
Usability Evaluation in Virtual Environments:  

Classification and Comparison of Methods 

Abstract 

Virtual environments (VEs) are a relatively new type of human-computer interface in which 

users perceive and act in a three-dimensional world. The designers of such systems cannot rely 

solely on design guidelines for traditional two-dimensional interfaces, so usability evaluation is 

crucial for VEs. We present an overview of VE usability evaluation. First, we discuss some of 

the issues that differentiate VE usability evaluation from evaluation of traditional user interfaces 

such as GUIs. We also present a review of VE evaluation methods currently in use, and discuss a 

simple classification space for VE usability evaluation methods. This classification space 

provides a structured means for comparing evaluation methods according to three key 

characteristics: involvement of representative users, context of evaluation, and types of results 

produced. To illustrate these concepts, we compare two existing evaluation approaches: testbed 

evaluation [Bowman, Johnson, & Hodges, 1999], and sequential evaluation [Gabbard, Hix, & 

Swan, 1999]. We conclude by presenting novel ways to effectively link these two approaches to 

VE usability evaluation. 

1 Introduction and motivation 

During the past several years, virtual environments (VEs) have gained broad attention 

throughout the computing community. During roughly that same time period, usability has 

become a major focus of interactive system development. Usability can be broadly defined as 

“ease of use” plus “usefulness”, including such quantifiable characteristics as learnability, speed 



 2

and accuracy of user task performance, user error rate, and subjective user satisfaction [Hix & 

Hartson 1993; Shneiderman 1992]. Despite intense and widespread research in both VEs and 

usability, until recently there were very few examples of research coupling VE technology with 

usability — a necessary coupling if VEs are to reach their full potential. By focusing on usability 

from the very beginning of the development process, developers are more likely to avoid 

creating interaction techniques (ITs) that do not match appropriate user task requirements or to 

avoid producing standards and principles for VE user interface development that are nonsensical. 

In this paper, we focus on usability evaluation of VEs – determining how different ITs, interface 

styles, and numerous other factors such as information organization, visualization, and 

navigation affect the usability of VE applications and user interface components. 

Although numerous methods exist for usability evaluation of interactive computer 

applications, these methods have well-known limitations, especially for evaluating VEs. For 

example, most usability evaluation methods are applicable only to a narrow range of interface 

types (e.g., graphical user interfaces, or GUIs) and have had little or no use with innovative, non-

routine interfaces such as those found in VEs. VE applications have interaction styles so 

radically different from ordinary user interfaces that well-proven methods that produce usable 

GUIs may be neither appropriate nor effective. 

There have been attempts to adapt traditional usability evaluation methods for use in VEs, and 

a few notable efforts to develop structured usability evaluation methods for VEs. In this paper, 

we present a survey of existing approaches to usability evaluation to VEs. We begin by making 

explicit some of the important differences between evaluation of VE user interfaces and 

traditional GUIs. Next, we categorize usability evaluation methods based on three important 

characteristics: involvement of representative users, context of evaluation, and types of results 



 3

produced. Two major approaches are presented and compared: testbed evaluation, which focuses 

on low-level ITs in a generic context, and sequential evaluation, which applies several different 

types of evaluation methods within the context of a particular VE application. Finally, we present 

links between these two approaches that provide more power and an even broader set of methods 

to VE developers and researchers. 

We would like to set the context for this paper by explaining some terminology. First, we take 

a broad approach to assessing usability: it includes any characteristic relating to the ease of use 

and usefulness of an interactive software application, including user task performance, subjective 

satisfaction, user comfort, and so on. We define usability evaluation as assessment of a specific 

application’s user interface (often at the prototype stage), an interaction metaphor or technique, 

or an input device, for the purpose of determining its actual or probable usability. Usability 

engineering is, in general, a term covering the entire spectrum of user interaction development 

activities, including user and task analysis, conceptual and detailed user interaction design, 

prototyping, and numerous methods of usability evaluation. The roles involved in usability 

evaluation typically include a developer (who implements the application and/or interface 

software), an evaluator (who conducts evaluation sessions), and a user or subject (who 

participates in evaluation sessions). Finally, we consider “VEs” to include a broad range of 

systems, from interactive stereo graphics on a monitor to a fully-immersive 6-sided CAVE™. 

Most of the distinctive aspects of VE evaluation (section 2), however, stem from the use of 

partially- or fully-immersive systems. 

2 Distinctive characteristics of VE evaluation 

The approaches we present for usability evaluation of virtual environments have been 

developed and used in response to perceived differences between the evaluation of VEs and the 



 4

evaluation of traditional user interfaces such as GUIs. Many of the fundamental concepts and 

goals are similar, but use of these approaches in the context of VEs is distinct. Here, we present 

some of the issues that differentiate VE usability evaluation, organized into several categories. 

The categories contain overlapping considerations, but provide a rough partitioning of these 

important issues. Note that many of these issues cannot be found in the literature, but instead 

come from personal experience and extensive discussions with colleagues. 

2.1 Physical environment issues 

One of the most obvious differences between VEs and traditional interfaces is the physical 

environment in which the interface is used. In VEs, non-traditional input and output devices are 

used, which can preclude the use of some types of evaluation. Users may be standing rather than 

sitting, and they may be moving about a large space, using whole-body movements. These 

properties give rise to several issues for usability evaluation. Following are some examples: 

•= In interfaces using non-see-through head-mounted displays (HMDs), the user cannot see 

the surrounding physical world. Therefore, the evaluator must ensure that the user will 

not bump into walls or other physical objects, trip over cables, or move outside the range 

of the tracking device. A related problem in surround-screen VEs (such as the CAVE™) 

is that the physical walls can be difficult to see because of projected graphics. Problems 

of this sort could contaminate the results of a usability evaluation (e.g., if the user trips 

while in the midst of a timed task), and more importantly could cause injury to the user. 

To mitigate risk, the evaluator can ensure that cables are bundled and will not get in the 

way of the user (e.g., cables may descend from above). Also, the user may be placed in a 

physical enclosure that limits movement to areas where there are no physical objects to 

interfere. 



 5

•= Many VE displays do not allow multiple simultaneous viewers (e.g., user and evaluator), 

so equipment must be set up so that an evaluator can see the same image as the user. 

With an HMD, for example, this can be done by splitting the video signal and sending it 

to both the HMD and a monitor. In a surround-screen or workbench VE, a monoscopic 

view of the scene could be rendered to a monitor, or, if performance will not be 

adversely affected, both the user and the evaluator can be tracked (this can cause other 

problems, however – see section 2.2 on evaluator considerations). If images are viewed 

on a monitor, then it is difficult to see both the actions of the user and the graphical 

environment at the same time, meaning that multiple evaluators may be necessary to 

observe and collect data during an evaluation session. 

•= A common and very effective technique for generating important qualitative data during 

usability evaluation sessions is the “think aloud” protocol. With this technique, subjects 

talk about their actions, goals, and thoughts regarding the interface while they are 

performing specific tasks. In some VEs, however, voice recognition is used as an IT, 

rendering the think aloud protocol much more difficult and perhaps even impossible. 

Post-session interviews may help to recover some of the information that would have 

been obtained from the think aloud protocol. 

•= Another common technique involves recording video of both the user and the interface. 

Since VE users are often mobile, a single, fixed camera may require a very wide shot, 

which may not allow precise identification of actions. This could be addressed by using 

a tracking camera (additional expense and complexity) or a camera operator (additional 

personnel). Moreover, views of the user and the graphical environment must be 



 6

synchronized so that cause and effect can clearly be seen on the videotape. Finally, the 

problem of recording video of a stereoscopic graphics image must be overcome. 

•= An ever-larger number of proposed VE applications are shared among two or more 

users. These collaborative VEs become even more difficult to evaluate than single-user 

VEs because of physical separation between users (i.e., different users are in more than 

one physical location), the additional information that must be recorded for each user, 

the unpredictability of network behavior as a factor influencing usability, the possibility 

that each user will have different input and output devices, and the additional complexity 

of the system, which may cause more frequent crashes or other problems. 

2.2 Evaluator issues 

A second set of issues relates to the role of the evaluator in a VE usability evaluation. Because 

of the complexities and distinctive characteristics of VEs, a usability study may require multiple 

evaluators, different evaluator roles and behaviors, or both. Following are some examples: 

•= Many VEs attempt to produce a sense of presence in the user; that is, a feeling of 

actually being in the virtual world rather than the physical one. Evaluators can cause 

breaks in presence if the user can sense them. In VEs using projected graphics, the user 

will see an evaluator if the evaluator moves into the user’s field of view.  This is 

especially likely in a CAVE™ environment where it is difficult to see the front of a user 

(e.g., their facial expressions and detailed use of handheld devices) without affecting 

their sense of presence. This may break presence since the evaluator is not part of the 

virtual world. In any type of VE, touching or talking to the user can cause such breaks. If 

the evaluation is measuring presence, or if presence is hypothesized to affect 



 7

performance on the task being evaluated, then the evaluator must take care to remain 

unsensed during the evaluation. 

•= Because breaks in presence are so important, an evaluator probably does not wish to 

intervene at all during an evaluation session. This means that the experimental 

application/interface must be robust and bug-free, so that the session does not have to be 

interrupted to fix a problem. Also, instructions given to the user must be very detailed, 

explicit, and precise, and the evaluator should make sure the user has a complete 

understanding of the procedure and tasks before beginning the session. 

•= VE hardware and software are often more complex and less robust than traditional user 

interface hardware and software. Again, multiple evaluators may be needed to do tasks 

such as helping the user with display and input hardware, running the software that 

produces graphics and other output, recording data such as timings and errors, and 

recording critical incidents and other qualitative observations of a user’s actions. 

•= Traditional user interfaces typically require only a discrete, single stream of input (e.g., 

from mouse and keyboard), but many VEs include multi-modal input, combining 

discrete events, gestures, voice, and/or whole-body motion. It is much more difficult for 

an evaluator to process these multiple input streams simultaneously and record an 

accurate log of the user’s actions. These challenges make multiple evaluators and video 

even more important. 

2.3 User issues 

There are also a large number of issues related to the user population used as subjects in VE 

usability evaluations. In traditional evaluations, subjects are gleaned from the target user 



 8

population of an application or from a similar representative group of people. Efforts are often 

made, for example, to preserve gender equity, to have a good distribution of ages, and to test 

both experts and novices, if these differences are representative of the target user population. The 

nature of VE evaluation, however, does not always allow for such straightforward selection of 

users. Following are some examples: 

•= VEs are still often a “solution looking for a problem.” Because of this, the target user 

population for a VE application or IT to be evaluated may not be known or well-

understood. For example, a study comparing two virtual travel techniques is not aimed at 

a particular set of users. Thus, it may be difficult to generalize performance results. The 

best course of action is to evaluate the most diverse user population possible in terms of 

age, gender, technical ability, physical characteristics, and so on, and to include these 

factors in any models of performance. 

•= It may be impossible to differentiate between novice and expert users, since there are 

very few potential subjects who could be considered experts in VEs. Most users who 

could be considered experts might be, for example, research staff, whose participation in 

an evaluation could confound the results. Also, because most users are typically novices, 

the evaluation itself may need to be framed at a lower cognitive and physical level. 

Evaluators can make no assumptions about a novice user’s ability to understand or use a 

given IT or device. 

•= Because VEs will be novel to many potential subjects, the results of an evaluation 

usually exhibit high variability and differences among individuals. This means that the 

number of subjects needed to obtain a good picture of performance may be higher than 

for traditional usability evaluations. If statistically significant results are required 



 9

(depending on the type of usability evaluation being performed), the number of subjects 

may be even greater. 

•= Researchers are still studying a large design space for VE ITs and devices. Because of 

this, evaluations often compare two or more techniques, devices, or combinations of the 

two. To perform such evaluations using a within-subjects design, users must be able to 

adapt to a wide variety of situations. If a between-subjects design is used, a larger 

number of subjects will again be needed. 

•= VE evaluations must consider the effects of simulator sickness and fatigue on subjects. 

Although some of the causes of simulator sickness are known, there are still no 

predictive models for simulator sickness [Kennedy, Stanney, and Dunlap, 2000], and 

little is known regarding acceptable exposure time to VEs. For evaluations, then, a 

worst-case assumption must be made. A lengthy experiment (anything over 30 minutes 

might be considered lengthy) must contain planned rest breaks and contingency plans in 

case of ill or fatigued subjects. Shortening the experiment is often not an option, 

especially if statistically significant results are needed. 

•= Because we do not know exactly what VE situations cause sickness or fatigue, most VE 

evaluations should include some measurement (e.g., subjective, questionnaire-based 

[e.g., Kennedy et al., 1993], or physiological) of these factors. A result indicating that an 

IT was 50 percent faster than any other evaluated technique would be severely 

misleading if that IT also made 30 percent of subjects sick! Thus, user comfort 

measurements should be included in low-level VE evaluations. 



 10

•= Presence is another example of a measure often required in VE evaluations that has no 

analogue in traditional user interface evaluation. VE evaluations must often take into 

account subjective reports of perceived presence, perceived fidelity of the virtual world, 

and so on. Questionnaires [e.g., Witmer & Singer, 1998] have been developed that 

purportedly obtain reliable and consistent measurements of such factors. 

2.4 Issues related to type of usability evaluation  

Traditional usability evaluation can take many forms. These include informal user studies, 

formal experiments, task-based usability studies, heuristic evaluations, and the use of predictive 

models of performance (see section 3 for further discussion of these types of evaluations). There 

are several issues related to the use of various types of usability evaluation in VEs. Following are 

some examples: 

•= Evaluations based solely on heuristics (i.e., design guidelines), performed by usability 

experts, are very difficult in VEs because of a lack of published, verified guidelines for 

VE user interface design. There are some notable exceptions [Bowman, 2001; Gabbard, 

1997; Kaur, 1998], but for the most part it is difficult to predict the usability of a VE 

interface without studying real users attempting representative tasks in the VE. It is not 

likely that a large number of heuristics will appear at least until VE input and output 

devices become standardized. Even assuming standardized devices, however, the design 

space for VE ITs and interfaces is very large, making it difficult to produce effective and 

general heuristics to use as the basis for evaluation. 

•= Another major type of usability evaluation that does not employ users is the application 

of performance models (e.g., GOMS, Fitts’ Law). Again, such models simply do not 



 11

exist at this stage of VE development. However, the lower cost of both heuristic 

evaluation and performance model application makes them attractive for evaluation.   

•= Because of the complexity and novelty of VEs, the applicability or utility of automated, 

tool-based evaluation may be greater than it is for more traditional user interfaces.  For 

example, several issues above have noted the need for more than one evaluator in a VE 

usability evaluation session.  Automated usability evaluations could reduce the need for 

several evaluators in a single session. There are at least two possibilities for automated 

usability evaluation of VE user interfaces: first, to automatically collect and/or analyze 

data generated by one or more users in a VE, and second, to perform an analysis of an 

interface design using an interactive tool that embodies design guidelines (similar to 

heuristics). Some work has been done on automatic collection and analysis of data using 

specific types of repeating patterns in users’ data as indicators of potential usability 

problems (e.g., [Siochi & Hix, 1991]). However this work was performed on a typical 

GUI, and there appears to be no research yet conducted that studies automated data 

collection and evaluation of users’ data in VEs.  Thus, differences in use of these kinds 

of data for VE usability evaluation have not been explored, but they would involve, at a 

minimum, collating data from multiple users in a single session, possibly at different 

physical locations and even in different parts of the VE.  At least one tool, MAUVE 

(Multi-Attribute Usability evaluation tool for Virtual Environments) incorporates design 

guidelines organized around several VE categories such as navigation, object 

manipulation, input, output (e.g., visual, auditory, haptic), and so on  [Stanney, personal 

communication]. Within each of these categories, MAUVE presents a series of questions 

to an evaluator, who uses the tool to perform a multi-criteria heuristic-style evaluation of 



 12

a specific VE user interface. Further work in both of these types of automated usability 

evaluation is of interest, especially in light of the expense of developing and evaluating 

VEs.  

•= When performing formal experiments to quantify and compare the usability of various 

VE ITs, input devices, interface elements, and so on, it is often difficult to know which 

factors have a potential impact on the results. Besides the primary independent variable 

(e.g., a specific IT), there are a large number of other potential factors that could be 

included, such as environment, task, system, or user characteristics. One approach is to 

try to vary as many of these potentially important factors as possible during a single 

experiment. Such “testbed evaluation” [Bowman, Johnson, & Hodges, 1999] (see 

Section 3.2) has been done with some success. The other extreme would be to simply 

hold as many of these other factors as possible constant, and evaluate only in a particular 

set of circumstances. Thus, formal VE experimental evaluations may be either overly 

simplistic or overly complex – finding the proper balance is difficult. 

2.5 Other issues 

•= VE usability evaluations generally focus at a lower level than traditional user interface 

evaluations. In the context of GUIs, a standard look and feel and a standard set of 

interface elements and ITs exist, so evaluation usually looks at subtle interface nuances 

or overall interface metaphors. In the VE field, however, there are no interface 

standards, and we do not have a good understanding of the usability of various interface 

types. Therefore, VE evaluations most often compare lower-level components, such as 

ITs or input devices. 



 13

•= It is tempting to over-generalize the results of evaluations of VE interaction performed 

in a generic (non-application) context. However, because of the fast-changing and 

complex nature of VEs, one cannot assume anything (display type, input devices, 

graphics processing power, tracker accuracy, etc.) about the characteristics of a real VE 

application. Everything has the potential to change. Therefore, it is important to include 

information about the environment in which the evaluation was performed, and to 

evaluate in a range of environments (e.g., using different devices) if possible. 

3 Current evaluation methods 

A review of recent VE literature indicates that a growing number of researchers and 

developers are considering usability at some level. Some are employing extensive usability 

evaluation techniques with a carefully-chosen, representative user base (e.g., [Hix et al., 1999]), 

while others undertake efforts that do not involve users, such as review and inspection by a 

usability expert (e.g., [Steed & Tromp, 1998]). 

From the literature, we have compiled a list of usability evaluation methods that have been 

applied to VEs. Most of these methods were developed for 2D or GUI usability evaluation and 

have been subsequently extended to support VE evaluation. These methods include: 

•= Cognitive Walkthrough: an approach to evaluating a user interface based on stepping through 

common tasks that a user would perform and evaluating the interface's ability to support each 

step. This approach is intended especially to help understand the usability of a system for 

first-time or infrequent users, that is, for users in an exploratory learning mode [Polson et al., 

1992].  

•= Formative Evaluation (both formal and informal): an observational, empirical evaluation 

method that assesses user interaction by iteratively placing representative users in task-based 



 14

scenarios in order to identify usability problems, as well as to assess the design’s ability to 

support user exploration, learning, and task performance [Scriven, 1967; Hix & Hartson, 

1993].  Formative evaluations can range from being rather informal, providing mostly 

qualitative results such as critical incidents, user comments, and general reactions, to being 

very formal and extensive, producing both qualitative and quantitative (e.g., task timing, 

errors, etc.) results. 

•= Heuristic or Guidelines-Based Expert Evaluation: a method in which several usability 

experts separately evaluate a user interface design (probably a prototype) by applying a set of 

“heuristics” or design guidelines that are relevant.  No representative users are involved.  

Results from the several experts are then combined and ranked to prioritize iterative 

(re)design of each usability issue discovered [Nielsen & Mack, 1994]. 

•= Post-hoc Questionnaire: a written set of questions used to obtain demographic information 

and views and interests of users after they have participated in a (typically formative) 

usability evaluation session. Questionnaires are good for collecting subjective data and are 

often more convenient and more consistent than personal interviews [Hix & Hartson, 1993]. 

•= Interview / Demo: a technique for gathering information about users by talking directly to 

them. An interview can gather more information than a questionnaire and may go into a 

deeper level of detail. Interviews are good for getting subjective reactions, opinions, and 

insights into how people reason about issues. “Structured interviews” have a pre-defined set 

of questions and responses. “Open-ended interviews” permit the respondent (interviewee) to 

provide additional information, ask broad questions without a fixed set of answers, and 

explore paths of questioning which may occur to the interviewer spontaneously during the 



 15

interview [Hix & Hartson, 1993].  Demonstrations (typically of a prototype) may be used in 

conjunction with user interviews to aid a user in talking about the interface. 

•= Summative or Comparative Evaluation (both formal and informal): an evaluation and 

statistical comparison of two or more configurations of user interface designs, user interface 

components, and/or user ITs [Scriven, 1967; Hix & Hartson, 1993]. As with formative 

evaluation, representative users perform task scenarios as evaluators collect both qualitative 

and quantitative data. As with formative evaluations, summative evaluations can be formally 

or informally applied. 

There have been several innovative approaches to evaluating VEs that employ one or more of 

the evaluation methods given above. Some of these approaches are shown in Table 1. This 

particular set of research literature was chosen to illustrate the wide range of methods and 

combination of methods available for use.  

Research Example Usability Evaluation Method(s) Employed 

[Bowman & Hodges, 1997] Informal Summative 

[Bowman, Johnson, & Hodges, 1999] Formal Summative, Interview 

[Darken & Sibert, 1996] Summative Evaluation, Post-hoc Questionnaire 

[Gabbard, Hix & Swan, 1999] 

[Hix et. al, 1999] 

User Task Analysis, Heuristic Evaluation, 

Formative Evaluation, Summative Evaluation 

[Steed & Tromp, 1998] Heuristic Evaluation, Cognitive Walkthrough 

[Slater, Usoh & Steed, 1995] Post-hoc Questionnaire 

Table 1. Examples of VE usability evaluation from the literature 

A closer look at these, and other research efforts, shows that the type of evaluation method(s) 

used, as well as the manner in which it was extended or applied, varies from study to study. It is 



 16

not clear whether an evaluation method or set of methods can be reliably and systematically 

prescribed given the wide range of design goals and user interfaces inherent in VEs. However, it 

is possible to classify those methods that have been applied to VE evaluation to reveal common 

and distinctive characteristics among methods. 

3.1 Classification of VE usability evaluation methods 

We have created a novel classification space for VE usability evaluation methods. The 

classification space (figure 1) provides a structured means for comparing evaluation methods 

according to three key characteristics: involvement of representative users, context of evaluation, 

and types of results produced.  

The first characteristic discriminates between those methods that require the participation of 

representative users (to provide design or use-based experiences and options), and those methods 

that do not (methods not requiring users still require a usability expert). The second characteristic 

describes the type of context in which the evaluation takes place. In particular, this characteristic 

identifies those methods that are applied in a generic context and those that are applied in an 

application-specific context. The context of evaluation inherently imposes restrictions on the 

applicability and generality of results. Thus, conclusions or results of evaluations conducted in a 

generic context can typically be applied more broadly (i.e., to more types of interfaces) than 

results of an application-specific evaluation method, which may be best-suited for applications 

that are similar in nature. The third characteristic identifies whether or not a given usability 

evaluation method produces (primarily) qualitative or quantitative results. 



 17

Note that the characteristics described above are not designed to be mutually exclusive, and 

are instead designed to convey one (of many) usability evaluation method characteristics. For 

example, a particular usability evaluation method may produce both quantitative and qualitative 

results. Indeed, many of the identified methods are flexible enough to provide insight at many 

levels.  We chose these three characteristics (over other potential characteristics) because they 

are often the most significant (to evaluators) due to their overall effect on the usability process.  

That is, a researcher interested in undertaking usability evaluation will likely need to know what 

the evaluation will cost, what the impact of the evaluation will be, and how the results can be 

applied.  Each of the three characteristics address these concerns; the degree of user involvement 

directly affects the cost to proctor and analyze the evaluation, the results of the process indicate 

Figure 1. A Classification of Usability Evaluation Methods for VEs 

� Formal Summative
Evaluation

� Post-hoc Questionnaire

� (generic performance
models for VEs (e.g., fitt's
law))

� Informal Summative
Evaluation

� Post-hoc Questionnaire

� Heuristic Evaluation

� Formative Evaluation
� Formal Summative

Evaluation
� Post-hoc Questionnaire

� Formative Evaluation
(informal and formal)

� Post-hoc Questionnaire
� Interview / Demo

� (application-specific
performance models for
VEs (e.g., GOMS))

� Heuristic Evaluation
� Cognitive Walkthrough

Generic

Quantitative

Qualitative

Requires Users Does Not Require Users

Quantitative

Qualitative

U s e r    I n v o l v e m e n t
C

 o
 n

 t 
e 

x 
t  

 o
 f 

  E
 v

 a
 l 

u 
a 

t i
 o

 n
T y p e   o f   R

 e s u l t s

Application
Specific



 18

what type of information will be produced (for the given cost), and the context of evaluation 

inherently dictates to what extent results may be applied.  

This classification is useful on several levels. It structures the space of evaluation methods, 

and provides a practical vocabulary for discussion of methods in the research community. It also 

allows one to compare two or more methods and understand how they are similar or different on 

a fundamental level. Finally, it reveals holes in the space [Card, Mackinlay, and Robertson, 

1990] – combinations of the three characteristics that have not yet been tried in the VE 

community. 

Figure 1 shows that there are two such holes in our space (the shaded boxes). More 

specifically, there appear to be no current VE usability evaluation methods that do not require 

users and that can be applied in a generic context to produce quantitative results (upper right of 

figure 1). Note that some possible existing 2D and GUI evaluation methods are listed in 

parentheses, but these have not yet (to our knowledge) been applied to VEs. Similarly, there 

appears to be no method that provides quantitative results in an application-specific setting that 

does not require users (third box down on the right of figure 1). These areas may be interesting 

avenues for further research. 

A shortcoming of the classification is that it does not convey “when” in the software 

development lifecycle a method is best applied, or “how” several methods may be applied either 

in parallel or serially. In most cases, the answers to these questions cannot be answered without a 

comprehensive understanding of each of the methods presented, as well as the specific goals and 

circumstances of the research or development effort. In the following sections, we present two 

well-developed VE evaluation approaches, compare them in terms of practical usage and results, 

and discuss ways they can be linked for greater power and efficiency. 



 19

3.2 Testbed evaluation approach 

Bowman and Hodges [1999] take the approach of empirically evaluating ITs outside the 

context of applications (i.e., within a generic context, rather than within a specific application), 

and add the support of a framework for design and evaluation, which we summarize here. 

Principled, systematic design and evaluation frameworks give formalism and structure to 

research on interaction, rather than relying solely on experience and intuition. Formal 

frameworks provide us not only with a greater understanding of the advantages and 

disadvantages of current techniques, but also with better opportunities to create robust and well-

performing new techniques, based on knowledge gained through evaluation. Therefore, this 

approach follows several important evaluation concepts, elucidated in the following sections. 

Figure 2 presents an overview of this approach. 

 

User-centered Application
8 

Heuristics
&

Guidelines

7
Quantitative
Performance

Results

6 

T e s t b e d
E v a l u a t i o n

5 

2 
Taxonomy 

Outside Factors
task, users,  

environment, system 
3 4 Performance 

Metrics

Initial Evaluation1

 

Figure 2. Bowman & Hodges’ [1999] Evaluation Approach 



 20

The first step towards formalizing the design, evaluation, and application of ITs is to gain an 

intuitive understanding of the generic interaction tasks in which one is interested, and current 

techniques available for the tasks (see figure 2, area labeled 1). This is accomplished through 

experience using ITs and through observation and evaluation of groups of users. These initial 

evaluation experiences are heavily drawn upon for the processes of building a taxonomy, listing 

outside influences on performance, and listing performance measures. It is helpful, therefore, to 

gain as much experience of this type as possible so that good decisions can be made in the next 

phases of formalization.  

The next step is to establish a taxonomy (figure 2, 2) of ITs for the interaction task being 

evaluated. These taxonomies partition a task into separable subtasks, each of which represents a 

decision that must be made by the designer of a technique. In this sense, a taxonomy is the 

product of a careful task analysis. Once the task has been decomposed to a sufficiently fine-

grained level, the taxonomy is completed by listing possible technique components for 

accomplishing each of the lowest-level subtasks. An IT is made up of one technique component 

from each of the lowest-level subtasks. For example, the task of changing an object’s color might 

be made up of three subtasks: selecting an object, choosing a color, and applying the color. The 

subtask for choosing a color might have two possible technique components: changing the values 

of R, G, and B sliders, or touching a point within a 3D color space. The subtasks and their related 

technique components make up a taxonomy for the object coloring task. 

Ideally, the taxonomies established by this approach need to be correct, complete, and 

general. Any IT that can be conceived for the task should fit within the taxonomy. Thus, subtasks 

will necessarily be abstract. The taxonomy will also list several possible technique components 

for each of the subtasks, but they do not list every conceivable component. 



 21

Building taxonomies is a good way to understand the low-level makeup of ITs, and to 

formalize differences between them, but once they are in place, they can also be used in the 

design process. One can think of a taxonomy not only as a characterization, but also as a design 

space. Since a taxonomy breaks the task down into separable subtasks, a wide range of designs 

can be considered quickly, simply by trying different combinations of technique components for 

each of the subtasks. There is no guarantee that a given combination will make sense as a 

complete IT, but the systematic nature of the taxonomy makes it easy to generate designs and to 

reject inappropriate combinations. 

ITs cannot be evaluated in a vacuum. A user’s performance on an interaction task may depend 

on a variety of factors (figure 2, 3), of which the IT is but one. In order for the evaluation 

framework to be complete, such factors must be included explicitly, and used as secondary 

independent variables in evaluations. Bowman and Hodges identified four categories of outside 

factors. 

First, task characteristics are those attributes of the task that may affect user performance, 

including distance to be traveled or size of the object being manipulated. Second, the approach 

considers environment characteristics, such as the number of obstacles and the level of activity 

or motion in the VE. User characteristics, including cognitive measures such as spatial ability or 

physical attributes such as arm length, may also contribute to user performance. Finally, system 

characteristics may be significant, such as the lighting model used or the mean frame rate.  

This approach is designed to obtain information about human performance in common VE 

interaction tasks – but what is performance? Speed and accuracy are easy to measure, are 

quantitative, and are clearly important in the evaluation of ITs, but there are also many other 

performance metrics (figure 2, 4) to be considered.  Thus, this approach also considers more 



 22

subjective performance values, such as perceived ease of use, ease of learning, and user comfort. 

For VEs in particular, presence [Witmer & Singer, 1998] might be a valuable measure. The 

choice of IT could conceivably affect all of these, and they should not be discounted. Also, more 

than any other current computing paradigm, VEs involve the user’s senses and body in the task. 

Thus, a focus on user-centric performance measures is essential. If an IT does not make good use 

of human skills, or if it causes fatigue or discomfort, it will not provide overall usability despite 

its performance in other areas. 

Bowman and Hodges [1999] use testbed evaluation (figure 2, 5) as the final stage in the 

evaluation of ITs for VE interaction tasks. This approach allows generic, generalizable, and 

reusable evaluation through the creation of testbeds – environments and tasks that involve all 

important aspects of a task, that evaluate each component of a technique, that consider outside 

influences (factors other than the IT) on performance, and that have multiple performance 

measures. A testbed experiment uses a formal, factorial, experimental design, and normally 

requires a large number of subjects. If many ITs or outside factors are included in the evaluation, 

the number of trials per subject can become overly large, so ITs are usually a between-subjects 

variable (each subject uses only a single IT), while other factors are within-subjects variables. 

Testbed evaluations have been performed for the tasks of travel and selection/manipulation 

[Bowman, Johnson, and Hodges, 1999]. 

Testbed evaluation produces a set of results or models (figure 2, 6) that characterize the 

usability of an IT for the specified task. Usability is given in terms of multiple performance 

metrics, with respect to various levels of outside factors. These results become part of a 

performance database for the interaction task, with more information being added to the database 



 23

each time a new technique is run through the testbed. These results can also be generalized into 

heuristics or guidelines (figure 2, 7) that can easily be evaluated and applied by VE developers. 

The last step is to apply the performance results to VE applications (figure 2, 8), with the goal 

of making them more useful and usable. In order to choose ITs for applications appropriately, 

one must understand the interaction requirements of the application. There is no single “best” 

technique, because the technique that is best for one application will not be optimal for another 

application with different requirements. Therefore, applications need to specify their interaction 

requirements before the most appropriate ITs can be chosen. This specification is done in terms 

of the performance metrics that have already been defined as part of the formal framework. Once 

the requirements are in place, the performance results from testbed evaluation can be used to 

recommend ITs that meet those requirements.  

3.3 Sequential evaluation 

approach 

Gabbard, Hix & Swan [1999] present a 

sequential approach to usability evaluation for 

specific VE applications. The sequential 

evaluation approach is a usability engineering 

approach, and addresses both design and 

evaluation of VE user interfaces. However, for 

the scope of this paper, we focus on different 

types of evaluation and address analysis, 

design, and prototyping only when they have a 
Figure 3. Gabbard, Hix & Swan’s 

[1999] Sequential Evaluation Approach 

User-centered Application

(D)
Representative

User
Task

Scenarios

(C)
Streamlined

User Interface
Designs

(1)
User Task
Analysis

(3)
Formative
Evaluation

(4)
Summative
Evaluation

(2)
Heuristic

Evaluation

(A)
Task

Descriptions
Sequences &
Dependencies

(E)
Iteratively Refined

User Interface
Designs

(B)
Guidelines

and
Heuristics



 24

direct effect on evaluation. 

While some of its components are well-suited for evaluation of generic ITs, the complete 

sequential evaluation approach employs application-specific guidelines, domain-specific 

representative users, and application-specific user tasks to produce a usable and useful interface 

for a particular application. In many cases, results or lessons learned may be applied to other, 

similar applications (for example, VE applications with similar display or input devices, or with 

similar types of tasks) and, in other cases (albeit less often), it is possible to abstract the results to 

generic cases. 

Sequential evaluation evolved from iteratively adapting and enhancing existing 2D and GUI 

usability evaluation methods. In particular, we modified and extended specific methods to 

account for complex ITs, non-standard and dynamic user interface components, and multimodal 

tasks inherent in VEs. Moreover, we applied the adapted/extended methods to both streamline 

the usability engineering process as well as provide sufficient coverage of the usability space. 

While the name implies that the various methods are applied in sequence, there is considerable 

opportunity to iterate both within a particular method as well as among methods. It is important 

to note that all the pieces of this approach have been used for years in GUI usability evaluations. 

The unique contribution of the Gabbard, Hix & Swan [1999] work is the breadth and depth 

offered by progressive use of these techniques, adapted when necessary for VE evaluation, in an 

application-specific context. Further, the way in which each step in the progression informs the 

next step is an important finding, as discussed near the end of this section. 

Figure 3 presents the sequential evaluation approach. It allows developers to improve a VE’s 

user interface by a combination of expert-based and user-based techniques. This approach is 

based on sequentially performing user task analysis (see figure 3, area labeled 1), heuristic (or 



 25

guidelines-based expert) evaluation (figure 3, 2), formative evaluation (figure 3, 3), and 

summative evaluations (figure 3, 4), with iteration as appropriate within and among each type of 

evaluation. This approach leverages the results of each individual method by systematically 

defining and refining the VE user interface in a cost-effective progression.  

Depending upon the nature of the application, this sequential evaluation approach may be 

applied in a strictly serial approach (as figure 3’s solid black arrows illustrate) or iteratively 

applied (either as a whole or per individual method as figure 3’s white arrows illustrate) many 

times. For example, when used to evaluate a complex command and control battlefield 

visualization application [Hix et al., 1999], user task analysis was followed by significant 

iterative use of heuristic and formative evaluation, and lastly followed by a single, broad 

summative evaluation. 

From experience, this sequential evaluation approach provides cost-effective assessment and 

refinement of usability for a specific VE application. Obviously, the exact cost and benefit of a 

particular evaluation effort depends largely on the application’s complexity and maturity. In 

some cases, cost can be managed by performing quick and lightweight formative evaluations 

(which involve users and thus are typically the most time-consuming to plan and perform). 

Moreover, by using a “hallway methodology” [Nielsen, 1999], user-based methods can be 

performed quickly and cost-effectively by simply finding volunteers from within one’s own 

organization. This approach should only be used as a last resort, or in cases where the 

representative user class includes just about anyone. When used, care should be taken to ensure 

that “hallway” users provide a close representative match to the application’s ultimate end-users. 

Each of the individual methods in the sequential evaluation approach is described in more 

detail below, with particular attention to how we (and others) have adapted them for VEs.  



 26

3.3.1 User Task Analysis 

A user task analysis provides the basis for design in terms of what users need to be able to do 

with the VE application. This analysis generates (among other resources) a list of detailed task 

descriptions, sequences, and relationships, user work, and information flow (figure 3, A). 

Typically a user task analysis is provided by a VE design and development team, based on 

extensive input from representative users. Whenever possible, it is useful for an evaluator to 

participate in the user task analysis.  

The user task analysis also shapes representative user task scenarios (figure 3, D) by 

defining, ordering, and ranking user tasks and task flow. The accuracy and completeness of a 

user task analysis directly affects the quality of the subsequent formative and summative 

evaluations, since these methods typically do not reveal usability problems associated with a 

specific interaction within the application unless it is included in the user task scenario (and is 

therefore performed by users during evaluation sessions). Similarly, in order to evaluate how 

well an application’s interface supports high-level information gathering and processing, 

representative user task scenarios must include more than simply atomic, mechanical- or 

physical-level tasking, but should also include high-level cognitive, problem-solving tasking 

specific to the application domain.  This is especially important in VEs, where user tasks 

generally are inherently more complex, difficult, and unusual than in, for example, many GUIs. 

Task analysis is perhaps the most over-looked phase of usability engineering, and is one of the 

most important, driving all subsequent activities in the usability engineering process. 

3.3.2 Heuristic Evaluation 

A heuristic evaluation or guidelines-based expert evaluation may be the first assessment of 

an interaction design based on the user task analysis and application of guidelines for VE user 



 27

interface design. One of the goals of heuristic evaluation is to simply identify usability problems 

in the design. Another important goal is to identify the usability problems early in the 

development lifecycle so that they may be addressed, and the redesign iteratively refined and 

evaluated [Nielsen & Mack, 1994]. In a heuristic evaluation, VE usability experts compare 

elements of the user interaction design to guidelines or heuristics (figure 3, B), looking for 

specific situations in which guidelines have been violated, and therefore are potential usability 

problems. The evaluation is performed by one or (preferably) more usability experts and does 

not require users. A set of usability guidelines or heuristics that are either general enough to 

apply to any VE or are tailored for a specific VE is also required. 

Heuristic evaluation is extremely useful as it has the potential to identify many major and 

minor usability problems. Nielsen [1992] found that approximately 80 percent (between 74 

percent and 87 percent) of a design’s usability problems may be identified when three to five 

expert evaluators are used. Moreover, the probability of finding a given major usability problem 

may be as great as 71 percent when only three evaluators are used. From experience, heuristic 

evaluation of VE user interfaces provides similar results; however, the current lack of well-

formed guidelines and heuristics for VE user interface design and evaluation make this 

approach more challenging for VEs.  

Nonetheless, it is still a very cost-effective method for early assessment of VEs and helps 

uncover usability problems that, if not discovered via a heuristic evaluation, will very likely be 

discovered in the much more costly formative evaluation process. In fact, one of the strengths of 

the sequential evaluation approach is that usability problems identified during heuristic 

evaluations can be detected and corrected prior to performing formative evaluations. This 

approach creates a streamlined user interface design (figure 3, C) that may be more rigorously 



 28

studied in subsequent evaluations. Therefore, this approach leads to formative evaluation that is 

more cost-effective and efficient than a formative evaluation that is not based on a documented 

user task analysis and heuristic evaluation. In most cases, this approach avoids the situation 

where an iteration of formative evaluation is expended simply to expose obvious and glaring 

usability problems. A formative evaluation following a heuristic evaluation can focus not on the 

major usability issues, but rather on those more subtle and more difficult-to-recognize issues. 

This is especially important because of the cost of VE development.  

Once both major and minor usability problems are identified, further assessment is needed to 

understand how particular interface components may affect user performance. To focus 

subsequent evaluations on these identified usability issues, evaluators use results of both the 

heuristic evaluation and the task analysis as the basis for representative user task scenarios 

(figure 3, D). For example, if heuristic evaluation identifies a possible mismatch between 

implementation of a voice recognition system and manipulation of user viewpoint, then 

scenarios requiring users to manipulate the viewpoint would be included in subsequent 

formative evaluations. 

3.3.3 Formative Evaluation 

Formative or user-centered evaluation [Scriven, 1967] is a type of evaluation that is applied 

during evolving or formative stages of design to ensure that the design meets its stated 

objectives and goals. Williges [1984] and Hix & Hartson [1993] extended formative evaluation 

to support evaluation of GUI user interfaces. The method relies heavily on usage context (e.g., 

user tasks, user classes, user motivation, etc.) as well as a solid understanding of human-

computer interaction (and in the case of VEs, human-VE interaction). The purpose of formative 

evaluation is to iteratively assess and improve the usability of an evolving user interface design. 



 29

A typical formative evaluation cycle may begin with development of user task scenarios that 

are specifically designed to explore many facets of a user interface design. Task scenarios 

should provide ample coverage of tasks identified during a user task analysis. Representative 

users are recruited to work through the task scenarios as evaluators observe and collect data. 

Experienced usability evaluators follow a structured and scientific approach to data collection, 

resulting in large volumes of both qualitative and quantitative data. Both types of collected data 

are equally important parts of the formative evaluation process; quantitative data indicate that a 

user performance issue is present, qualitative data indicate where (and sometimes why) it 

occurred. 

Collected data are analyzed to identify user interface components that both support and 

detract from user task performance and user satisfaction. Alternating between formative 

evaluation and (re)design efforts ultimately leads to an iteratively refined user interface design 

(figure 3, E). Refining the user interface design such that it efficiently and effectively supports 

all user tasks ensures that each comparison in a subsequent summative evaluation is fair (i.e., 

each design in the summative study is as good as it can possibly be in terms of usability). 

3.3.4 Summative Evaluation 

Summative or comparative evaluation is an assessment and statistical comparison of two or 

more configurations of user interface designs, user interface components, and/or ITs. 

Summative evaluation is generally performed after user interface designs (or components) are 

complete, and is a traditional factorial experimental design with multiple independent variables. 

Summative evaluation enables evaluators to measure and subsequently compare the 

productivity and cost benefits associated with different user interface designs. Comparing VE 

user interfaces requires a consistent set of user task scenarios (borrowed and/or refined from the 



 30

formative evaluation effort), resulting in primarily quantitative data results that compare (on a 

task by task basis) a design’s support for specific user task performance. 

A major impact of the formative to summative progression is that results from formative 

evaluations inform design of summative studies by helping determine appropriate usability 

characteristics to evaluate and compare in summative studies. There are invariably numerous 

alternatives that can be considered as factors in a summative evaluation. Formative evaluations 

typically point out the most important usability characteristics and issues (e.g., those that recur 

most frequently, those that have the largest impact on user performance and/or satisfaction, 

etc.). These issues then become strong candidates for inclusion in a summative evaluation. For 

example, if formative evaluation showed that users have a problem with format or placement of 

textual information in a heavily graphical display, a summative evaluation could explore 

alternative ways of presenting such textual information. As another example, if users (or 

developers) want a number of different display modes, such as stereoscopic and monoscopic, 

head-tracked and static, landscape view and overhead view of a map, these various 

configurations can also be the basis of rich comparative studies related to usability.  

4 Comparison of approaches 

The two major evaluation methods we have presented for VEs – testbed evaluation and 

sequential evaluation – take quite different approaches to the same problem, namely, how to 

improve usability in VE applications. At a high level, these approaches can be characterized in 

the space defined in section 3. Sequential evaluation is done in the context of a particular 

application and can have both quantitative and qualitative results. Testbed evaluation is done in a 

generic evaluation context, and usually seeks quantitative results. Both approaches employ users 

in evaluation.  



 31

In this section, we take a more detailed look at the similarities of and differences between 

these two approaches. We organize this comparison by answering several key questions about 

each of the methods. Many of these questions can be asked of other evaluation methods, and 

perhaps should be asked prior to designing a usability evaluation. Indeed, answers to these 

questions may help one identify appropriate evaluation methods given specific research, design, 

or development goals. Future work (by us and others) should attempt to find valid answers to 

these and other related questions regarding different usability evaluation methods.  However, our 

immediate goal is to understand the general properties, strengths, and weaknesses of each 

approach so that the two approaches can be linked in complementary ways (see section 5). 

4.1 What are the goals of the approach? 

As mentioned above, both approaches ultimately aim to improve usability in VE applications. 

However, there are more specific goals that exhibit differences between the two approaches. 

Testbed evaluation has the specific goal of finding generic performance characteristics for VE 

ITs. This means that we want to understand IT performance in a high-level, abstract way, not in 

the context of a particular VE application. This goal is important because if achieved, it can lead 

to wide applicability of the results. In order to do generic evaluation, the testbed approach is 

limited to general techniques for common, universal tasks (such as navigation, selection, or 

manipulation). To say this in another way, testbed evaluation is not designed to evaluate special-

purpose techniques for specific tasks, such as applying a texture. Rather, it abstracts away from 

these specifics, using generic properties of the task, user, environment, and system. 

Sequential evaluation’s immediate goal is to iterate towards a better user interface for a 

particular application, in this case, a specific VE application. It looks very closely at particular 

user tasks of an application to determine which scenarios and ITs should be incorporated. In 



 32

general, this approach tends to be quite specific, to produce the best possible interface design for 

a particular application under development. 

4.2 When should the approach be used? 

By its non-application-specific nature, the testbed approach actually falls completely outside 

the design cycle of a particular application. Ideally, testbed evaluation should be completed 

before an application is even a glimmer in the eye of a developer. Since it produces general 

performance/usability results for ITs, these results can be used as a starting point for the design 

of new VE applications. 

On the other hand, sequential evaluation should be used early and continually throughout the 

design cycle of a VE application. User task analysis is necessary before the first interface 

prototypes are built. Heuristic and formative evaluations of a prototype produce 

recommendations that can be applied to subsequent design iterations. Summative evaluations of 

different design possibilities can be done when the choice of design (e.g., for ITs) is not clear. 

The distinct time periods in which testbed evaluation and sequential evaluation are employed 

suggests that combining the two approaches is possible, and even desirable. Testbed evaluation 

can first produce a set of general results and guidelines that can serve as an advanced and well-

informed starting point for a VE application’s user interface design. Sequential evaluation can 

then refine that initial design in a more application-specific fashion. We expand on this idea in 

section 5. 

4.3 In what situations is the approach useful? 

Testbed evaluation allows the researcher to understand detailed performance characteristics of 

common ITs, especially user performance. It provides a wide range of performance data that may 



 33

be applicable to a variety of situations. In a development effort that requires a suite of 

applications with common ITs and interface elements, testbed evaluation could provide a 

quantitative basis for choosing them, because developers could choose ITs that performed well 

across the range of tasks, environments, and users in the applications; their choices are supported 

by empirical evidence. 

As we have said, the sequential evaluation approach should be used throughout the design 

cycle of a VE application, but it is especially useful in the early stages of interface design. 

Because sequential evaluation produces results even on very low-fidelity prototypes or design 

specifications, a VE application’s user interface can be refined much earlier, resulting in greater 

cost savings. Also, the earlier this approach is used in development, the more time remains for 

producing design iterations, which ultimately results in a better product. This approach also 

makes the most sense when a user task analysis has been performed. This analysis will suggest 

task scenarios that make evaluation more meaningful and effective. 

4.4 What are the costs of using the approach? 

The testbed evaluation approach can be seen as very costly, and is definitely not appropriate 

for every situation. In certain scenarios, however, its benefits (see section 4.5) can make the extra 

effort worthwhile. Some of the most important costs associated with testbed evaluation include: 

difficult experimental design (many independent and dependent variables, where some of the 

combinations of variables are not testable), experiments requiring large numbers of trials to 

ensure significant results, and large amounts of time spent running experiments because of the 

number of subjects and trials. Once an experiment has been conducted, the results may not be as 

detailed as some developers would like. Since testbed evaluation looks at generic VE situations, 



 34

information on specific interface details such as labeling, the shape of icons, and so on will not 

usually be available. 

In general, the sequential evaluation approach may be less costly than testbed evaluation 

because it can focus on a particular VE application rather than paying the cost of abstraction. 

However, some important costs are still associated with this method. Multiple evaluators may be 

needed. Development of useful task scenarios may take a large amount of effort. Conducting the 

evaluations themselves may be costly in terms of time, depending on the complexity of task 

scenarios. Most importantly, since this is part of an iterative design effort, time spent by 

developers to incorporate suggested design changes after each round of evaluation must be 

considered. 

4.5 What are the benefits of using the approach? 

Since testbed evaluation is so costly, its benefits must be significant before it becomes a 

useful evaluation method. One such benefit is generality of the results. Since testbed experiments 

are conducted in a generalized context, the results may be applied many times in many different 

types of applications. Of course, there is a cost associated with each use of the results, since the 

developer must decide which results are relevant to a specific VE. Secondly, testbeds for a 

particular task may be used multiple times. When a new IT is proposed, that technique can be 

run through the testbed and compared with techniques already evaluated. The same set of 

subjects is not necessary since testbed evaluation usually uses a between-subjects design. Finally, 

the generality of the experiments lends itself to development of general guidelines and heuristics. 

It is more difficult to generalize from experience with a single application. 

For a particular application, the sequential evaluation approach can be very beneficial. 

Although it does not produce reusable results or general principles in the same broad sense as 



 35

testbed evaluation, it is likely to produce a more refined and usable VE than if the results of 

testbed evaluation were applied alone. Another of the major benefits of this method relates to its 

involvement of users in the development process. Since members of the representative user 

group take part in many of the evaluations, the VE is more likely to be tailored to their needs, 

and should result in higher user acceptance and productivity, reduced user errors, increased user 

satisfaction, and so on. There may be some reuse of results, because other applications may have 

similar tasks or requirements, or may be able to use refined ITs produced by the process.  

4.6 How are the approach’s evaluation results applied? 

The results of testbed evaluation are applicable to any VE that uses the tasks studied with a 

testbed. Currently, testbed results are available for some of the most common tasks in VEs: 

travel and selection/manipulation [Bowman, Johnson, & Hodges, 1999]. The results can be 

applied in two ways. The first, informal, technique is to use the guidelines produced by testbed 

evaluation in choosing ITs for an application (as in [Bowman, Johnson, & Hodges, 1999]). A 

more formal technique uses the requirements of the application (specified in terms of the 

testbed’s performance metrics) to choose the IT closest to those requirements. Both of these 

approaches should produce a set of ITs for the application that makes it more usable than the 

same application designed using intuition alone. However, since the results are so general, the 

VE will almost certainly require further refinement. 

Application of results of the sequential evaluation approach is much more straightforward. 

Heuristic and formative evaluations produce specific suggestions for changes to the application’s 

user interface or ITs. The result of summative evaluation is an interface or set of ITs that 

performs the best or is the most usable in a comparative study. In any case, results of the 

evaluation are tied directly to changes in the interface of the VE application. 



 36

5 Links between testbed and sequential evaluation 

Based on this analysis of the testbed evaluation and sequential evaluation approaches to VE 

evaluation, we have found that there are many ways in which these approaches can influence and 

affect one another when used together as part of a broader approach. To this end, we have 

identified a number of ways that the results of one approach can be used to strengthen and refine 

the other.  

As we have noted, there is an inherent separation between the two approaches. Although both 

have the eventual goal of improving the usability of VE applications, testbed evaluation does this 

indirectly, through evaluation in a generic context, while the sequential evaluation approach 

assesses applications directly. However, this does not mean that the two processes are mutually 

exclusive, or that they are incompatible. On the contrary, we have found many ways the two 

approaches can influence and benefit one another, and even situations in which they can be used 

together. 

5.1 Testbed evaluation as input to sequential evaluation 

There are several ways in which testbed evaluation can affect the sequential evaluation 

approach (see Figure 4 for a summary). User task analysis, a critical part of the sequential 

evaluation approach, requires an understanding of tasks users must perform and possible ITs that 

could be used to accomplish those tasks. Taxonomic structures from the testbed approach 

provide both of these. Taxonomies provide a standard way to organize and decompose a task, 

and they contain a design space from which many ITs can be built. 



 37

Application ContextGeneric Context

S e q u e n t i a l
E v a l u a t i o n

T e s t b e d
E v a l u a t i o n

User-centered Application

Testbed Evaluation Component Service Sequential Usability Component

Heuristics & Guidelines � general guidelines Heuristic evaluation

Performance metrics � sets of performance metrics Formative evaluation,
Summative evaluation

Quantitative performance results � testbed results relevant to specific user
tasks

Formative evaluation

Quantitative performance results � focused set of ITs (to evaluate) Summative evaluation

Taxonomy (taxonomic structures) � tasks users must perform
� list of candidate interaction techniques

(to support tasks)

User task analysis

Outside factors � set of factors that influence performance Formative evaluation,
Summative evaluation

 

Figure 4. Testbed evaluation as input to sequential evaluation. 

The set of factors other than ITs that could influence performance (outside factors) are an 

important component of the testbed evaluation process, since they are candidates for independent 

variables in testbed experiments. For example, one could test whether the number of obstacles in 

an environment affects the speed of traversing a path in that environment. These same factors 

can play a role in shaping formative and summative evaluation components of the sequential 

evaluation approach. The evaluator can use these factors to more carefully plan task scenarios 

that assess the range of potential interactions a user could have with the VE. In a similar way, 

sets of performance metrics defined for testbed evaluation are useful in formative and summative 

evaluation. These metrics can be checked to ensure that the evaluator observes all variables that 

contribute to a usable interface. 

Quantitative performance results obtained from testbed experiments can play a role in the 

sequential evaluation process. In formative evaluation, an evaluator is trying to produce one or 

more usable ITs that can later be compared. If testbed results are available for the task in 

question, incorporation of these ITs into a VE can begin at a much more refined level based on 



 38

performance results. In the same way, testbed results can help narrow the set of ITs in summative 

evaluation. The relative performance of two ITs may already be known through testbed 

evaluation, or a particular IT may be known to perform badly in the situation presented by a 

particular VE application. In any case, these results should be considered before beginning either 

type of evaluation. 

Finally, the general guidelines produced by testbed evaluation can serve as input for heuristic 

evaluation in the sequential evaluation approach. In fact, this addresses a potential problem with 

using heuristic evaluation for VEs: a lack of VE-specific heuristics. Since guidelines from the 

testbed approach are based on experimental evidence, heuristic evaluation using these guidelines 

should produce a more usable initial design to be fed to the formative evaluation process. 

5.2 Sequential evaluation as input to testbed evaluation 

Linking of these two approaches can also proceed in the opposite direction, with the 

sequential evaluation approach serving to inform and refine testbed evaluation. We suggest three 

ways this might take place. In all three of these cases, the experiences of analyzing a real-world 

application help to refine the generic model used for testbed evaluation (see Figure 5 for 

summary). 

One way this can occur involves the process of user task analysis. Task analysis takes place in 

the context of a particular application, and can also be refined as the sequential evaluation 

approach is iterated. This can result in a quite detailed understanding of user tasks, intentions, 

and mental models for a specific VE. This understanding is exactly what is needed to create good 

taxonomies of ITs for a particular task, since taxonomies in the testbed approach are based on 

task decomposition. If taxonomies more closely fit the user’s model of a particular task, when 



 39

this taxonomy is used as a framework for evaluation the results should be a better predictor of 

user performance in real systems. 

Application Context Generic Context

User-centered Application

Sequential Usability Component Service Testbed Evaluation Component

T e s t b e d
E v a l u a t i o n

S e q u e n t i a l
E v a l u a t i o n

Formative evaluation,
Summative evaluation

� new outside factors that affect
performance

Outside factors

User task analysis � understanding of user tasks, intentions,
and mental models for specific VEs

Taxonomy

User task analysis � new user performance requirements and
associated metrics

Performance metrics

 

Figure 5. Sequential evaluation as input to testbed evaluation. 

Subsequent to the process of user task analysis, usability goals and associated metrics can be 

determined. It is important for a user to complete tasks efficiently, correctly, without frustration, 

and in comfort. These characteristics match some of the possible performance metrics given by 

the testbed approach. However, it is possible that in the process of user task analysis and 

subsequent setting of usability goals, evaluators will find that a VE has a requirement whose 

fulfillment cannot be determined using any of the listed performance measures. The requirement 

may suggest a new metric to be added to the list and included in future testbed experiments. 

It is difficult in the testbed approach to come up with complete lists of the outside factors that 

could affect user performance. This is often done based on the evaluators’ intuition alone. 

However, experiences of evaluators performing formative and summative evaluations can add to 

and refine these lists. Evaluators may notice that a user performing a particular task is greatly 

affected by some characteristic of the environment. This would suggest that this characteristic 

should be studied in a future testbed experiment to determine the extent of its effects more 



 40

generally. If that variable has already been studied in a general experiment, it may be possible to 

give more weight to this factor in analysis of the results. 

5.3 Usage scenarios 

While the links between approaches described above appear to provide rich coverage of the 

usability space, we recognize that it is likely too complex and time-consuming to apply all of 

them to a single VE development effort. Nonetheless, there are research and development 

arrangements that are well-suited for this integrated approach, including development of a suite 

of VE applications as well as distributed, asynchronous research and development. 

It is reasonable to assume that as VE hardware and user interfaces become more accessible to 

the mainstream public, there will be significant interest in developing “productivity tools”, or 

software applications that allow users to perform real work, for extended periods, within a VE. 

Thus, it can be expected that suites of software applications may be developed that resemble, for 

example, the Microsoft™ Office suite of tools. In this case, early research and development of 

common user interface components and ITs could be furthered by those usability evaluation 

methods that evaluate in a generic context (such as the testbed evaluation approach). During later 

stages of research and development, specific applications within the suite could be evaluated 

using the application-specific evaluation methods (such as the sequential evaluation approach). 

But perhaps the most likely environment in which the links may be applied is a distributed, 

asynchronous research setting. In this case, researchers performing generic evaluation of ITs, 

input/output devices, and user interface components can provide insight, recommendations, and 

guidelines to the community at large. Subsequently, those performing evaluation of specific 

applications may use results published from the generic evaluation efforts to aid in their specific 

application evaluation effort. As described in sections 5.1 and 5.2, the fact that each type of 



 41

evaluation effort may aid the other introduces the possibility for powerful collaboration among 

researchers interested in usability evaluation of VEs. 

6 Conclusions and future work 

Clearly, performing usability evaluation on non-traditional interactive systems requires new 

approaches, techniques, and insights. While VE evaluation at its highest level retains the same 

goals and conceptual foundation as its GUI predecessors, the practical matter of performing 

actual evaluations can be quite different. We have shown that this is especially true for VEs, and 

have outlined some of the distinctive characteristics of VE evaluation as well as several possible 

approaches. This information alone is practical to VE developers and researchers in producing 

usable applications. 

The links described in section 5 combine approaches that produce quantitative results with 

those that produce qualitative results, those that evaluate in a generic context with those that 

evaluate specific applications, and those that require users with those that do not. By considering 

all these approaches, evaluators can converge more quickly on a usable system. As we have 

detailed, each approach brings with it certain advantages that are synergistic when multiple 

approaches are used. 

We plan to continue this work on several fronts. First, we will continue to evaluate real-world 

VE systems for usability, using the combined approach we describe here. This should lead to a 

greater understanding of the practical process that can be used to perform evaluation more 

efficiently and with better results. Second, there are certain VE interaction tasks that have not 

been explored sufficiently. For example, the task of VE system control, in which the user wishes 

to issue a command or change the state of the system in some way, is not well-understood. 

Generic evaluations of various system control techniques would be highly useful to the VE 



 42

community. Third, we hope others will join us in analyzing usability evaluation methods in terms 

of the questions posed in section 4.  Answers to these and similar questions, for a broader variety 

of evaluation approaches, can greatly increase the effectiveness and efficiency of performing 

such evaluations.  Such results could help expand the breadth and depth of usability evaluations 

performed on VE user interfaces. Finally, it is a reality that many VE developers do not choose 

to perform full usability studies on their systems, making the availability of useful and practical 

guidelines for VE interface design invaluable. We plan to use our extensive experience in VE 

usability evaluation to create and integrate sets of such guidelines that can be disseminated 

widely among developers. 

Acknowledgments 

Portions of this research were funded by the Office of Naval Research, Dr. Helen M. Gigley, 

Program Manager. Dr. Gigley has funded an on-going collaboration between Virginia Tech and 

the Naval Research Laboratory in Washington, D.C. for several years. Dr. Ed Swan, of the Naval 

Research Laboratory, has been a close collaborator on much of this work, also supported by Dr. 

Larry Rosenblum of NRL. Dr. Paul Quinn and Dr. Astrid Schmidt-Nielsen, also of the Office of 

Naval Research, have recently provided funding for our efforts. Dr. Richard E. Nance, of 

Virginia Tech’s Systems Research Center, has given much moral support to our research. Dr. 

Larry F. Hodges of Georgia Tech was instrumental in research on testbed evaluation. We would 

also like to thank Donald Johnson, Don Allison, and Drew Kessler for their help and support. We 

are grateful to all these contributors, without whom this large body of work would not have been 

possible. 



 43

References 

Bowman, D. (2001). Principles for the Design of Performance-Oriented Interaction Techniques. 

To appear in Stanney, K. (Ed.). Handbook of Virtual Environment Technology, Lawrence 

Erlbaum Associates. 

Bowman, D. and Hodges, L. (1999). Formalizing the Design, Evaluation, and Application of 

Interaction Techniques for Immersive Virtual Environments. The Journal of Visual 

Languages and Computing, 10(1), 37-53. 

Bowman, D., Johnson, D., and Hodges, L. (1999). Testbed Evaluation of VE Interaction 

Techniques. Proceedings of the ACM Symposium on Virtual Reality Software and 

Technology, 26-33. 

Card, S., Mackinlay, J., & Robertson, G. (1990). The Design Space of Input Devices. 

Proceedings of CHI: Human Factors in Computing Systems, 117-124. 

Darken, R. P. and Sibert, J. L. (1996). Wayfinding Strategies and Behaviors in Large Virtual 

Worlds. In Proceedings of CHI '96: ACM conference on Human Factors in Computing 

Systems, 142-149. 

Gabbard J. L. (1997). A Taxonomy of Usability Characteristics for Virtual Environments. 

Masters Thesis. Department of Computer Science, Virginia Tech. 

Gabbard, J. L., Hix, D, and Swan, E. J. (1999). User Centered Design and Evaluation of Virtual 

Environments , IEEE Computer Graphics and Applications, 19(6), 51-59. 

Hix, D., Swan, E. J., Gabbard, J. L., McGee, M., Durbin, J., and King, T. (1999). User-Centered 

Design and Evaluation of a Real-Time Battlefield Visualization Virtual Environment. In 

Proceedings of IEEE Virtual Reality '99, 96-103. 



 44

Hix, D. and Hartson, H. R. (1993). Developing User Interfaces: Ensuring Usability through 

Product & Process. New York, John Wiley and Sons. 

Kaur, K. (1998). Designing virtual environments for usability. PhD thesis. Centre for HCI 

Design, City University, London. 

Kennedy, R.S., Lane, N.E., Berbaum, K.S., and Lilienthal, M.G. (1993). Simulator sickness 

questionnaire (SSQ): A new method for quantifying simulator sickness. International Journal 

of Aviation Psychology, 3, 203-220. 

Kennedy, R.S., Stanney, K., and Dunlap, W. (2000). Duration and Exposure to Virtual 

Environments: Sickness Curves During and Across Sessions. PRESENCE: Teleoperators and 

Virtual Environments, 9(5), 463-472. 

Nielsen, J. (1999). Users First: Cheap Usability Tests. Available at: 

http://www.zdnet.com/devhead/stories/articles/0,4413,2224316,00.html. 

Nielsen, J. and Mack, R. L. (1994). Executive summary. In Nielsen, J. & Mack, R. L. (Ed.), 

Usability Inspection Methods, New York, John Wiley & Sons, 1-23. 

Polson, P., Lewis, C., Rieman, J., and Wharton, C. (1992). Cognitive Walkthroughs: A Method 

for Theory-Based Evaluation of User Interfaces. International Journal of Man-Machine 

Studies, 36, 741-773. 

Poupyrev, I., Weghorst, S., Billinghurst, M. and Ichikawa, T. (1997). A Framework and Testbed 

for Studying Manipulation Techniques for Immersive VR. In Proceedings of VRST '97: ACM 

Symposium on Virtual Reality Software and Technology, 21-28. 

Scriven, M. (1967). The methodology of evaluation. In R. E. Stake (Ed.), Perspectives of 

curriculum evaluation, American Educational Research Association Monograph. Chicago, 

Rand McNally. 



 45

Siochi, A. C. and Hix, D. (1991). A Study of Computer-Supported User Interface Evaluation 

Using Maximal Repeating Pattern Analysis. In Proceedings of CHI’91 Conference on Human 

Factors in Computing Systems. 

Slater, M., Usoh, M., and Steed, A. (1995). Taking Steps: The Influence of a Walking Metaphor 

on Presence in Virtual Reality. ACM Transactions on Computer Human Interaction, 2(3) 201-

219. 

Stanney, K. (1999). Personal communication. 

Steed, A. and Tromp, J. (1998). Experiences with the Evaluation of CVE Applications. In 

Proceedings of Collaborative Virtual Environments. 

Williges, R. C. (1984). Evaluating Human-Computer Software Interfaces. In Proceedings of 

International Conference on Occupational Ergonomics. 

Witmer, B. G. and Singer, M. J. (1998). Measuring Presence in Virtual Environments: A 

Presence Questionnaire. PRESENCE: Teleoperators and Virtual Environments, 7(3), 225-

240. 

 


