior) for different constraints (from the

original ones). Effectively λ and x are under control (not so if Sλ were unbounded),
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and ‖u‖ → ∞ is the only potential problem. Controlling ‖u‖ is delicate, and was

achieved here by having int Sλ �= ∅ for 0 <
= λ < 1 (trivially true for the g(x) in (5.1)

but not so trivial in more general contexts). ‖u‖ was controlled in earlier sections

by a global monotonicity property, a much stronger condition than Sλ bounded with

nonempty interior for 0 <
= λ < 1.

6. General nonlinear convex optimization. The optimization problem

(5.1) can be generalized in several different directions. If the convexity assumption

is dropped for either f or g, then (5.2)–(5.5) become only necessary conditions. Cer-

tainly many optimization algorithms are based on necessary optimality conditions,

in which case only convergence to a stationary point is guaranteed. This particular

direction of generalization will be pursued in a later section. Here in this section the

intent is to preserve the optimality conditions being both necessary and sufficient, and

thus g(x) in (5.1) will be generalized.

Let f : En → E and g : En → Em be C3 convex functions, and assume that g

satisfies the Arrow-Hurwicz-Uzawa constraint qualification at every solution of

minf(x) subject to g(x) <
= 0. (6.1)

Under these assumptions (6.1) is equivalent to the Kuhn-Tucker problem

(
∇f(x)

)t
+
(
∇g(x)

)t
u = 0, (6.2)

g(x) <
= 0, (6.3)

u >
= 0, (6.4)

utg(x) = 0. (6.5)

Given the discussion in the last section, it seems reasonable to try the direct general-

ization of (5.11) for the homotopy map

ρ(x0, b0, c0, λ, x, u) =

(
λ
[(
∇f(x)

)t
+
(
∇g(x)

)t
u
]
+ (1− λ)(x− x0)

K(λ, x, u, b0, c0)

)
, (6.6)

where

Ki(λ, x, u, b
0, c0) = −

∣∣(1− λ)b0i − gi(x)− ui
∣∣3 + ((1− λ)b0i − gi(x)

)3
+ u3i − (1− λ)c0i , i = 1, · · · , m,

(6.7)

is the direct generalization of (5.12). The question is how changing from linear con-

straints Ax − b <
= 0 to nonlinear convex constraints g(x) <

= 0 affects the proof of

Theorem 5.1. The crux of the proof seems to be the sets

Sλ =
{
x ∈ En | g(x)− (1− λ)b0 <

= 0
}
, (6.8)

which need to satisfy (5.9), int Sλ �= ∅ for 0 <
= λ < 1, and be bounded for 0 <

= λ <
= 1.

Given some arbitrary initial guess x0 ∈ En, choose b0 ∈ Em, b0 > 0 such that

g(x0) − b0 < 0. As before choose c0 ∈ Em such that c0 > 0. Assuming that the

feasible set S1 = {x ∈ En | g(x) <
= 0} is nonempty and bounded is not a severe
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restriction, since for any practical problem variable bounds can always be added. The

boundedness of the sets Sλ for 0 <
= λ <

= 1 follows from Corollary 8.3.3, Theorem 8.4,

and Theorem 8.7 of [17]. For completeness a short direct proof follows.

Lemma 6.1. Let g : En → Em be a C3 convex function, and let x0 ∈ En,

b0 ∈ Em, δ ∈ E be such that b0 >
= δe > 0 and g(x0)− b0 < 0. Define

Sλ =
{
x ∈ En | g(x)− (1− λ)b0 <

= 0
}
.

If S1 is nonempty and bounded, then Sλ is nonempty and bounded for 0 <
= λ <

= 1, and

int Sλ �= ∅ for 0 <
= λ < 1.

Proof. Since S1 �= ∅,

S0 ⊃ Sλ1
⊃ Sλ2

⊃ S1 �= ∅ for 0 <
= λ1 < λ2

<
= 1.

Suppose that Sλ1
is unbounded while Sλ2

is bounded, say Sλ2
⊂ B(r/2) = {x ∈

En | ‖x‖ < r/2}. Pick any point x̃ ∈ Sλ2
(hence ‖x̃‖ < r/2). Now there exists

a sequence y(k) ∈ Sλ1
with r <

∥∥y(k)∥∥ → ∞. Reduce to a convergent subsequence

y(ki)
/∥∥y(ki)

∥∥→ y, and for each subsequence index k choose 0 < tk < 1 such that

∥∥∥(1− tk)x̃+ tky
(k)
∥∥∥ = r. (6.9)

Now by the convexity of g,

g
(
(1− tk)x̃+ tky

(k)
)

<
= (1− tk)g(x̃) + tkg

(
y(k)

)
<
= (1− tk)(1− λ2)b

0 + tk(1− λ1)b
0.

Taking the limit as k → ∞ (
∥∥y(k)∥∥→ ∞ and (6.9) give tk → 0) yields

g(x̃+ αy) <
= (1− λ2)b

0 (6.10)

for ‖x̃+ αy‖ = r. Now (6.10) =⇒ x̃+αy ∈ Sλ2
=⇒ r = ‖x̃+ αy‖ < r/2, a contradic-

tion. Therefore Sλ must be nonempty and bounded for all 0 <
= λ <

= 1. The statement

about int Sλ follows easily by continuity.

Let a = (x0, b0, c0), and define ρa(λ, x, u) = ρ(x0, b0, c0, λ, x, u), according to (6.6)

and (6.7). As before, u0 is uniquely defined by K(0, x0, u0, b0, c0) = 0.
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Theorem 6.1. Let f : En → E and g : En → Em be C3 convex functions,

let g satisfy the Arrow-Hurwicz-Uzawa constraint qualification at every solution of

(6.1), and assume that S1 = {x ∈ En | g(x) <
= 0} is nonempty and bounded. Let

ρa(λ, x, u) = ρ(x0, b0, c0, λ, x, u) be defined from (6.6) and (6.7). Then for almost all

x0 ∈ En, almost all b0 ∈ Em such that b0 > 0 and g(x0) − b0 < 0, and almost

all c0 ∈ Em with c0 > 0, there exists a zero curve γ of ρa(λ, x, u) emanating from

(0, x0, u0), along which the Jacobian matrix Dρa(λ, x, u) has rank n +m, reaching a

point (1, x̄, ū), where x̄ solves min
x∈S1

f(x). If rank Dρa(1, x̄, ū) = n + m, then γ has

finite arc length.

Proof. By the convexity and constraint qualification assumptions, (6.1) is equiva-

lent to (6.2)–(6.5), which are equivalent to ρ(x0, b0, c0, 1, x, u) = 0. A careful examina-

tion of the proof of Theorem 5.1 reveals that it is valid if (a) Ax−b is replaced by g(x),

(b) ρ and K from (5.11)–(5.12) are replaced by ρ and K from (6.6)–(6.7), (c) the sets

Sλ from (6.8) are nonempty and bounded for 0 <
= λ <

= 1 and have nonempty interiors

for 0 <
= λ < 1, and (d) the conclusion of Corollary 5.1 also leads to a contradiction in

the present more general situation. Take each item in turn.

(a) Replacing the function Ax−b by the function g(x) affects nothing in the proof

of Theorem 5.1. The appearance of ∇g(x) rather than (constant) A in ρ does have

some effect. The argument ruling out the possibility λ̂ = 0 becomes ∇gJ(x̂)
(
x0− x̂

)
<
=

gJ(x
0) − gJ(x̂) < 0, using the convexity of g. Arguments involving (5.13) and C(At)

are valid with ∇g(x̂) replacing A. The final contradiction in Case 2 is addressed below

in item (d).

(b) The transversality and other fundamental properties of ρ and K from (6.6)–

(6.7) are easily verified.

(c) Lemma 6.1 provides these crucial facts about the sets Sλ.

(d) The question here is given
(
∇gJ(x̂)

)t
vJ = 0, vJ ≥ 0, and int Sλ̂ �= ∅, does

the same contradiction ensue by finding a vector z such that
(
∇gJ(x̂)

)
z < 0. The

answer is yes since x ∈ int Sλ̂ gives g(x) − (1 − λ̂)b0 < 0, and then subtracting(
g(x̂)− (1− λ̂)b0

)
J
= 0 gives

∇gJ(x̂)
(
x− x̂

)
<
=

(
g(x)− g(x̂)

)
J
< 0. (6.11)

A result similar to Corollary 5.1 could be derived, but the conclusion —(
∇g(x̂)

)t
v = 0, v ≥ 0 has a solution — is not interesting since the point x̂ has

no special significance.

The post-mortem comments on the proof of Theorem 5.1 apply also to the proof of

Theorem 6.1, with the latter being technically (but not conceptually) more difficult.

Properties of the sets Sλ required proof, and γ again could not return to λ = 0.

Convexity of g was crucial in converting constraint values into a gradient inequality

as in (6.11), both for obtaining λ̂ �= 0 and for the final contradiction (6.11). Neither

quasiconvexity nor pseudoconvexity suffice for g.
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7. Nonconvex programs. The convergence theory in the preceding sections

might, at first glance, seem trivial and contrived (with the assumptions dictated more

by the exigencies of the proof rather than by practical applications), and not to address

the homotopy maps actually used on practical engineering problem. Indeed, homotopy

maps like (4.5), (5.11), and (6.6), although they work, are rarely used in practice.

There are two significant questions to be answered: (1) how important is convexity,

which has figured prominently in the discussion so far? (2) How important is it that

homotopy maps as in (4.5), (5.11), or (6.6) be used? To both questions, the answer

turns out to be: not very!

Convexity simplifies proofs, but is really only needed to make the Kuhn-Tucker

conditions sufficient for optimality. Without convexity, convergence only to a sta-

tionary point can be guaranteed. The proofs in §§ 3 and 4 used convexity, but only

because those results were for the canonical map λF (x) + (1 − λ)(x − a), and were

done using a nonlinear complementarity result that depended on convexity (pseudo-

convexity). Note, for instance, that the homotopy map (6.6) is not of the canonical

form λF (x) + (1− λ)(x− a), which is the map used for Brouwer fixed point problems

x = f(x) (where F (x) = x − f(x)) [5]. This particular (canonical) map, which un-

fortunately is often thought of as “the” homotopy map, is only appropriate when F

comes from a fixed point map, or has some sort of global monotonicity property like

xF (x) >
= 0 for all ‖x‖ >

= r for some sufficiently large r > 0. Convexity (pseudocon-

vexity) is sufficient, but not necessary, for such global monotonicity, and hence is a

natural assumption when using the map λF (x) + (1− λ)(x− a). The theory in §§ 3

and 4 could be generalized to assume something like “f(x) acts like a pseudoconvex

function for ‖x‖ >
= r sufficiently large,” but it hardly seems worth the trouble, since

(as will be shown) homotopy maps like (6.6) obviate the need for convexity (when

abandoning sufficient conditions for optimality!). §§ 5 and 6 used convexity to derive

properties like γ can not return to λ = 0, ∇gJ(x̂)z < 0 has a solution z, and the

boundedness of the sets Sλ in (6.8) for 0 <
= λ <

= 1. Convexity is overkill, though, and

these much weaker properties can be explicitly assumed.

Let f : En → E and g : En → Em be C3 functions, and assume that g satisfies

the Arrow-Hurwicz-Uzawa constraint qualification at every local solution of

minf(x) subject to g(x) <
= 0. (7.1)

If x̄ solves (7.1) locally, then there exists ū ∈ Em such that (x̄, ū) solves the Kuhn-

Tucker problem

(
∇f(x)

)t
+
(
∇g(x)

)t
u = 0, (7.2)

g(x) <
= 0, (7.3)

u >
= 0, (7.4)

utg(x) = 0. (7.5)

Let F : En × [0, 1]→ E and G : En × [0, 1]→ Em be C3 functions such that

F (x, 1) = f(x), G(x, 1) = g(x), (7.6)
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and the optimization problem

minF (x, 0) subject to G(x, 0) <
= 0 (7.7)

has an easily obtained (local) solution x0. In practice F (x, λ), G(x, λ) represent a

family of optimization problems

minF (x, λ) subject to G(x, λ) <
= 0, (7.8)

where λ is embedded deeply and nonlinearly in the objective function F (x, λ) and

constraints G(x, λ). This embedding often embodies considerable physical insight

into the problem (7.1), and (7.7) is a version of (7.1) with simplified physics and/or

geometry. A good choice for (7.8) may take years to develop, and generally requires

considerable problem specific knowledge and the intimate involvement of an engineer

or scientist. The payoff will be a robust, globally convergent algorithm that is more

efficient than applying an “off-the-shelf” algorithm, and avoids spurious solutions (e.g.,

unstable equilibria in mechanics or unstable circuit operating points can be expressly

avoided).

One could naively solve (7.8) with continuation varying λ from 0 to 1, but this

is precisely the point at which the probability-one theory can make a significant im-

provement over simple continuation in λ (and also over arc length continuation). A

probability-one homotopy for (7.8) guarantees the existence of a zero curve γ with

good numerical properties, the importance of which for practical computation cannot

be overstated. The homotopy map (6.6) is generalized to

ρ(x0, b0, c0, λ, x, u) =

(
λ
[(
∇xF (x, λ)

)t
+
(
∇xG(x, λ)

)t
u
]
+ (1− λ)(x− x0)

K(λ, x, u, b0, c0)

)
,

(7.9)

where

Ki(λ, x, u, b
0, c0) = −

∣∣(1− λ)b0i −Gi(x, λ)− ui
∣∣3 + ((1− λ)b0i −Gi(x, λ)

)3
+ u3i − (1− λ)c0i , i = 1, · · · , m,

(7.10)

is the direct generalization of (6.7). The map (7.9), or some minor variation thereof,

is what is typically used in practice, and has been extremely successful on industrial

optimization problems.

The key observation in the proofs in §§ 5 and 6 is that what matters most is not

the structure of the homotopy map ρ, but the nature of the sets Sλ. (Of course, ρ still

has to satisfy the hypotheses of Lemma 2.3, and some technical conditions along γ are

required.) The general convergence theory is now developed.

Given some arbitrary initial guess x0 ∈ En, choose b0 ∈ Em such that b0 > 0 and

G(x0, 0)− b0 < 0. Choose c0 ∈ Em such that c0 > 0. Consider the sets

Sλ =
{
x ∈ En | G(x, λ)− (1− λ)b0 <

= 0
}
, 0 <

= λ <
= 1. (7.11)

Note that Sλ �= ∅ for small λ since x0 ∈ int S0. However, since the constraints G(x, λ)

now can change with λ, (5.9) need not hold, i.e., the sets Sλ do not necessarily form
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a chain S0 ⊃ Sλ1
⊃ Sλ2

for 0 < λ1 < λ2. The question is exactly what properties

must Sλ have in order for the proofs of Theorems 5.1 and 6.1 to extend to the general

nonconvex problem (7.1)? It is not necessary for the sets Sλ to form a chain as in (5.9),

or even to satisfy
⋂

0<=λ<=1

Sλ �= ∅. Certainly each Sλ must be nonempty, otherwise K

from (7.10) cannot possibly be zero: Sλ = ∅ implies for each x ∈ En there is an index

i such that (1− λ)b0i −Gi(x, λ) < 0, which means for all x some Ki(λ, x, u, b
0, c0) < 0

for all u, and thus ρa(λ, x, u) �= 0 for any x, u.

A point (λ, x, u) on the zero curve γ of ρa(λ, x, u) must have x ∈ Sλ and u >
= 0

(otherwise K �= 0), but Sλ bounded for 0 <
= λ <

= 1 (the conclusion of Lemma 6.1) does

not imply x along γ is bounded. The weakest assumption to keep x along γ bounded

would then seem to be:
⋃

0<=λ<=1

Sλ is bounded. This condition is a bit subtle, though,

as Sλ depends indirectly on x0, and x0 is supposed to be generic. Precisely, the

requirement is as follows. Let X0 ⊂ En, B0 ⊂ Em be open nonempty sets such that

for each point x0 ∈ X0, there exists b0 ∈ B0 such that b0 > 0, G(x0, 0) − b0 < 0.

Then
⋃

0<=λ<=1

Sλ must be bounded for each x0 ∈ X0, b0 ∈ B0 satisfying b0 > 0,

G(x0, 0)− b0 < 0.

The above discussion is summarized in the hypotheses of the following theorem.

Let a = (x0, b0, c0), and define ρa(λ, x, u) = ρ(x0, b0, c0, λ, x, u), according to (7.9) and

(7.10). As always, u0 is uniquely defined by K(0, x0, u0, b0, c0) = 0.

Theorem 7.1. Let f : En → E and g : En → Em be C3 functions, let g satisfy

the Arrow-Hurwicz-Uzawa constraint qualification at every local solution of (7.1), let

X0 ⊂ En and B0 ⊂ {b ∈ Em | b > 0} be open and nonempty, and for b0 ∈ B0 and

0 <
= λ <

= 1 define

Sλ(b
0) =

{
x ∈ En | G(x, λ)− (1− λ)b0 <

= 0
}
.

For each x0 ∈ X0 assume there exists b0 ∈ B0 such that G(x0, 0) − b0 < 0. For

each x0 ∈ X0 and b0 ∈ B0 satisfying G(x0, 0)− b0 < 0, further assume that Sλ(b
0)

is nonempty for 0 <
= λ <

= 1, and that
⋃

0<=λ<=1

Sλ(b
0) is bounded. Let ρa(λ, x, u) =

ρ(x0, b0, c0, λ, x, u) be defined from (7.9) and (7.10). Then for almost all x0 ∈ X0,

almost all b0 ∈ B0 such that G(x0, 0)− b0 < 0, and almost all c0 ∈ Em with c0 > 0,

there exists a zero curve γ of ρa(λ, x, u) emanating from (0, x0, u0), along which the

Jacobian matrix Dρa(λ, x, u) has rank n +m. If in addition there exists κ > 0 such

that for any point (λ, x, u) on γ,∥∥(λ, x, u)− (0, x0, u0)
∥∥ > 1 =⇒ λ >

= κ,

and for any accumulation point (λ̂, x̂) of (λ, x) along γ[
∇xGJ(x̂, λ̂)

]
z > 0 has a solution z,

where J =
{
j | Gj(x̂, λ̂)− (1− λ̂)b0j = 0

}
, then γ reaches a point (1, x̄, ū), where (x̄, ū)

solves the Kuhn-Tucker problem (7.2)–(7.5). If rank Dρa(1, x̄, ū) = n+m, then γ has

finite arc length.
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Proof. The homotopy map ρ defined from (7.9)–(7.10), similar to ρ and K from

(5.11)–(5.12) and (6.6)–(6.7), satisfies the hypotheses of Lemma 2.2. Thus a homotopy

zero curve γ exists and it only remains to show γ is bounded. If γ reaches a point

(1, x̄, ū), since ρa(1, x̄, ū) = 0 is equivalent to the necessary optimality conditions

(7.2)–(7.5), (x̄, ū) will be a stationary point for the original optimization problem

(7.1).

As before, by the nature of K and the boundedness of
⋃
Sλ, (λ, x) is bounded

along γ. Suppose that γ is unbounded, and let (λ(k), x(k), u(k)) → ∞ be a sequence of

points along γ. As before, there is a subsequence
(
λ(ki), x(ki)

)
→ (λ̂, x̂), with u(ki) >

= 0

and
∥∥u(ki)

∥∥ → ∞. By assumption, λ̂ >
= κ > 0 and thus λ̂ �= 0. The argument for

the case λ̂ = 1 is identical to that in the proof of Theorem 5.1. Now consider only

0 < λ̂ < 1. The argument for Case 1, where for some j,

(1− λ̂)b0j −Gj(x̂, λ̂) > 0 and lim
ki→∞

u
(ki)
j = ∞,

is identical to that for Theorem 5.1.

Case 2, where for every j,

lim
ki→∞

u
(ki)
j = ∞ =⇒ (1− λ̂)b0j −Gj(x̂, λ̂) = 0,

leads to the system (
∇xGJ(x̂, λ̂)

)t
vJ = 0, vJ ≥ 0,

having a solution vJ , where J ⊂
{
j | Gj(x̂, λ̂)− (1− λ̂)b0j = 0

}
. By Gordan’s Theorem

of the Alternative, (
∇xGJ(x̂, λ̂)

)
z > 0

has no solution z. This contradicts the explicit hypothesis about ∇xGJ along γ.

Therefore γ is bounded, and the theorem follows.

Corollary 7.1. If the assumption in Theorem 7.1 about λ >
= κ > 0 for points

on γ far from (0, x0, u0) is replaced by

rank D(x,u)ρa(λ, x, u) = n +m

along γ, then the conclusions of Theorem 7.1 hold.

Proof. The rank assumption implies that γ has no turning points, a much stronger

assumption that simply λ >
= κ > 0 eventually, i.e., as arc length s increases, γ does

not asymptotically approach the hyperplane λ = 0.

On many realistic engineering applications, γ does in fact have several turning

points, and if the convergence theory could not accommodate turning points, it would

not accurately reflect practice. Theorems 5.1, 6.1, and 7.1 have been presented as a

series of generalizations with proof refinements, and so the post-mortem comments on

Theorems 5.1 and 6.1 in essence apply here also. Proving that γ is bounded amounts

to controlling, in some fashion, each of λ, x, u along γ.

λ is controlled by preventing lim infs→∞ λ(s) = 0. This frequently happens when

the homotopy map is poorly chosen. For instance, λ(s) → 0 as u(s) → ∞ in Fig. 1 for
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the homotopy map (5.6). The theory here shows that with the right homotopy map,

0 < lim infs→∞ λ(s) = λ̂ < 1 cannot happen except in rare degenerate cases involving

the active constraint gradients ∇xGJ(x̂, λ̂).

x is controlled by the property that x ∈ Sλ(b
0), and by assumption

⋃
0<=λ<=1

Sλ(b
0)

is bounded. What happens if Sλ(b
0) = ∅ for some 0 < λ < 1? For complicated

problems, it is easy to unwittingly construct a family (7.8) for which some Sλ(b
0) is

empty. Consider the problem

min
x

F (x, λ) = x subject to G(x, λ) = x2 − 1 + 2λ <
= 0

and take x0 = 0, b0 = 1, c0 = 1. S2/3(1) = {0}, Sλ(1) = ∅ for λ > 2/3 (i.e., there is

no solution at λ = 1) so something has to fail. Figure 2 shows what happens to γ for

the map (7.9).

0.2 0.4 0.6 0.8 1
Λ0

2

4

6

8

10

u

Λ � 2�3

Fig. 2. Example of homotopy zero curve when some Sλ is empty.

u is controlled by the property (in the convex case) or the assumption (in the

nonconvex case) that
(
∇xGJ(x̂, λ̂)

)
z > 0 has a solution z, where J is related to active

constraints at an accumulation point (λ̂, x̂) of ((λ, x) along) γ. This condition can

be interpreted as a “constraint qualification for homotopy maps.” Since its failure to

hold represents a degenerate situation, it can be achieved (in principle) by generically

perturbing the map G(x, λ).

As mentioned earlier, the map (7.9) closely resembles those used in practice,

and thus Theorem 7.1 reflects practice. Generally, for each λ, the problem (7.8) is

physically meaningful with Sλ being nonempty and bounded. The constraint quali-

fication involving ∇xGJ(x, λ) holds generically, and thus is not normally a concern.

lim infs→∞ λ(s) > 0 must be assumed, and this is the fly in the ointment. This con-

dition is achieved by some sort of global monotonicity property (which often does

hold for practical problems, related to energy considerations), the rank condition of

Corollary 7.1 (extremely hard to verify for a complicated problem), or by the clever

construction of (7.8). There is no silver bullet!
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