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Abstract

We propose a preconditioning method for linear systems of equa-
tions arising from piecewise Hermite bicubic collocation applied to two-
dimensional elliptic PDEs with mixed boundary conditions. We con-
struct an efficient, parallel preconditioner for the GMRES method. The
main contribution of the paper is a novel interface preconditioner de-
rived in the framework of substructuring and employing a local Hermite
collocation discretization for the interface subproblems based on a hy-
brid fine-coarse mesh. Interface equations based on this mesh depend
only weakly on unknowns associated with subdomains. The effective-
ness of the proposed method is highlighted by numerical experiments
that cover a variety of problems.

1 Introduction

We are interested in parallel iterative solution methods applicable to high
order discretization methods for linear second-order two-dimensional elliptic
PDEs. Parallelism is essential for solving large problems. We describe a new
preconditioning algorithm for a Krylov subspace iterative solution of linear
systems arising from a piecewise Hermite bicubic collocation discretization of
elliptic PDEs defined on a two-dimensional domain. For convenience, we refer
to the collocation method as Hermite collocation.
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Hermite collocation is an attractive discretization technique for at least
two reasons. First, unlike a finite element Galerkin method, collocation does
not require the computation of any integrals for generating the coefficient
matrix. Second, for a general linear elliptic operator, with sufficiently smooth
coefficients and Dirichlet boundary conditions, Hermite collocation can provide
O(h4) accuracy in the L2 norm, where h is the grid step [2].

We employ the Generalized Minimal Residual (GMRES) method [14], whose
strengths include generality and robustness. The discrete operator A gener-
ated by Hermite collocation is typically ill-conditioned and unpreconditioned
GMRES as well as point-Jacobi preconditioned GMRES exhibit poor conver-
gence. Therefore, finding a good preconditioner is critical for solving Hermite
collocation problems with a Krylov-subspace method.

The main contribution of the paper is a preconditioner for solving Hermite
collocation problems with Krylov subspace methods. The preconditioner can
be applied to a second-order elliptic PDE defined on a rectangular domain Ω
and with general boundary conditions. In the framework of substructuring,
we introduce a novel interface preconditioner, which we call the edge precon-
ditioner. The edge preconditioner is constructed on a hybrid fine-coarse grid
defined for each interface. The proposed method has high parallelism and our
experimental results indicate good convergence and accuracy.

Bialecki [1] has proposed a domain decomposition solver for Poisson’s equa-
tion on a rectangle, discretized with Hermite collocation. Bialecki, et al. [3]
have described an additive Schwarz method for solving the Dirichlet Poisson’s
equation on a rectangle. Christara and Smith [7] have designed multilevel
methods for two-dimensional elliptic PDEs discretized with quadratic spline
collocation. We are not aware of another preconditioner derived by substruc-
turing for Hermite collocation problems arising from the discretization of gen-
eral two-dimensional elliptic PDEs.

The remainder of the paper is organized as follows. After describing the
Hermite collocation discretization of a boundary value problem in Section 2,
we present background information and related work in Section 3. The edge
preconditioner is described in Section 4. Numerical results are presented in
Section 5 followed by concluding remarks in Section 6.

2 The Hermite Collocation Problem

Let Ω = (0, 1)× (0, 1) and ∂Ω its boundary. We consider the boundary value
problem

Lu = g in Ω and Bu = t on ∂Ω, (1)
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where L is a linear elliptic operator, B = p ∂
∂n

+ q, g, t, p, and q are at least
C0, and n is the outward unit normal to the boundary. Let n0 be an integer
greater than one, and define the partitions X = {xk}n0−1

k=0 and Y = {ym}n0−1
m=0

of [0, 1], where xk = k h, ym = mh, and h = 1/(n0−1). The set of grid points,
or nodes, in Ω̄ = Ω ∪ ∂Ω is Gh = X × Y . The method proposed here can also
be applied when X and Y are of different sizes.

Collocation methods approximate the unknown function u by a function
U in a finite dimensional function space V . In Hermite collocation, V is the
space of continuously differentiable piecewise bicubic polynomials. Formally,
V = Vx ⊗ Vy, where Vz = {v ∈ C1[0, 1] : v|[zk,zk+1] ∈ P3, k = 0, . . . , n0 − 2},
z ∈ {x, y}, and P3 is the set of polynomials of degree at most 3. Several
authors [1, 3] seek a solution in the space V0 = V0

x ⊗ V0
y , where V0

z = {v ∈
Vz : v(0) = v(1) = 0}, where z ∈ {x, y}. Considering V0 avoids including the
boundary equations in the linear system, but V0 can only be used for solving
the homogeneous Dirichlet problem.

Let nG = n2
0 be the number of nodes in Gh, and N : Gh 7→ {1, . . . , nG} be

a node ordering. Following [9], with each node n in Gh, n = N (xk, ym), there

are associated four Hermite bicubic basis functions, Φ
(i)
n , i = 1, 2, 3, 4, centered

at n and with support [xk−1, xk+1]× [ym−1, ym+1]. The set B = {Φ(i)
n | 1 ≤ i ≤

4, 1 ≤ n ≤ nG} is a basis for V . The expression of a function U ∈ V in the
basis B is

U(x, y) =
4∑
i=1

nG∑
n=1

U (i)
n Φ(i)

n (x, y), (2)

U
(1)
n = U(xk, ym), U

(2)
n = ∂U

∂y
(xk, ym), U

(3)
n = ∂U

∂x
(xk, ym), U

(4)
n = ∂2U

∂x∂y
(xk, ym).

Notice that we have implicitly defined a type order of the unknowns U
(i)
n asso-

ciated with a node; that is, the superscripts 1, 2, 3, 4 are associated with U ,
∂U
∂y

, ∂U
∂x

, ∂2U
∂x∂y

, respectively.

To achieve the O(h4) accuracy of the solution predicted in [2], the col-
location points are determined in terms of the set of Gauss points in (0, 1),
G1 = {bk−1

2
ch + h

6

(
3 + (−1)k

√
3
)
, 1 ≤ k ≤ 2(n0 − 1)}. The sets of colloca-

tion points in Ω and on ∂Ω are, respectively, G = {(ξ, ζ) : ξ, ζ ∈ G1} and
∂G = {(ξ, ζ) : ξ, ζ ∈ {0, 1}} ∪ {(ξ, ζ) : ξ ∈ G1, ζ ∈ {0, 1}} ∪ {(ξ, ζ) : ξ ∈
{0, 1}, ζ ∈ G1}. Notice that the set G has 4(n0 − 1)2 elements and ∂G has
8(n0 − 1) + 4 elements; thus, G ∪ ∂G has 4nG elements.

The Hermite collocation problem is to find U ∈ V which satisfies (1) at the
collocation points, i.e.,

LU(ξ, ζ) = g(ξ, ζ), (ξ, ζ) ∈ G,
BU(ξ, ζ) = t(ξ, ζ), (ξ, ζ) ∈ ∂G, (3)
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where U is given by (2). The purpose of the paper is to solve the linear system
Au = f arising from (3), where u ∈ RN , A ∈ RN×N is the coefficient matrix,
and N = 4nG.

3 Background and Related Work

3.1 Substructuring

Substructuring works by partitioning the problem domain Ω into nonoverlap-
ping subdomains separated by an interface. One-dimensional partitioning cre-
ates parallel strips (the subdomains) separated by edges (the interface). For
a two-dimensional partitioning, the interface consists of edges and vertices,
where the latter are endpoints common to several edges.

Let Ω̄ be partitioned into nI parallel strips (subdomains) Ω1, . . . ,ΩnI and
nE edges E1, . . . , EnE with nE = nI − 1, where the partitioning of the domain
is performed along grid lines. For the sake of simplicity of notation, assume
that the parallel strips are horizontal; for vertical strips, the description is
analogous. Let yj ∈ Y be the grid lines which define the edges Ej = (0, 1)×yj,
where 1 ≤ j ≤ nE.

After partitioning, the nodes, unknowns, and equations are reordered in
substructuring order: the nodes in the subdomains Ωi, 1 ≤ i ≤ nI are num-
bered first, followed by the nodes in Ej, 1 ≤ j ≤ nE, in increasing order of
i and j. Figure 1 illustrates the substructuring order of nodes for a parallel
strip decomposition with three strips.

For Hermite collocation, the order of the grid nodes does not completely
specify the unknown and equation order. The unknown order is specified
by the type order described in Section 2. On the other hand, the order of
the equations is that of the collocation points. We choose an order of the
collocation points (equations) which satisfies two criteria: (i) substructuring
preserves the contiguity of the indices for the equations corresponding to a
subdomain, and (ii) the ith equation contains the ith unknown, for each i, 1 ≤
i ≤ N . To meet these requirements, we employ the collorder numbering
proposed by Dyksen and Rice in [8], where it is described as follows: The grid
[...] points are numbered in a natural way from west to east, south to north.
The collocation points (equations) are then associated with the nearest grid
point and are numbered in groups of four in the order of their corresponding
grid point. Figure 2 illustrates the natural order (column-wise) of the nodes
and the collorder of the collocation points.

Since the unknown and equation orderings are bound to the grid node order

4



2

3 5

10 16

56

40

49

48

64

32

31

35

58

37

36 38 42 44 46

45434139 47

59 60

20 22 24 26 28 30

2119 23 25 27 29

50 51 52 53 54 55

4 6 8 12

1 15

34

7 9 11 13

14

61 62 63

17

18

57

33

Figure 1: Substructuring order for a three-strip partition.

via the type order and collorder, respectively, performing the substructuring
ordering of the nodes induces a permutation of the unknowns and equations,
i.e., a symmetric permutation of the coefficient matrix. Hence, after substruc-
turing the coefficient matrix is A = P A0 P

T , where P is a permutation matrix
and A0 is the coefficient matrix before substructuring.

Moreover, by the type order and collorder, each unknown and equation
is mapped to a node, so we can associate every unknown and equation with
either a subdomain or an edge. Denote the set of indices of the unknowns and
equations associated with Ωi by Ii, and let I = ∪nIi=1Ii. Likewise, denote by Ej
the set of indices associated with Ej, and E = ∪nEj=1Ej. The unknown and right
hand side vectors u and f can be written as u = (uI ,uE) and f = (fI , fE),
respectively. We employ superscripts to indicate subcomponents of a vector,
e.g., u

(i)
I denotes the part of uI associated with Ωi and f

(j)
I denotes the part

of fE associated with Ej.
For simplicity, assume a partition in which every strip contains n0×K grid

nodes, where K ≥ 2 is the number of grid lines in a strip, along the direction of
partitioning and n0 = K nI + nE. Then, the size of Ii is NI = 4K n0, the size
of Ej is NE = 4n0 and the size of I ∪ E is equal to the number of unknowns
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Figure 2: Natural order of nodes (bold numbers) and collorder of collocation
points, where the collocation points are represented as disks, for a domain Ω
with a 4× 4 grid.

N = nI NI + nE NE.
The coefficient matrix A in the substructuring order,

A =

(
AII AIE
AEI AEE

)
, where AII = blockdiag(A

(1)
II , A

(2)
II , . . . , A

(nI)
II ), (4)

has an arrowhead structure, i.e., it can be viewed as a 2 × 2 block matrix in
which the upper left block AII has a block diagonal structure. The first sub-
script of a matrix block denotes whether the coefficients in that block belong
to subdomain (I) or edge (E) equations. The second subscript denotes whether
the coefficients multiply subdomain (I) or edge (E) unknowns. For example,
AIE denotes the coefficients of the interface unknowns in the subdomain equa-
tions. For a Hermite collocation discretization, AEI 6= ATIE even when L is
self-adjoint [4]. The resulting linear system is(

AII AIE
AEI AEE

) (
uI
uE

)
=

(
fI
fE

)
.

The Schur complement of AII in A is

S = AEE − AEIA−1
II AIE, (5)
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allowing us to write a block-UDL factorization of A−1 as

A−1 =

(
I −A−1

II AIE
0 I

) (
A−1
II 0
0 S−1

) (
I 0

−AEIA−1
II I

)
. (6)

3.2 Preconditioners Derived using Substructuring

We need to replace S−1 in (6) by a preconditioner for two reasons. First, S is
a dense matrix and explicitly constructing it is expensive. Second, inverting
or factoring a dense matrix is expensive as well.

Preconditioners are derived in the substructuring framework following a
two-scale procedure [6]: there is a fine grid, with step-size h, and a coarse
grid, with step-size H, associated with Ω. The coarse grid corresponds to a
two-dimensional partitioning and provides the global transfer of information
which is needed because the solution u(xi) of an elliptic PDE at any point
xi depends on all the components of f . The coarse grid creates an interface
between subdomains consisting of edges and vertices, and the unknown vector
is u = (uI ,uE,uV ), where V is the set of indices of the unknowns associated
with the vertices.

The seminal paper of Bramble, Pasciak, and Schatz [5] has proposed a pre-
conditioning strategy in this framework. The Bramble-Pasciak-Schatz (BPS)
preconditioner can described as follows. Consider the approximation of S−1,

Ŝ−1 =


S−1

1,1 0 . . . 0 0
0 S−1

2,2 0 0
...

. . . 0
...

0 . . . . . . S−1
nE ,nE

0
0 . . . . . . 0 S−1

V V

 , (7)

where Si,i, 1 ≤ i ≤ nE, is the block of S that contains the coefficients of

u
(i)
E which belong to equations associated with Ei, and SV V is the block of S

that contains the coefficients uV which belong to equations associated with
the vertex nodes of the coarse grid. Relation (7) is based on a block diagonal
approximation of S. The BPS preconditioner uses a coarse grid operator AH
to provide global coupling between subdomains, and an interpolation map
RT
H : V 7→ E ∪ V is used to approximate the solution on E ∪ V . The map

RH : E ∪V 7→ V is the weighted restriction map from E ∪V to V . With these
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definitions the BPS preconditioner is

Ŝ−1
BPS =


S−1

1,1 0 . . . 0 0
0 S−1

2,2 0 0
...

. . . 0
...

0 . . . . . . S−1
nE ,nE

0
0 . . . . . . 0 0

+RT
HA
−1
H RH . (8)

In a sense, the BPS method only provides a strategy for constructing a
preconditioner rather than specifying an actual preconditioner. That is, it
does not specify an efficient scheme for approximating Si,i; recall that such
an approximation is desired because computing Si,i explicitly is expensive.
Furthermore, the applicability of this method to non self-adjoint Hermite col-
location problems has not been thoroughly investigated. The preconditioner
that we propose provides a method for approximating Si,i, and accounts for
the global coupling through the hybrid coarse/fine grids associated with the
edges, rather than using the operator AH .

4 The Preconditioner

In this section we describe the edge preconditioner which is derived by par-
titioning the domain in parallel strips and approximating the Schur comple-
ment using a discretization on a special grid called the edge grid. The edge
grid discretization induces subproblems which have weak coupling with the
subdomains. This sets the stage for deriving a block diagonal approximation
to S, from which an effective parallel preconditioner for A is obtained.

The proposed preconditioner provides an approximate solution of the bound-
ary value problems induced by substructuring. These problems are defined in
the next subsection.

4.1 Problem decomposition

For each edge Ej = (0, 1)× yi, we define Ēj = (0, 1)× (yj −hE, yj +hE), where
1 ≤ j ≤ nE and hE ≥ h. Let E = ∪nEj=1Ej. We approximate problem (1) by nI
subdomain problems

Lûi = g − LûE in Ωi, for 1 ≤ i ≤ nI ,
Bûi = t on ∂Ωi ∩ ∂Ω and ûi = ∂ûi/∂y = 0 on ∂Ωi ∩ E ,
with ûi ∈ C1(Ω), ûi ≡ 0 on Ω̄− (Ωi ∪ ∂Ωi) ,

(9)
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and nE interface problems

LûEj = g − LûI in Ēj, for 1 ≤ j ≤ nE,
BûEj = t on ∂Ēj ∩ ∂Ω and ûEj = ∂ûEj/∂y = 0 on ∂Ēj ∩ Ω,
with ûEj ∈ C1(Ω), ûEj ≡ 0 on Ω̄− Ēj,

(10)

where ûI =
∑nI

i=1 ûi and ûE =
∑nE

j=1 ûEj . The solution of (1) is approximated
by û = ûI + ûE. Our preconditioner, which is derived in Section 4.3, is
an approximate solution of the Hermite bicubic collocation problems induced
by (9) and (10), and specifies a value of hE.

4.2 Schur Complement Block Structure

For strip substructuring, AEE is a block diagonal matrix,

AEE =


A

(1)
EE 0 . . . 0

0 A
(2)
EE 0

...
. . .

...

0 . . . . . . A
(nE)
EE

 ., (11)

where the block A
(i)
EE represents the coefficients of the unknowns associated

with edge i in the equations imposed at the collocation points associated with
edge i.

Define A
(i,j)
EI to be the matrix block which contains the coefficients of the

unknowns from subdomain j in the equations imposed at the collocation points
associated with edge i. The matrix AEI has the structure

AEI =


A

(1,1)
EI A

(1,2)
EI 0 0 . . . 0 0

0 A
(2,2)
EI A

(2,3)
EI 0 . . . 0 0

...
. . . . . .

...
...

0 0 0 0 . . . A
(nE ,nE)
EI A

(nE ,nE+1)
EI

 . (12)

Similarly, define A
(i,j)
IE to be the matrix block which contains the coefficients of

the unknowns from edge j in the equations imposed at the collocation points
associated with subdomain i. The matrix AIE has the structure

AIE =


A

(1,1)
IE 0 0 . . . 0 0

A
(2,1)
IE A

(2,2)
IE 0 . . . 0 0
. . . . . .

...
...

0 0 0 . . . A
(nE ,nE−1)
IE A

(nE ,nE)
IE

0 0 0 . . . 0 A
(nE+1,nE)
IE

 . (13)
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The Schur complement matrix S associated with a strip decomposition has a
block tridiagonal structure, with a diagonal block for each edge (see [11] for a
proof). Specifically,

S =


S1,1 S1,2 0 0 0 . . . 0 0
S2,1 S2,2 S2,3 0 0 . . . 0 0
0 S3,2 S3,3 S3,4 0 . . . 0 0
...

. . . . . . . . .
...

0 0 0 0 0 . . . SnE ,nE−1 SnE ,nE

 , (14)

where the blocks have the shape NE ×NE and are given by

Si,i = A
(i)
EE −

(
A

(i,i)
EI A

(i,i+1)
EI

) ( A
(i,i)−1

II 0

0 A
(i+1,i+1)−1

II

) (
A

(i,i)
IE

A
(i+1,i)
IE

)
,

where 1 ≤ i ≤ nE, and

Si,i+1 = −A(i,i+1)
EI A

(i+1)
II

−1
A

(i+1,i+1)
IE , 1 ≤ i < nE,

Si,i−1 = −A(i,i)
EI A

(i)
II

−1
A

(i,i−1)
IE , 1 < i ≤ nE.

Our approach to approximate S−1, i.e., to derive a preconditioner for S,
is to construct a new Schur complement problem such that the effect of the
coupling between the edge and subdomain problems, due to the terms A

(i,i)
EI

and A
(i,i+1)
EI , is reduced. This reduction of mutual coupling allows us to select

a block diagonal matrix which provides an accurate preconditioner. The next
subsection describes and justifies the technique we propose.

4.3 The Edge Preconditioner

The edge preconditioner is constructed in two main stages. In the first stage,
we define a new Schur complement problem S̃, in terms of a hybrid coarse/fine
grid. In the second stage, we obtain an efficient approximation of S̃−1 which
constitutes the edge preconditioner Ŝ−1.

The edge subproblem derived on the fine grid

AEIuI + AEEuE = fE (15)

is approximated with the subproblem

ÂEIuI + ÂEEuE = fE, (16)
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which is derived using the edge grid, as described next. We define an edge
neighborhood Êi = [0, 1] × [ŷi − H, ŷi + H], for each edge 1 ≤ i ≤ nE, where
H = K h, and ŷi = iH + (i− 1)h. The edge grid associated with the ith edge
is X×{ŷi−H, ŷi, ŷi+H}. Figure 3 shows the edge grid for the bottom edge of
a three-strip decomposition. For the ith edge, we approximate the restriction
of u to Êi by an element in the function space of piecewise bicubic polynomials
on Êi, where the Hermite bicubic basis functions have support on translates of
[−h, h]× [−H,H].

For each edge i, 1 ≤ i ≤ nE, we collocate at the points {(ξ, ζ) : (ξ, ζ) ∈
G ∪ ∂G and ŷi− h/2 < ζ < ŷi + h/2} in the new function space, obtaining the
approximation to the ith edge subproblem:

Â
(i,i)
EI u

(i)
I + Â

(i,i+1)
EI u

(i+1)
I + Â

(i)
EEu

(i)
E = f

(i)
E .

Collecting all nE edge subproblems yields (16), and a possible approximation

^

^

1

4h

y

2y

H

h

Figure 3: Support of the piecewise bicubics basis functions centered at the
point (4h,H). The support for edge grid discretization is the area hashed
with south-east to north-west lines; the support for the original fine grid dis-
cretization is hashed with south-west to north-east lines. Edge nodes are shown
as square boxes.
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to the Schur complement S in (5):

S̃ = ÂEE − ÂEIA−1
II AIE. (17)

The block structure of S̃ is the same as that of S (see relation (14)). Note
that there is still coupling between the edge subproblems and the subdomain
interior subproblems, something we would like to avoid in a parallel algorithm.
However, the important effect of using the edge grid is to reduce the magnitude
of the coefficients in the matrix ÂEI as compared to the coefficients in AEI .
This effect is quantized by the following lemma (see [11] for a proof):

Lemma 1 There exists a positive number µ, independent of h and H, such
that

ÂEE − S̃ =
h

H

(
BEI +

h

H
CEI +D

)
P A−1

II AIE,

where AEI = BEI +CEI is a splitting of AEI , P is a permutation matrix, and
D is a sparse matrix with at most eight nonzeros per row and ‖D‖∞ ≤ µ.

This means ÂEIA
−1
II AIE in (17) is smaller than the corresponding term

AEIA
−1
II AIE in (5). This fact motivates choosing ÂEE as the edge precondi-

tioner. In other words, Ŝ is derived from S̃ by setting Ŝi,i = Â
(i)
EE, Ŝi,i+1 = 0,

and Ŝi,i−1 = 0. Thus, our edge preconditioner is Ŝ = ÂEE, i.e.,

Ŝ−1 =



(
Â

(1)
EE

)−1

0 0 . . . 0

0
(
Â

(2)
EE

)−1

0 . . . 0
...

. . .
...

0 0 0 . . .
(
Â

(nE)
EE

)−1

 . (18)

4.4 The System Preconditioner

The approximation of A−1 is obtained from (6) and (18) as

M−1 =

(
I −A−1

II AIE
0 I

) (
A−1
II 0

0 Ŝ−1

) (
I 0

−ÂEIA−1
II I

)
.

We determine the LU factorization of A
(i)
II , where 1 ≤ i ≤ nI , and of A

(i)
EE,

where 1 ≤ i ≤ nE. The LU factorization is computed with scaled partial
pivoting, based on the BAND GE module in the ELLPACK package [12]. The
factored blocks are stored and used to perform triangular solves.

12



An application of the preconditioner (see Algorithm 1) is the computation
of v = M−1u for a given u = (uI ,uE)T , and consists of a series of matrix-
vector multiplications, triangular solves, and vector subtractions. Note that
every step of the algorithm is fully parallel due to the block diagonal structure
of AII and ÂEE. Moreover, if the number of subdomains is nI = Θ(

√
N)

(f = Θ(g) means f = O(g) and g = O(f)), then the cost of the algorithm is
O(N) arithmetic operations. This can be seen as follows.

Algorithm 1 Preconditioner application: v = M−1u.

B Purpose: Compute v = M−1u

B Inputs: Ŝ and AII (factored), ÂEI , AIE, and u = (uI ,uE)T

B descriptors: nE, NE, and nI , NI

B Output: v = M−1u, where v = (vI ,vE)T

1 xI = A−1
II uI ; B Solve the harmonic problem

2 xE = ÂEI xI ; B Correction for right hand side of the interface
3 yE = uE − xE; B Update right hand side on the interface

4 vE = Â−1
EE yE; B Solve on the interface

5 yI = AIE vE; B Harmonic extension of vE
6 vI = A−1

II (uI − yI); B Solve on all the subdomains

Let C be an m×m matrix with l = u, where l and u are the lower and upper
bandwidth of C, respectively. The cost of a triangular solve for C is 3 l m. We

have l = 2
√
N+4
nI

for A
(i)
II , 1 ≤ i ≤ nI , and l = 7 for Â

(j)
EE, 1 ≤ j ≤ nE. The

cost of the lower and upper triangular solves is 6NI

(
1 + 4

√
N+2
nI

)
for A

(i)
II and

42NE for Â
(j)
EE. Because ÂEI and AIE have at most 16 nonzero entries per row,

the cost of the matrix-vector multiplies ÂEI xI and AIE vE for Algorithm 1 is
O(32nE NE) and O(32nI NI), respectively. The combined cost of steps 2 and
5 of the algorithm is O(nE NE + nI NI) = O(N). For nI = Θ(

√
N), the cost

of an application of the preconditioner has the upper bound

O
(
N + 12NI

(
nI + 4(

√
N + 2)

)
+ 42NE nE

)
= O(N),

The preconditioner is applied for each GMRES iteration, but is constructed
only once. With the notation of the previous paragraph, the cost of factoring

13



C is O(l2m). When the number of subdomains is nI = Θ(
√
N), the cost of

factoring A
(i)
II is O(NI) and the cost of factoring AEE is O(NE). Since the cost

of the edge grid discretization is O(N), constructing the preconditioner has
the cost O(N + nI NI + nE NE) = O(N).

5 Numerical Experiments

In this section we illustrate the effectiveness of the proposed preconditioner,
compare it to a block-Jacobi preconditioner and to threshold incomplete LU
factorization (ILUT) [13], and investigate its performance as the problem size
and the number of subdomains scale. We employ right-preconditioned GM-
RES(50), i.e., restarted GMRES using a Krylov subspace of dimension 50. The
stopping criterion is relative residual reduction of ε = 10−5. The software is
written in C and Fortran, and uses ELLPACK’s band Gaussian elimination for
the subdomain solves. The CPU time is given in seconds and is measured using
the library function times. The tests are run on a Digital Personal Worksta-
tion 500au, with a 500-MHz Alpha processor, 2-MByte of cache, 512-MByte
of main memory, and running Digital Unix V4.0D.

We use the following problems to evaluate the performance of the edge pre-
conditioner (EP) (problems drawn from the examples in Appendix A of [12]):

Problem 1. Problem 1 in [12] has a self-adjoint operator

∂

∂x

(
exy

∂u

∂x

)
+

∂

∂y

(
e−xy

∂u

∂y

)
− 1

1 + x+ y
u = g1, (19)

defined on the unit square, where the right-hand side g1 is chosen so that
the true solution is u1 = 3

4
exy sin (πx) sin (πy). The boundary conditions are

Dirichlet on one side and Neumann on the other three sides: u = 0 on x = 1
and ∂u

∂n
= ∂u1

∂n
on y = 0, y = 1, and x = 0.

Problem 2. Problem 2 in [12] has a general operator

∂2u

∂x2
+ (1 + y2)

∂2u

∂y2
− ∂u

∂x
− (1 + y2)

∂u

∂y
= g2, (20)

defined on the unit square, where the right-hand side g2 is determined by the
solution u2 = ex+y + (x2−x)2 log (1 + y2). The boundary conditions are again
Dirichlet on one side and Neumann on the other three: u = u2 on x = 1 and
∂u
∂n

= ∂u2

∂n
on y = 0, y = 1, and x = 0.
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Problem 3. Problem 12 in [12] has oscillatory coefficients of ∂u
∂x

and u:

∂2u

∂x2
+
∂2u

∂y2
+ (1 + sin (αx))

∂u

∂x
− cos (α y)u = g3, (21)

and is also defined on the unit square, with g3 determined by the solution
u3 = cos (β y) + sin β (x− y). The boundary conditions are Dirichlet on all
four sides: u = u3 on ∂Ω. For our experiments we set α = β = π.

Recall that n0 is the number of grid lines in each direction, nI is the number
of strips, nE = nI − 1 is the number of edges, K is the number of grid lines
per strip and n0 = nE + KnI . Thus, for the edge-preconditioned method,
n0 = (K + 1)nI − 1. The grid for block-Jacobi (BJ) preconditioner is chosen
so that each diagonal block has the same size. The largest problem solved has
56644 unknowns (119× 119 grid).

First, we compare EP preconditioning to an incomplete LU preconditioner
(ILUT from SPARSKIT [15]). Incomplete factorization preconditioners are
a common choice for PDE solving. We use two criteria to compare the two
preconditioners: the spectrum of the preconditioned matrix AM−1, and the
number of GMRES iterations. A spectral analysis is a commonly used quality
measure for preconditioned iterative methods, e.g., see [10]. The spectrum
analysis is made in terms of the number of outlier eigenvalues, i.e., eigenvalues
of AM−1 lying in the complex plane outside a disk of radius 0.1 and center
(1,0). The parameters of ILUT are a fill level of 32 and a drop tolerance of
0.001. Figure 5 shows that, as the problem size increases, the gap between
the number of outliers for EP and ILUT increases in favor of EP. In other
words, the eigenvalues of EP are clustered around the unit eigenvalue closer
than those of ILUT. Figure 5 compares the number of GMRES iterations
for EP and ILUT. Due to tighter clustering of eigenvalues, EP significantly
outperforms ILUT in terms of iteration count.

For the examples shown, it must be pointed out that despite the spectral
comparison, the total time to solution for ILUT is actually better than for
EP. For example, on Problem 1, with n0 = 39 grid lines in each dimension
(6084 unknowns), EP-preconditioned GMRES takes 1.62 seconds while ILUT-
preconditioned GMRES takes 1.05 seconds. There are several points which
must be kept in mind when interpreting these results, however. First, the cost
per iteration of EP is generally higher than for ILUT since EP requires two
subdomain solves per iteration (steps 1 and 6 of Algorithm 1) while ILUT
requires only one solve.

Secondly, for our examples, the preconditioner setup time for EP is consid-
erably higher than for ILUT, accounting for almost all of the difference between

15



2000 4000 6000 8000 10000 12000 14000
0

500

1000

1500

2000

2500

3000

3500

4000

Number of unknowns 

N
um

be
r 

of
 o

ut
lie

rs
 e

ig
en

va
lu

es

2000 4000 6000 8000 10000 12000 14000
0

500

1000

1500

2000

2500

3000

3500

4000

Number of unknowns 

N
um

be
r 

of
 o

ut
lie

rs
 e

ig
en

va
lu

es

2000 4000 6000 8000 10000 12000 14000
0

500

1000

1500

2000

2500

3000

3500

4000

Number of unknowns 

N
um

be
r 

of
 o

ut
lie

rs
 e

ig
en

va
lu

es

Figure 4: Spectrum comparison between ILUT with fill level of 32, drop tol-
erance 0.001 (solid lines), and EP with 4 strips (dashed lines), for Problems 1
(left), 2 (center) and 3 (right). Outliers are eigenvalues lying in the complex
plane outside a disk of radius 0.1 and center (1, 0).
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Figure 5: Convergence comparison between ILUT with fill level of 32, drop
tolerance 0.001 (solid lines), and EP with 4 strips (dashed lines), for Problems
1 (left), 2 (center) and 3 (right).

the two methods. This is not surprising since, with small nI , complete factor-
izations of the relatively large subdomain matrices A

(i)
II are considerably more

expensive than an incomplete factorization of A, especially with a low ILU
fill-in parameter. However, using more subdomains reduces the size of the
subdomain matrices and can reduce the overall cost of the EP setup phase.
For our experiments, the number of subdomains was held constant at nI = 4.
If the number of subdomains scales with n0, then the results for EP improve
(see the complexity analysis in Section 4). For example, with n0 = 39 and
nI = 5 subdomains, the time improves to 1.36 seconds. Furthermore, note
that EP’s advantages in iteration count will yield greater benefits for prob-
lems where the preconditioner can be re-used, so that the setup cost can be
amortized over multiple solves, e.g., problems with multiple right hand sides,
and nonlinear or time-dependent problems with an outer iteration.

A further advantage of EP over ILU is that the latter requires the user
to select parameters. The performance of ILU can be quite sensitive to the
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choice of these parameters. For our experiments, we determined good choices
experimentally, and these choices were very important to the success of the
method. For example, with n0 = 39, using a fill level of 16 instead of 32
causes the number of GMRES iterations to increase from 24 to 42; and a drop
tolerance of 0.01 rather than 0.001 causes the number of iterations to increase
from 24 to 45.

Finally, we note that EP is designed to be a highly parallelizable precon-
ditioner, while ILU is not. Although the experiments reported here are all
run on a sequential machine, our ultimate goal is to derive a highly parallel
algorithm.

Since ILUT does not parallelize well we turn now to a comparison of EP
with a preconditioner that does parallelize easily, namely block-Jacobi (BJ).
Figures 6 and 7 show the EP versus BJ performance comparison results for
Problem 1. Each curve in Figures 6 and 7 corresponds to a fixed number
of subdomains or Jacobi blocks, with n0 increasing. Notice that for the EP
preconditioner the number of iterations is virtually independent of the problem
size and grows very slowly with the number of subdomains. Clearly there is
a big advantage for EP over BJ, and this advantage grows with problem size.
Performance comparisons of BJ and EP for the other two problems yield results
similar to those for Problem 1.

In Table 1 we compare further the block-Jacobi strategy versus the pro-
posed edge preconditioner for Problems 1, 2, and 3. The focus here is on the
influence of mixed (vs. Dirichlet) boundary conditions. We modify our test
problems so that there is both a “Dirichlet” and a “mixed” boundary condi-
tion version for each. Specifically, the Dirichlet versions of Problems 1 and 2
are obtained by imposing u = u1 and u = u2, respectively, on ∂Ω; the mixed
boundary conditions version of Problem 3 is obtained by imposing u = u3 on
x = 1 and ∂u

∂n
= ∂u3

∂n
on y = 0, y = 1, and x = 0. Five subdomains were used

for all the cases in Table 1; results with a different number of subdomains are
similar. Note also that different n0 values are used for BJ and EP because of
the different constraints required by our implementation of the two precondi-
tioners, i.e., BJ requires that the number of blocks evenly divide n0, while EP
requires that n0 = (K + 1)nI − 1 for some constant K. Note that the EP data
actually corresponds to a slightly larger problem than the one solved by BJ.

The results in Table 1 are evidence that EP can be more robust than BJ
in the presence of mixed boundary conditions. For all the model problems,
switching from Dirichlet to mixed boundary conditions causes a smaller rela-
tive rise in the number of EP iterations than in the number of BJ iterations.
For example, for Problem 3, the number of EP iterations increases with 14%,
while the number of BJ iterations almost doubles.
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Figure 6: Number of GMRES iterations for block-Jacobi and edge precondi-
tioning.

The scalability of the method with respect to the problem size and number
of subdomains is investigated next. First, we keep the number of subdomains
constant and increase the total problem size. In Figure 5 we saw that the
number of iterations for the EP method was virtually independent of problem
size. Table 2 shows the performance of the method for a larger data set,
involving more subdomains and all three problems. Again we see that the
number of iterations depends very weakly on the problem size.

Finally, we keep the global problem size fixed and increase the number
of subdomains. Table 3 shows that the number of iterations increases slowly
with the number of subdomains, up to a threshold value of nI (which grows
with n0), when the dependence becomes significant. This is not surprising
since as nI increases, K = H/h decreases, and hence the accuracy of the
preconditioner decreases. However, from Table 3 it is evident that for a modest
number of subdomains (e.g., 3–8) the number of iterations and especially the
total time stay relatively flat. Since the EP algorithm is fully parallel, this
suggests excellent performance is possible on typical shared memory parallel
machines. Efficiently using 12 or more processors on problems of this size
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Figure 7: Solver times for block-Jacobi and edge preconditioning.

will likely require a more scalable two-dimensional decomposition strategy. A
comparison of serial times between EP and ILUT shows ILUT is better, with
the difference attributed to the setup time for EP. How the times for these
two will compare for larger problems, in higher dimensions, and especially
in a parallel context, is an important future research issue that needs to be
resolved.

6 Concluding Remarks

We have introduced an interface preconditioner (EP) that is both accurate
and efficient: accurate in that it is a good approximation to the original Schur
complement, and efficient in that it is block diagonal, with one block cor-
responding to each edge subproblem. The preconditioner may provide an
O(N)-cost solution, and the construction of the preconditioner requires O(N)
storage, where N = 4n2

0 is the problem size. Furthermore, all subdomains and
edge subproblems can be computed fully in parallel.

Our tests show that our preconditioner is significantly superior to block-
Jacobi in terms of both number of iterations and execution time. The number
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Table 1: Performance as a function of boundary condition type. Number of
iterations (Its) and time in seconds.

Block Jacobi Edge
Problem n0 = 95 n0 = 99 Time Ratio

No. Boundary cond. Its Time Its Time

1 Dirichlet 55 35.0 10 14.8 2.37
Mixed 83 51.6 14 20.0 2.58

2 Dirichlet 51 32.7 15 21.5 1.52
Mixed 105 66.1 20 28.2 2.34

3 Dirichlet 49 30.8 14 20.1 1.53
Mixed 90 56.1 16 22.7 2.47

Table 2: Performance of edge preconditioner for increasing problem size, with
fixed number of subdomains. Number of iterations (Its) and time in seconds.

nI K n0 Problem 1 Problem 2 Problem 3
Its Time Its Time Its Time

8 35 11 1.4 15 1.9 10 1.3
11 47 11 2.8 16 4.0 12 3.0

4 14 59 11 4.8 17 7.4 12 5.4
17 71 12 8.4 18 12.3 13 9.1
20 83 13 13.2 18 17.9 14 14.2
23 95 13 18.6 18 25.9 14 20.0

5 35 14 1.6 17 2.0 11 1.3
7 47 14 3.1 18 4.0 11 2.5

6 9 59 14 5.3 18 6.7 12 4.6
11 71 14 8.3 19 11.1 12 7.2
13 83 15 12.8 20 16.9 13 11.3
15 95 15 17.9 21 24.8 14 16.9

of iterations is virtually independent of the problem size for a fixed number of
subdomains; for a fixed global problem size, the number of iterations and time
depend only weakly on the number of subdomains as long as the granularity
(number of grid lines per subdomain) is not too small. Furthermore, the
number of iterations is small enough that the GMRES iteration does not have
to be restarted, i.e., full GMRES is practical for the problems tested (with N
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Table 3: Performance of edge preconditioner for increasing number of subdo-
mains, with fixed total problem size. Number of iterations (Its) and time in
seconds.

n0 K nI Problem 1 Problem 2 Problem 3
Its Time Its Time Its Time

15 3 11 3.2 14 4.0 12 3.5
11 4 11 2.8 16 4.0 12 3.1

47 7 6 14 3.1 18 4.0 11 2.5
5 8 20 4.2 23 4.8 14 3.0
3 12 31 6.0 35 6.8 20 3.9

23 3 12 9.6 16 12.6 14 11.2
17 4 12 8.3 18 11.3 13 9.1

71 11 6 14 8.3 19 11.1 12 7.2
8 8 19 9.9 23 11.9 14 7.5
5 12 31 15.1 34 16.6 19 9.3

31 3 13 21.5 17 27.7 15 24.6
23 4 13 18.6 18 25.3 14 20.1

95 15 6 15 18.0 21 25.0 14 17.0
11 8 19 20.2 23 24.4 14 15.2
7 12 30 27.5 34 31.3 19 17.5

up to 56000 +) with a moderate residual reduction of 10−5.
It is shown in [11] that the edge preconditioner introduced in this paper

can be used to define a preconditioner for two-dimensional substructuring.
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