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Abstract

Traditional parallel methods for structural design do not scale well. This paper discusses the

application of massively scalable cellular automata (CA) techniques to structural design. There

are two sets of CA rules, one used to propagate stresses and strains, and one to perform design

analysis. These rules can be applied serially, periodically, or concurrently, and Jacobi or Gauss-

Seidel style updating can be done. These options are compared with respect to convergence, speed,

and stability.

1. Introduction

The traditional method of doing structural analysis and design uses finite element based

numerical analysis programs. While this approach works well for many problems, it does not

parallelize efficiently on massively parallel processors (MPPs), thus limiting the size and complexity

of the designs that can be analyzed and optimized. A new approach is needed that works well on

MPPs. This method need not be faster than those currently used for serial machines on problems

that do not exhaust the machines’ resources, rather it needs to allow each processor of a MPP

enough useful work such that large problems beyond the resources of serial or moderately parallel

machines can be solved in acceptable times.

Cellular automata (CA) were used at least as early as 1946 by Weiner and Rosenblunth (1946)

to describe the operation of heart muscle, even though their use was not computationally feasible

at the time. CA tiles a problem domain into cells of equal size. Each cell has the same set of

simple rules that dictate how it behaves and interacts with its neighboring cells. The principle

is that an overall global behavior can be computed by a group of cells that only know local

conditions (Wolfram, 1994). If each cell only needs to know local conditions, then this minimizes

the communication requirements and therefore the problem scales well on a MPP. A CA is the

archetypical algorithm for the SIMD parallel architecture (Toffoli and Margolus, 1991).

A cellular automaton is a discrete dynamical system (Wolfram, 1994). It is discrete in the

sense that space and time are discrete. Each cell is a fixed point in a regular lattice. The state of

each cell is updated at discrete time steps, based upon conditions in previous time steps. All of the

cells are updated every time step, thus the state of the entire lattice is updated every time step.

In general, CA are used to simulate the dynamic behavior of physical systems, and have

been used successfully to represent a variety of phenomena such as diffusion of gaseous systems,

solidification and crystal growth in solids, and hydrodynamic flow and turbulence (Toffoli and

Margolus, 1991). CA has also recently been used in conjunction with genetic algorithms to derive

the rules required at each cell to perform structural analysis (Hajela and Kim, 2000). CA rules have

recently been devised for the simultaneous analysis and design of simple two-dimensional structures

(Gürdal and Tatting 2000; Tatting and Gürdal, 2000); that work is the basis for this paper. In

the case of structural design, the intention is to describe a static equilibrium of a structure under

a system of forces acting on it. In this sense, time is not being simulated, rather each step of

the automaton is used to propagate (local) stresses and strains through a structure to allow it to

reach equilibrium state while simultaneously determining the shape and/or dimensions of the cells

associated with this equilibrium state. This is continued until the entire process converges (ideally)

to a global state where there is no significant change in the structure for every subsequent iteration,

corresponding to a static equilibrium state. Note that analysis and design are done simultaneously

and locally by each cell.
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Figure 1. Example CA domain with a single cell denoted by the dashed line.

This paper will begin by describing the CA used to do structural design on ground trusses in

Section 2 and give an example. Section 3 will discuss the merits of two different iteration methods.

Section 4 will explain how the CA is parallelized, and finally Section 5 will discuss some preliminary

results.

2. Method Description

The basic elements of the structural design CA consist of the division of the problem into cells

and the three types of rules that can operate on those cells. Each of the rules operates on the cells

using the information in a Moore neighborhood, which consists of the surrounding nine cells. The

first set of rules are used to do analysis only, determining the stresses and strains in each cell. The

second set of rules does the design work, changing the areas of the connecting beams to withstand

the stresses. The final set of rules performs simultaneous analysis and design.

2.1 Domain Definition

Each cell of this CA is an eight-beam truss where each beam starts at the center of the cell

and connects to its opposite member in an adjacent cell as illustrated in Figure 1.

This type of structure is known as a ground truss. Those cells which fall on the border of

the rectangular domain are not partial cells requiring special rules, but are complete cells with the

area of the beams that fall outside the computational domain set to zero. In addition, they are

connected to an invisible set of surrounding cells that are turned off and that also have all of their

beam areas set to zero. Cells that are turned off are not part of the computation, being used only

to make the rules for the border and non-border cells consistent, since the stress analysis rules

require the displacements of all eight surrounding cells.

The actual border of the computational domain of the CA need not be rectangular. Any

shape can be defined for the truss by turning off any cells that are not within the computational
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Figure 2. Example CA domain with a non-rectangular computational domain.

domain, as illustrated in Figure 1. A simple method to define a shape for the truss is to define an

enclosing polygon, and then turn off every cell that does not fall within the polygon. The “edge

crossings” algorithm (O’Rourke, 1994) to determine those points within the polygon can be used;

it is simple and parallelizes well. A more sophisticated method could be used to allow for holes,

circular regions, or other, nonstraight boundaries.

As seen in Figure 2, only those polygons that are composed of lines with slopes 0, 1, −1,

or ∞ will be represented exactly. This is the same aliasing problem that bitmaps face. A better

resolution can be obtained by decreasing the cell size in the domain, thereby increasing the number

of cells that form the shape. This is the same as smoothing the outline of a bitmap by increasing

the number of pixels that form the bitmap. The amount by which the original cells have been

subdivided to increase the resolution is known as the cell density factor (CDF).

2.2 CA Rules

There are two sets of rules used to compute an optimal solution to a given structural problem.

Optimal solution in this sense means a set of truss beams with the minimum size required to

withstand the applied forces.

2.2.1 Displacements

The first set of rules is (normally) executed at every iteration to determine the strains in

each cell. The cell attempts to reach equilibrium with the surrounding cells by displacing itself to

minimize the potential energy.

Within a cell, each truss member (indexed relative to the cell by k = 1, . . . , 8) has an elastic

modulus E, length Lk, a cross-sectional area Ak, and an orientation angle θk from the cell center.

Denote the displacement of the kth truss member’s near end from the original cell center by

(u, v), and the displacement of the far end from the neighboring cell’s center by (uk, vk). These
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neighboring displacements (uk, vk) are taken as fixed when the CA calculates the displacements

(u, v) for each cell. The extension ∆k, strain εk, and force Fk within each member are calculated

from these properties and displacements by

∆k = (uk − u) cos θk + (vk − v) sinθk, (1)

εk = ∆k/Lk, (2)

Fk = EAkεk. (3)

Taking into account the applied external force (Fx, Fy), the total (internal strain plus external)

potential energy V for a cell is given by

V =
8∑

k=1

EAkLkε
2
k

2
− Fxu− Fyv. (4)

Setting the partial derivatives of the potential energy with respect to the cell displacements to zero

gives the equilibrium equations
∂V

∂u
= 0,

∂V

∂v
= 0. (5)

In general this is a system of two equations with two unknowns. If there is an (externally)

applied displacement along a single axis, then (5) reduces to a single equation with one unknown,

and if there are (externally) applied displacements along both axes, then there is nothing to solve.

The forces acting upon the cell may be computed for reference, but this is not needed for the

overall computation.

2.2.2 Beam Sizing

Designing the structure requires resizing the beams in the cells. If displacements have already

been calculated, as in Section 2.2.1 for example, then some scheme for changing the cross sectional

areas Ak is required. In terms of allowable stress σallow, which is chosen by the user as the maximum

stress that any given beam should endure, one scheme for computing a new cross sectional area

Anew
k , based upon the previous cross sectional area Aold

k , is

Anew
k =

E|εk|
σallow

Aold
k . (6)

If the displacement calculation and sizing are done sequentially, the sizing period (how often

sizing is done) depends on many factors: the number of cells in the domain, the locations and

relative placements of the applied forces and displacements, the iteration method (Jacobi vs. Gauss-

Seidel), and for Gauss-Seidel implemented in parallel, the number of processors used.

The last two items will be discussed in Sections 3 and 5.

3. Iteration Methods

Each cell depends on the displacements of the surrounding cells to calculate its own displace-

ment, thereby propagating the stresses and strains. This is repeated until the structure no longer

changes appreciatively, at which point it is said to have converged. The convergence criterion for

the displacement of a cell is defined by the condition that the change in displacement is a small frac-

tion or percentage (usually 10−6) of the maximum displacement within the structure. The sizing
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Figure 3. Simple bridge truss, before and after running CA.

convergence criterion is analogous. For an entire structure to be considered converged with respect

to displacement or sizing, every cell within that structure must meet the convergence criterion for

that update rule.

One method of implementing a CA is to keep two copies of the array of cells, one to represent

time t, and the other to represent time t + 1. The values for the cells at t + 1 are calculated from

the cells at t. At the end of this iteration, the labels of the arrays are swapped, and the process is

repeated. This is a Jacobi iteration, where all of the new values are calculated from the old values.

For any process that converges, using a Jacobi iteration method can be inefficient (Bertsekas

and Tsitsiklis, 1989). By using a Gauss-Seidel iteration method, where new values are calculated

using updated values, the process should converge using fewer iterations. This means that only

one copy of the array is kept. When a new displacement is calculated for one cell, then the next

adjacent cell will use that updated value when calculating its own displacement. Note that this does

not apply to the sizing rules since, as defined, their application is independent of the information

in the surrounding cells.

3.1 Example

Consider the problem of a simple bridge truss. The first image in Figure 3 shows a CA with

six cells. The bottom two corner cells have an applied displacement of (0,0) so they are fixed in

place. The bottom middle cell has an applied force of 100kN downward. The width of the bridge

is 50 meters and the height is 25 meters. The bars are composed of medium steel (E = 200GPa

and σallow = 250MPa). Each beam has an initial area of 0.0175m2.

Running the CA on the bridge problem using the Gauss-Seidel iteration method for displace-

ments and applying the sizing rules every sixth iteration until it converges at iteration 253, the

result shown in the second image of Figure 3 is obtained. Since the bridge is 50m across and the

steel beams are no more than a few cm thick, the areas in this view are exaggerated by a factor of

3000 to show the differences in the beam sizes.

The bridge in Figure 3 is only composed of eleven trusses, and the solution could easily have

been computed by hand. But if each beam is required to be less than 25m long, the complexity

of the problem rises. Figure 4 shows a problem of the exact same dimensions, where each cell is

40 times smaller than previously. Each horizontal and vertical beam is 0.625m long, rather than

25m.
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Figure 4. Bridge truss with same dimensions, smaller cells, converged.

3.2 Convergence Analysis

To analyze the efficacy of the iteration method used, it is useful to transform the CA into

an equivalent system of linear equations. Recall from Section 2.2.1 that each cell is computing its

position (u, v) based upon the position of the surrounding cells. If each cell were assigned unique

variables for its position, such that cell 1 has u1 and v1, cell 2 has u2 and v2, and so forth, then the

equations for each cell can be expressed in terms of the variables for the surrounding cells. For a

CA structure composed of 6 cells, this will form a linear system of 12 equations and 12 unknowns.

This standard system of linear equations,

Ax = b, (7)

can be solved by the Jacobi and Gauss-Seidel fixed-point iteration methods or block versions

thereof, which are the exact mathematical formulations of the local cell calculations. For the

Jacobi, A is split into its strictly 2 × 2 block lower triangular (L), 2 × 2 block diagonal (D), and

strictly 2 × 2 block upper triangular (U) parts,

A = L +D+ U. (8)

The system is then rewritten as a fixed point iteration where the next iterate x(n+1) is computed

from the previous iterate x(n) via

x(n+1) = Bx(n) + C, (9)

where

B = −D−1(L+ U), C = D−1b. (10)

Note that Ax = b if and only if x = Bx + C, assuming D−1 exists. For Gauss-Seidel the

iteration x(n+1) = Bx(n) +C has

B = −(D+ L)−1U, C = (D+ L)−1b, (11)
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CDF n Jacobi Gauss-Seidel

1 8 0.794104 0.611503

2 26 0.949748 0.8982

3 52 0.979368 0.959006

4 86 0.989496 0.978893

5 128 0.993801 0.987605

6 128 0.995959 0.991925

7 236 0.997181 0.994365

8 302 0.997933 0.995865

9 376 0.998426 0.996853

10 458 0.998765 0.997532

Table 1. Spectral radius of the bridge truss for various CDFs.

assuming (D+ L)−1 exists.

The fixed point iteration (9) converges for any starting point x(0) if and only if all of the

eigenvalues of B are less than one in absolute value (Issacson and Keller, 1966). The maximum

absolute value of the eigenvalues for a matrix is called the spectral radius . The spectral radius for

the bridge structure at various CDFs is shown in Table 1.

This table shows that the Jacobi or Gauss-Seidel CA iteration for analysis does converge, but

extremely slowly. For larger CDFs, the improvement of Gauss-Seidel over Jacobi is marginal. Even

with massive parallelism, any competitive advantage of CA (over solving the linear system with

standard iterative numerical methods) must come by combining analysis with sizing.

Aitken’s δ2 method (Issacson and Keller, 1966) was also explored. This method uses the

(scalar) values of three successive iterations to extrapolate a value (hopefully) closer to the fixed-

point value. This method requires that (for scalar values xn)

∆xn+1

∆xn
≈ ∆xn

∆xn−1
≈ ∆xn−1

∆xn−2
≈ A, (12)

where |A| < 1. However, this requirement was not met by the components x
(n)
i of the vector

iteration (9), and therefore Aitken’s δ2 acceleration method was not applicable.

4. Parallel Implementation

The code for this CA was implemented in Fortran 90 using the Message Passing Interface

(MPI) library as its parallel communication mechanism. It has been tested on both an Origin 2000

with 64 processors and a Beowulf cluster with 32 processors.

A parallel decomposition was performed by dividing the computational domain into vertical

strips and assigning each strip of contiguous cells to a single processor. Each strip has an addi-

tional column of border cells on either side that are turned off. These border cells represent the

connected cells located on the adjacent processors. At every iteration, a processor computes the

updated values for its cells, and then exchanges its left and right columns with its neighbors. These

updated values are stored in the border cells and used for the next iteration. Therefore the natural

communication topology is a ring topology, which easily maps into most other communication

topologies.

Stripped partitioning works well for a rectangular shaped domain because it provides a good

balance of computation to communication. It does have some limitations, for example, given a
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Figure 5. Comparison between Jacobi and Gauss-Seidel iteration

methods on the bridge structure with a CDF of 16.

domain size of N rows × M cols, there can be at most M processors; if M < N then the lattice

can be trivially rotated. For those problems with an irregular shape, there will not be the same

balance of computation to communication at every processor. For these cases, a more efficient

partitioning method (e.g., graph-based partitioning) should be used.

When implementing the Gauss-Seidel iteration method in parallel, no attempt is made to keep

the order in which the cells are updated the same as in the non-parallel implementation. Instead,

each processor iterates over its collection of cells as if it were the sole processor operating on the

domain, where the domain consists of its assigned cells, plus a group of surrounding “dead” cells

that are not computed. The “dead” cells are used to contain the updated values from the adjacent

processors that are sent at the end of every iteration.

Since the Gauss-Seidel iteration is contained solely within each processor, the rate of conver-

gence differs depending upon the number of processors used. This has an effect upon the stability

of the calculation as will be seen in Section 5.1. On the other hand, the programming task is much

easier since, except for the initial setup and the communication at the end of every iteration, the

program is exactly the same as the Gauss-Seidel iteration for a single processor.

5. Results

5.1 Jacobi vs. Gauss-Seidel

When comparing the performance of Jacobi and Gauss-Seidel iteration methods it is useful

to look at the number of iterations it takes the displacements (without sizing) to converge using

a single processor. Figure 5 compares the number of iterations to the vertical displacement of the

mid-span of the bridge truss with a CDF (cell density factor) of 16. The mid-span will have the

largest displacement for any correct solution to the problem because it has the only externally

applied force. Figure 5 shows that it takes 12,808 iterations to converge with the Jacobi method

and only 6,723 iterations using the Gauss-Seidel.
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The speed of convergence for a structural analysis CA is affected by more than just the iteration

method if sizing rules are used as well. Figure 5 also has an expanded view of the first 20 iterations

that includes sizing rules applied every four iterations. Note that when using the Jacobi method

with sizing, the maximum displacement diverges away quickly from the maximum displacement

using analysis only. In fact, for this sizing period, the CA is non-convergent. For the Gauss-Seidel

method with sizing applied every n iterations, the CA is usually more stable and converges quicker.
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Figure 6. Comparison between Jacobi and Gauss-Seidel iteration methods for

analysis only on the bridge structure with a cell density factor of 16.

As mentioned previously, when using a Gauss-Seidel iteration, the rate of convergence differs

depending upon the number of processors used. As shown in Figure 6 for analysis with no sizing,

the number of iterations needed to converge increases as the number of processors increases. As

the number of processors increases, the smaller the number of cells each processor contains, and

therefore the less area each stress and strain can propagate each iteration. Intuitively, this continues

until each processor has exactly one cell and (parallel) Gauss-Seidel iteration is exactly the same

as Jacobi.

5.2 Sizing Period Using Gauss-Seidel

As seen in the previous section, the choice of how often to apply sizing rules is very important

to the speed and the stability of the CA. Since the design equations allow the areas of the bars

to adjust fully to the surrounding stresses and strains, it is possible that if a sizing is performed

before all the stresses and strains have propagated, bars that are important to the final structure

could be allowed to disappear too soon. In this case, the CA will not converge within a reasonable

time, or even oscillate and never converge.

Figure 7 shows the bridge structure CA convergence rates in a density plot as a function of

the sizing period and the cell density factor. The gray tones represent the number of iterations the

CA with sizing needed to converge normalized with respect to the number of iterations needed for
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Figure 7. Convergence data using undamped sizing with Gauss-Seidel iteration.
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Figure 8. Convergence data using damped sizing with Gauss-Seidel iteration.

convergence with analysis only. The range goes from one (white) to three (dark grey), with black

squares indicating those combinations that did not converge. Therefore the lighter the gray, the

faster the CA converged.

Since the CA tends to converge faster with smaller sizing periods it is better to choose a period

as small as possible, but if the period is too small then convergence might never be achieved. To

allow smaller sizing periods to be chosen, damping (in terms of the rate in which the cross-sectional

areas can change) was applied to the design equations. Damping the sizing function limits the area

to be within a certain percentage of the current value of the bar area. Figure 8 shows the results

for the same problem as in Figure 7 with 10% damping applied.

In this case, far more combinations of CDFs and sizing periods converged than previously,

especially when using smaller sizing periods. However, more iterations were needed for each com-

putation to converge than for sizing without damping. Thus there is a tradeoff between speed of

convergence and robustness of the code.

5.3 Parallel Speedup

Execution time for the Fortran 90 code was measured for the Gauss-Seidel version of the code

since it seemed to be the most stable version. Timing runs were done using a fixed number of

iterations that are below the number of iterations required for full convergence. This was to elim-

inate the vagaries of convergence using Gauss-Seidel on different numbers of processors. Parallel

overhead was measured by taking a time stamp at the beginning and end of every communication
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Figure 9. Timings on an Origin 2000 machine for the bridge structure

with a CDF of 40 for 20,000 iterations.

between processors at a single processor. The cumulative time difference is the parallel overhead

needed to pack the information, send it to adjacent processors, wait for the updates from the other

processors, and then finally unpack the information.

The communication is using blocking MPI calls to aid in measurement, therefore the compu-

tation time is the overall time minus the parallel overhead. The design easily allows for a more

efficient implementation overlapping the computation and communication by using non-blocking

MPI calls.

Figure 9 shows the timing results for an Origin 2000 using shared memory for the communi-

cation channels. The data shown in Figure 9 is the average of 5 runs, and the standard deviations

ranged between 0.11 and 1.19. In this case, communication overhead does not begin to dominate

until about 64 processors are used.

Figure 10 shows the timing results for a Linux Beowulf system using 100Mbit Ethernet between

processor nodes. The data shown is the average of 5 runs, and the standard deviations ranged

between 0.29 and 0.46. Here the communication overhead dominates from the beginning. The

theoretical curve is the ideal speedup, serial time divided by the number of processors.

6. Conclusions

Cellular automata techniques can be applied to structural design and allow efficient use of

MPPs. This potentially allows problems of far greater complexity to be solved in a reasonable

time. The technique is also easy to implement and is versatile in design of truss topologies. Slow

convergence and divergence of the CA is mathematically explained by the spectral radius of the

iteration matrix, for analysis only, but adding sizing makes the fixed point iteration x(n+1) =

F (x(n)) nonlinear. A topic for future work is the mathematical analysis of the full nonlinear

iteration. Future work could also include extending the method to three dimensions and to creating

more types of structures other than ground trusses.
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