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ABSTRACT 
Virtual Environments (VEs) and perceptive user interfaces must 
deal with complex users and their modes of interaction.  One way 
to approach this problem is to recognize users’ nuances (subtle 
conscious or unconscious actions).  In exploring nuance-oriented 
interfaces, we attempted to let users work as they preferred 
without being biased by feedback or affordances in the system.  
The hope was that we would discover the users’ innate models of 
interaction.  The results of two user studies were that users are 
guided not by any innate model but by affordances and feedback 
in the interface.  So, without this guidance, even the most obvious 
and useful components of an interface will be ignored. 
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1. INTRODUCTION 
Nuance-oriented interfaces[1] work under the hypothesis that the 
user has an innate model of interaction; we only have to perceive 
it. This innate model will be their first intuition for performing 
any action and will dictate the user’s methods of increasing 
performance by performing nuances, which can be found in input 
device data. A nuance will be defined for our purposes as a 
repeatable action the user makes in their interactions in an 
environment, intentional or not, that are highly correlated with an 
intended action but not implicit in the interaction metaphor[1].  
We have recognized four categories of nuances; object, 
environment, refinable and supplemental. If these nuances could 
be identified and framed as a part of the interaction technique 
through machine learning (ML), users would have a more 
responsive environment to their actions. For virtual environments 
(VEs), this could lead to improved efficiency and presence, 
possibly even new uses for VE technology [2].  In this paper, we 
discuss the partial results of from an ongoing study to create a 
demonstrable VE nuance-oriented interface. 
The aspects of what a nuance-oriented interface hope to capture 
can best be described through scenarios of interaction: 

Dave the architect is trying to place walls in a model of 
a building he is working on.  His interface uses a non-

linear arm mapping function to move his hand when he 
manipulates objects in the environment. This allows him 
to move objects precisely up close but still reach way off 
in the distance, due to the non-linearity.  The problem he 
is having now is trying to place a wall on the other side 
of the building.  He tries to put it into place but even the 
jitter of the tracking system is enough to make his wall 
bounce out of position. 

The non-linear arm extension mapping [3] is helping him reach 
the other side but it is not allowing him the ability to work with 
enough precision once his arm is there.  The interface should 
build a nuance that recognizes when the user is getting frustrated 
and change the mapping function to something more appropriate.  

Dave has built his building and now wants to see which 
type of lighting looks best.  As he is standing under the 
hanging lamp in the center of the room, he realizes that 
there is not enough illumination.  To remedy the 
situation, he points at the lamp and a ray extends from 
his finger.  As he points, the ray keeps flipping back and 
forth between the light bulb and the lamp since the bulb 
is so small and hard to point at.  Dave is frustrated. 

In this situation, it is probable that Dave is quite accurate in 
pointing at the bulb but his precision is varying, making his 
pointing overflow onto the lamp.  The nuance could be that the 
object to be selected should have some dependency upon where 
the ray has been pointing over time.  In a sense, this nuance would 
damp the ray’s motion. 
This paper discusses two experiments whose results showed that  
users have an innate model of how to respond to affordances and 
feedback rather than an innate model of interaction in the 
environment.  An affordance is, “the perceived and actual 
properties of the thing, primarily those fundamental properties 
that determine just how the thing could possibly be used” [4].  
Feedback is information provided to the user by the interface 
during or after a user action that assists them in their 
understanding of the current action.  These two concepts are 
critical to interface design and our ongoing work is framing them 
in nuances. 

2. ADVANTAGES OF NUANCES 
We should be able to recognize the smallest pieces of information 
in an environment, the nuances, by mining interaction logs of 
users and use those nuances to build interfaces.  These nuances 
should be transferable to new environments so time spent by 
researchers identifiing nuances can be amortized across the 
construction of similar interfaces.  This will lead to robust, 
quickly developed, interfaces using nuances as building blocks.  
There are two other main advantages of such a representation. 



2.1 Nuances Support Mutual Disambiguation 
The argument has been made that multiple input modalities 
support mutual disambiguation which increases accuracy [5].  In 
the same manner, multiple nuances and can be though of as 
multiple modalities providing information to the interface to 
increase accuracy. Hidden Markov Models (HMMs) have been 
employed to recognize co-occurrence of voice and gestures as 
well as sequences of action [6], the goal being methods to develop 
interfaces from co-occurrence. Our previous work has used a 
neural network (NN) to recognize user actions in a selection task 
among randomly placed and overlapping spheres [1].  The NN 
learned the trivial nuance that hand location was a determining 
factor as to which sphere was being selected.  The NN went a step 
further and recognized that wrist orientation also could be used, 
especially in the case of overlapping spheres.  The resulting 
interface was robust, a feat that would be difficult for interface 
designers to duplicate. 

2.2 Inducing/Deducing Interfaces 
Nuances help in the recognition of the actions a user takes 
(induced from user input data) and the optimization of the paths to 
complete a goal (the deduction of the path to reach a goal). VEs 
produce parallel, continuous, probabilistic, passive input data 
streams [7] which we can record.  Learning methods such as 
neural networks, decision trees, HMMs or inductive logic 
programming can then treat the data as a programming by 
example problem and map the data to user actions.  For the 
optimization of user goals, we can look upon the user’s actions 
and choices as the result of a Markov decision process.  A Markov 
decision process is where there exists a set of states S, a set of 
actions A, an agent (in this case the user) and where the state 
transition probabilities are stationary.  At each step, the agent 
knows its current state st, and chooses an action at, receiving a 
reward rt which is a function of the state and action chosen (rt = 
R(st,at) where st∈S, at∈A).  The modeling assumption is that the 
user chooses actions whose associated rewards contribute to a 
value function.  Inverse Reinforcement Learning [7]can then be 
used to deduce that value such that we can anticipate, and 
hopefully assist with, the user’s next subgoal towards the 
completion of their goal.  

3. LONG TERM PLAN 
Our original plan was of four phases to generate a selection 
technique in VEs based upon the concepts of a nuance-oriented 
interface.  The goal of this process was to identify the nuances of 
selection techniques based upon preference, regions of space, 
object affordances and properties of the environment.  In each 
phase, using the nuances from the previous phase, selection trials 
were to be performed to collect data from the users.  This paper 
discusses phase 1 and part of phase 2. 
In each phase, we used the same group of eight users and all eight 
of the users were taken from a graduate level course on virtual 
environments, though not all were computer science students.  All 
had some familiarity and interest in the field of virtual 
environments but not necessarily experience.  There were five 
males and three females between the ages of 24 and 54, with most 
towards the lower end of the age-group.  Their compensation was 
receiving extra credit in the graduate level course. 
The equipment used for these phases was an SGI Indigo 2 with 
Max Impact graphics and the user inside a Virtual Reality V8 

Head Mounted Display (HMD).  They had their hands and head 
tracked using a Polhemus 3 Space Fastrak magnetic tracker and 
finger pinches were recorded using Fakespace PinchGloves.  A 
selection was considered to have taken place when the user 
pinched either their index and thumb or middle and thumb fingers 
together.  The environment was programmed using DIVERSE [9] 
and JIVE [10]. 

3.1 Phase 1: Optimizing Selection Techniques 
Phase 1 was to discover refinable nuances, nuances that alter 
existing behavior, for three VE selection techniques: arm 
extension, ray casting and occlusion.  The concept of arm 
extension involves the user reaching their hand out to the object 
to be selected.  When they feel that the hand is touching the object 
to select, they pinch.  The second selection technique was ray 
casting [11] and involves the user pointing their hand at an object 
and pinching when they believe a line extends from their hand to 
the object.  This allows users to select objects when their hand is 
in a non-fatiguing position down by their side. The third 
technique was occlusion selection [12].  It involves the user 
placing some part of their hand between their eye and the object, 
pinching when aligned. Most interface designers stop at these 
high-level techniques and do not try to tune them for the user.  
For example, ray casting is almost always implemented with a ray 
extending directly from the hand without ever trying to discover if 
this is the optimal configuration.   
For each technique, users were informed how the technique 
worked and the instructions were vague enough to not guide their 
actions but informative enough to let them know how the 
technique works and is implemented.  The concept was that users 
have an existing model of how they wish to interact with the 
environment and if we isolate that underlying model, then we can 
use that knowledge to recognize their actions. This information 
can then be used in further phases where we isolate other factors 
of the interface. 
The difficulty we encountered was to make an interface where the 
user would act naturally and not adapt.  To this end, we attempted 
to remove all forms of feedback and affordances from the 
environment relevant to each selection technique.  For this reason 
we did not implement ray casting with a ray extending from the 
user’s finger or even a hand for arm extension.  We then assumed 
that since the user was operating according to their own definition 
of optimality, and we knew their goal to be the selection of an 
orange sphere, then each time they conclude a selection with a 
pinch, they were correct in their selection.  Since the user can 
assume that the interface is 100% accurate in its recognition, they 
can then interact without adapting. 

3.1.1 Environment 
The environment (see Figure 1) in all three sets of trials (one for 
each selection technique) had the user standing on a platform 
overlooking a floor with one orange sphere that they were told to 
select using the selection technique that was currently being 
tested.  Their head was tracked and a virtual hand, at the same 
position and orientation as the user’s physical hand, was shown 
(except in the arm extension technique as it was felt that the hand, 
being shown, would alter the way in which the user acted since 
the hand is the major form of feedback in arm extension). To 
account for a lack of depth cues, the users were told the sphere 
was the same size throughout the experiment and that the floor 



was a grid of one-meter squares.  There was also a shadow, 
properly scaled for depth and approximately scaled for height, 
placed below the sphere on the ground.  Each set had 30 trials 
where the sphere was moved through different locations with the 
first three trials being the sphere at its furthest distance, middle 
distance and closest distance to the user to help them get an idea 
of the environment’s depth.  The other 27 trials had the sphere 
randomly located at a position composed of near, mid or far; low, 
level or high; left, center or right.  One side effect noticed in the 
pilot study was that users were able to cycle quickly through 
selections because of our assumption that each episode was 
correct.  To counter, we added a three second pause between each 
selection episode and added an audible sound when the orange 
sphere reappeared. 
Figure 1. Phase 1 with the ball at a distant position.  Notice the 
shadow of the sphere and the gridded floor. 

 

 

3.1.2 Results 
With users free from the feedback of the environment, we 
expected them to revert to their most natural model of interaction 
built off of innate intuition.  What occurred was an amazing 
display of adaptation on the part of the user; completely unnatural 
and inefficient but incredibly effective at aligning the scarce 
feedback that was left in the system with the user’s belief in what 
the interface should be.  
Figure 2.  Two occlusion selections used most commonly in 
phase 1.  Left is the palm occlude (with the sphere behind the 
palm) and right is the thumb knuckle occlude.  Both are 
inaccurate and highly occlude the scene but for some reason 
users converged to them. 

   
 
Each technique had interesting results. Users of arm extension 
were found to not have a concept of depth.  We expected users to 
scale the extension of their arm to the objects being selected but 
found that users only divided space into “far” and “near” with far 
being a fully extended arm and near being a half-way extension.  
Occlusion selection contained the most interesting results.  The 

users choose unusual points on the hand as the occluding points.  
The two most common were actually the palm of the hand and the 
knuckle where the thumb meets the hand (see Figure 2).  The 
palm of the hand occlusion technique occluded most of the scene 
making the accuracy very low.  The thumb knuckle technique is 
inaccurate and again occluding.   It does however leave the hand 
in a natural and thus non-fatiguing state. One subject spent the 
entire occlusion selection trial making selections with their palm 
facing out.  This is a very uncomfortable position, even for short 
periods of time, and completely occluded the environment. A few 
users did choose to use the more accurate and less occluding 
fingertips. For ray casting selection, only one user did true ray 
casting.  All the other users occluded the object with the tip of 
their finger and considered that pointing at the object (see Figure 
3).  This completely voided the concept of “shooting-from-the-
hip” to reduce fatigue, but with the lack of a ray extending from 
the fingertip, this provided the most feedback to the user. 
Figure 3. All but one user considered ray casting to be a 
fingertip occlusion technique. 

 

3.1.3 What We Learned 
The results led to the following hypothesis: 

Users largely do not have a model of interaction with 
the environment but a model of how to respond to 
feedback the environment provides. 

Stated another way, users attempt to align their actions with 
feedback and affordances and not their innate model.  The effect 
of user experience with VEs may play an important role in this 
conclusion. 
Our original intent was to build personalized selection techniques 
for the users.  After reviewing the results, it was not considered 
possible to use the data since the users were so inefficient with 
their interaction in virtual environments without feedback to guide 
them.  A k-Means clustering on logged data was performed to see 
if trends existed in user data but the trends just mimicked the 
observations.  

3.2 Phase 2: Optimizing Selection Techniques 
Because of the unexpected results, we reevaluated our 
assumptions.  Instead of removing feedback and hoping that the 
user would act naturally, we added as much useful feedback as we 
could.  To occlusion selection, a bullseye was added to guide 
users as to where they were to align the ray from their eye. When 
within a configuration-specific snap-to angle, the bullseye 
snapped to the closest object to provide feedback showing that the 
technique is aligned with an object.  
A nearly identical environment was used in phase 2.  The user was 
asked to do at least one set of 10 trials for each predefined 
configuration as shown in Table 1.  The authors, through their 
intuition and experimentation, created these configurations and 
also included the two common occlusion configurations from 



phase 1.  After users experimented with the configurations, they 
were then asked to qualitatively rate them on a scale of 1 to 5.  
(this experiment was also performed on ray casting, but we 
limited the discussion here to occlusion selection). 
Table 1. The predefined occlusion configurations. 

Configuration 1: The bullseye is on the index finger and has a 
10-degree snap-to angle. 

Configuration 2: The bullseye is on the middle finger and has 
a 10-degree snap-to angle. 

Configuration 3: The bullseye is on the thumb’s knuckle with 
a 10-degree snap-to angle.  This was a configuration that 
was used heavily in the first implementation. 

Configuration 4: The bullseye is on the palm of the hand with 
a 10-degree snap-to angle.  This was a configuration that 
was used heavily in the first implementation. 

Configuration 5: The bullseye is placed a few centimeters off 
of the palm with a 10-degree snap-to angle. 

Configuration 6: The bullseye is placed on the index finger 
and has a 45-degree snap-to angle. 

Configuration 7: The bullseye is placed on the index finger 
and has a 3-degree snap-to angle. 

Figure 4. User ratings of the predefined configurations showed 
that they did not like their configurations from the previous 
phase (3 and 4). 
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As can be seen in Figure 4, users did not like configurations 3 and 
4, though they had performed them when they were not guided by 
any feedback in phase 1.  The most liked configurations, as 
expected, were those with the bullseye on the fingers with an 
unexpected preference towards the middle finger. The significance 
was not calculated however, due to a small number of users. 
The feedback of the system was the only change and it guided the 
user into performing selections requiring less fatigue.  The users 
also preferred configurations that were more accurate and less 
occluding of the scene.  Since the users without the feedback did 
not perform these more optimal configurations, which were 
available in the first phase, then the feedback plays an important 
role in guiding the users to better interaction. 

4. CONCLUSIONS AND FUTURE WORK 
The work is just beginning for nuance-oriented interfaces. The 
goal of this and continuing work is a system fully able to handle 
user nuances in complex interfaces, specifically VEs.  In this 
attempt to perceive the true nature of the user’s innate model of 

interaction, we observed that the model was not internal but built 
on the feedback and affordances inherent in the environment.  
Because of this, we recommend that nuance interfaces, being a 
perceptive interface, should not have their focus purely on being 
perceptive of the user but focus on how to perceive, such as to 
guide.  This may lead to unnatural interfaces, but with users 
making better use of the interaction which they were guided to, 
hopefully it will also lead to higher user satisfaction. Without this 
guidance, the user will never take advantage of all the richness of 
an interface because they will not know it exists, with the overall 
effect being a perceptive, yet still useless, interface.   
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