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Abstract

An undirected graph is viewed as a sirnplicial complex. The notion of a graph
embedding of a guest graph in a host graph is generalized to the realm of simplicial
~maps. Dilation is redefined in this more general setting. Lower bounds on dilation for
various guest and host graphs are considered. Of particular interest are graphs that
have been proposed as communication networks for parallel architectures. Bhatt et
al. provide a lower hound on dilation for embedding a planar guest graph in a butterfly
host graph. Here, this lower bound is extended in two directions. First, a lower bound
that applies to arbitrary guest graphs is derived, using tools from algebraic topology.
Second, this lower bound is shown to apply to arbitrary host graphs through a new
graph-theoretic measure, called bidecomposability. Bounds on the bidecomposability
of the butterfly graph and of the k-dimensional torus are determined. As corollaries
to the main lower bound theorem, lower bounds are derived for embedding arbitrary

planar graphs, genus ¢ graphs, and k-dimensional meshes in a butterfly host graph.
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1 Introduction

A (graph) embedding of one undirected graph G; = (V1, E1) (the guest) in another undi-
rected graph Gy = (Va, Es) (the host) is a one-to-one function p : ¥, — V, together with
an assignment (or routing) of each edge (u,v) € E; to a path in G between p(u) and
p(v). The length of the longest assigned path is called the dilation of the embedding. The
ezpansion of the embedding is the ratio |V3|/|Vi|. The congestion of the embedding is the
maximum number of edges of G; routed through any single edge of G.

Graph embeddings provide a standard framework for investigating the ability of one
parallel network (represented by a graph () to emulate another network (represented by
a graph G1). An embedding of G, in (5 provides a scheme for network G, to simulate
the processor-to-processor communication of network G,. The expansion of the embedding
gives a (rough) ratio of the hardware costs of the two networks. The dilation and congestion
of the embedding indicate the communication slowdown caused by simulation. These three

‘are the primary cost measures studied in research on graph embeddings. Developing em-
beddings that are (asymptotically} optimal for one or more of these measures and proving
lower bounds on these measures are important theoretical pursuits.

Typically, G, is selected from one infinite family of graphs F; (such as the family of
2-dimensional meshes) that is to be emulated by G selected from another infinite family 7,
(such as the family of hypercubes). The central issue is how well F, can emulate 7,; that
is, given an arbitrary element G} € F, how costly is the best element of Fy at emulating
G1? Here, we restrict attention to the cost measure of dilation.

One thread of research in graph embeddings is to establish upper bounds on dilation by
constructing explicit embeddings of one family of graphs into another. Greenberg, Heath,
and Rosenberg [8] show that the FFT graph is a subgraph of the smallest hypercube that
can contain it. They further show that there is an embedding of each butterfly and of
each cube-connected cycles graph in the hypercube with dilation at most 2. Annexstein,

| Baumslag, and Rosenberg [1] give an embedding of each butterfly in the smallest de Bruijn



graph that can hold it with dilation logarithmicin the diameter of the host graph. Baumslag
et al. [2] give an embedding of each de Bruijn graph in the smallest hypercube that can
hold it with dilation about 2/5 of the diameter of the host graph. Bettayeb, Miller, and
Sudborough [3], Chan and Chin [7], and Chan [6] give small-dilation embeddings of grids
ol various dimensions in the smallest hypercubes that can hold them.

A second thread of research is to establish nonconstant lower bounds on dilation, hence
revealing an incompatibility in communication capabilities between two networks. Lower
bound arguments typically rely on the graph-theoretic measures of diameter, degree, and
separator size. For example, no bounded-degree network can emulate the n-dimensional
hypercube with less than ((logn) dilation.

Bhatt et al. [5, 4] develop the most sophisticated lower bound argument to date for
the case of embedding a planar guest graph in a butterfly. A set V ¢ V is a separator
for a graph G = (V, E) if every connected component of (¢ — V contains at most [2]V]/3]
vertices. The separator size ©(G) of G is the minimum cardinality of any separator of &.
Note that every graph has a separator of cardinality |/V|/3], and that every planar graph
of bounded degree has separator size O([V|/ ?). Suppose G is a connected planar graph
with separator size £((7). Further suppose that ¢ has a planar embedding in which the
largest interior face has size ®(G) (if G is a tree, take ®(() = 2). Bhatt et al. show that
any embedding of 7 in a butterfly has dilation

Q (Eﬁ@) |
*(G)
As corollaries, they derive lower bounds for embedding the X-tree and the 2-dimensional
mesh in the butterfly.

In this paper, we generalize this lower bound in two directions. In the first direction,
we extend the lower bound to arbitrary guest graphs. Inspired by algebraic topology,
we adopt the framework of (powers of) simplicial complexes and simplicial maps as the
appropriate generalizations for studying graph embeddings in a topological setting. The

notion of dilation is generalized to simplicial maps. A very general lower bound theorem



for the dilation of simplicial maps is proved. As one corollary of this theorem, we obtain
a more general lower bound than Bhatt et al. for planar guest graphs whose face sizes are
somewhat non-uniform. Suppose G is a planar graph with separator size Y(G) and with a
planar embedding having only A interior faces with size greater than (. We show that any

embedding of G in a butterfly has dilation

Q (C'l log -i%) .

Thus if G has only a few large faces, a good lower bound on dilation results.

The second direction is to show that this lower bound argument applies to arbitrary host
graphs. We define a new graph-theoretic measure, bidecomposability, and show that the
lower bound argument applies to an arbitrary host graph based on its bidecomposability.
We give an upper bound on the bidecomposability of butterfly graphs and upper and
lower bounds on the bidecomposability of the k-dimensional torus. We conjecture that the
bidecomposability of the de Bruijn graph is close enough to the bidecomposability of the
butterfly to prove a conjecture of Bhatt et al. that the n X n mesh requires Q(logn) dilation
in any embedding in a de Bruijn graph: their best lower bound for dilation is Q(loglog n).

The remainder of this paper consists of six sections. Section 2 defines formally several
proposed communication networks. Section 3 introduces simplicial complexes and simplicial
maps as the topological setting for graph embeddings. Section 4 defines bidecomposability
and bounds the bidecomposability of the butterfly and of the k-dimensional torus. In
Section 5 we prove our main result: a lower bound on dilation for arbitrary guest and host
graphs. As corollaries to the main result, in Section 6 we derive lower bounds for embedding
arbitrary planar graphs, genus ¢ graphs, and &-dimensional meshes in a butterfly host graph.

Section 7 concludes with some interesting open problems.

2 Network Definitions

See Leighton [10] for greater details on the networks defined in this section. Let Z,, denote

the set {0,1,...,n — 1}, ihe integers modulo n. Elements of Z, are bits. Elements of VA
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are bit strings of length n. The complement of a bit b is denoted 5.

The n-dimensional butterfly B(n) has vertex set Z, x Z? and two kinds of edges:

1. a straight edge connects each (7,bb; .. .b,_1) to (3 + 1 mod n,boby ... by_y);

i

2. a cross edge connects each (7, bob; . . .b; . ..b,_1) to (i + 1 mod n, boby ... 5;.. Daz1).

B(n) has n2" vertices and n2"t" edges. For each vertex v = (2,0) of B(n), ¢ is the level of
v, and b is the position-within-level (PWL) of v. The set of vertices V; = {(,4)| b € Z2} is
the ith level of B(n).

The 2-dimensional n x n mesh M(n) has vertex set Z, X Z, and an edge between
(i1, 41) and (43, J2) if [&1 — | + 1fL ~ fo| = 1. M(n) has n? vertices and (n — 1)? edges. The
k-dimensional mesh M(k,n) has vertex set Z* and an edge between two vertices v, and v,
if vy and v, are identical in k — 1 coordinates and differ by 1 in the remaining coordinate.

The n x n torus T(n) has vertex set Z, X Z, and an edge between (i1, 71) and (4s, ja):
1. if ¢y = i and j; = j» £ 1 mod n;
2. ifj; = j; and 4y = iy £ 1 mod n.

T(n) has n” vertices and n? edges. The k-dimensional torus 7 (k, n) has vertex set Z and
an edge between two vertices v; and v, if v, and v, are identical in k — 1 coordinates and

differ by 1 modulo n in the remaining coordinate.

3 Graph Embeddings as Simplicial Maps

This section defines the necessary concepts from algebraic topology and quotes the necessary
results. Among numerous others, Munkres [12] is a standard introduction to algebraic
topology. As we have no need for infinite dimensions or complexes, those generalities are
not included in the definitions we give or the results we quote.

R” is n-dimensional Euclidean space. Suppose 4 = {ay,a,,.. 4.} C R™ is an affinely

independent set of points of cardinality » + 1 < n + 1. The r-dimensional simplex o(A) is
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the convex hull of A in R”. Each a; is a vertez of a(A). If A’ C A is a nonempty subset of
A of cardinality r' + 1, then o(A’) is an r'-dimensional face of o{A). Fach I-dimensional
face is an edge.

A simplicial complex (or just complez) K in R" is a finite set of simplices such that
L. Ifo(Ad) e K and B # A’ C A, then o(A) € K;

2. Ho(Ay),0(Az) € K and 0(A;)No(As) # @, then 4, N A, # 0 and o(A)No(Ay) =
O'(Al n Ag)

By the second condition, any two intersecting simplices intersect only in a common face.

KK isa simplicial complex that is a subset of the complex K, then K is a subcomplex
of Il. The subcomplex of ¥ consisting of simplices in K of dimension at most r is the
r-skeleton of I, denoted K}, The singleton sets in K(® contain exactly the vertices of
IC; let V(K) = {v] {v} € K} denote the set of vertices of k. The size of a complex K
is the cardinality of V(K). If § # V ¢ V(K), the subcomples induced by V is

ASC(K, V) = {o(A)e I(}A.C V)

If K is a subcomplex of K, then the difference K — K is the subcomplex ASC(K,V(K) -
V(ff )) induced by vertices in X but not in K. Suppose K is a complex of size n. A
separator of K is a subcomplex K of size less than such that every component of X — K
has size at most [2n/3]. The separator size £(K) of K is the minimum cardinality of any
separator of IV,

The union of the simplices of K is a topological subspace of R" called the polytope of K
and denoted |K|. (To a given polytope P, there correspond an infinite number of simplicial
complexes K such that P = |K |. Each such K is a triangulation of P. For our purposes,
there is always a fixed triangulation associated with a polytope.} The components of | K|
are its connected components, in the topological sense. We freely apply the topological
notion of components, as well as other topological notions, to K with the understanding

that we are really talking about its polytope | K |.



Suppose K and L are simplicial complexes and f : V(K) — V(L) is a function between
vertex sets. If whenever o(A) € K we have o(f(A)) € L, then f is called a simplicial map
from K to L. (Note that if f is not 1-to-1, then the dimension of o{ f(A)) may be strictly
less than the dimension of 0{A).) Such an f can be extended to a continuous function
g {K| — |L] such that g is linear when restricted to cach simplex of K. (In the standard
use of simplicial map found in Munkres [12], it is the induced continuous function g that

is the simplicial map. As we concentrate on the combinatorial function f, we call [ the

simplicial map.) A simplicial map f induces a function from K to L which we also call f.

An abstract simplicial complez 8 on a finite set V is a set of nonempty subsets of V
such that whenever 4 € S and @ #£ A’ C A4, then A’ C S and such that {»} € S, for all
v € V. The dimension of A € §is |A] — 1. A subcomplez of S is a subset &' ¢ S such that
& is an abstract simplicial complex.

For every simplicial complex K and every bijection 8 : K(® — V onto a set V', there is
an abstract simplicial complex $ on V: for every simplex o(A) € K, the corresponding set

0(A) € S. K is called a geometric realization of .

Proposition 1 (Munkres [12]) Buvery abstract simplicial complez has a geometric real-

ization.

Thus, every abstract simplicial complex may be thought of as a simplicial complex by
choosing a geometric realization K for it and also has an associated topological space, _the
polytope |K|. We assume that for every abstract simplicial complex &, a canonical choice
for its geometric realization, denoted [S], has been made. The corresponding polytope is
denoted |S|. As a consequence of Proposition 1, we may freely apply the terminology of
complexes and polytopes to an abstract simplicial complex S when we are really talking
about [S] or |S].

A simple undirected graph & = (V, E) can be viewed alternately as the abstract sim-
plicial complex S(G) = {{v} | v € V} U E, as the corresponding geometric realization

[S(G)], or as the polytope |S(G)|, depending on the circumstances. We generally shorten



the notation for the geometric realization to [G] and for the polytope to |G].

We view a graph embedding as a simplicial map of simplicial complexes. If u,v € V,
define Dg(u,v) to be the length of a shortest path between u and v in G or 400 if there
is no such path in G. If p > 1, the pth power of G = (V, E), denoted G?, is a graph with
vertex set V and edge set {{u,v) | Dg(u,v) < p}. A graph embedding of Gy = (V1, Ey) in
G2 = (Va, By) of dilation § is an injective simplicial map # : {G] — [G3). In other words,
G is homeomorphic to a subcomplex of G4. This new definition ignores issues related to
routing within G, in particular congestion.

Now associate with each graph a sequence of complexes of ever higher dimension. The
r-dimensional (abstract simplicial) complez of G, denoted S (G,r},is the abstract simplicial
complex each of whose simplices is a nonempty set of vertices that occurs on some paths
of length < ». More precisely, if P = Vo, Uiy .., Ve 15 & (not necessarily simple) path in G
of length k and if k < r, then every nonempty subset of {vg,v,..., v} is in S(G,r). Note

that the 1-skeleton of S(G,7)is G”. The following is an obvious observation.

Proposition 2 If Gy has a dilation § graph embedding in G,, then there is an injective
stmplicial map from [S(Gy, k)] to [S(G, k6)), for all k > 1.

(Note that this is almost describing a functor from the category of graphs and graph em-
beddings to the category of simplicial complexes and simplicial maps, but it is not quite
functorial due to the dilation 6.) A slightly different observation is the following, which

Bhatt et al. implicitly use in their lower bound proof (see Corollary 13).

Proposition 3 If G, has a dilation & graph embedding in Gy and K is a subcompler of

[S(Gh, k)], then there is an injective simplicial map from K to [S(GS, k).

For an arbitrary abstract simplicial complex R, we define the r-dimensional complex
of R, denoted S(R, 7}, exactly as for a graph G. A dilation § embedding of one abstract
simplicial complex R, in another abstract simplicial complex R, is an injective simplicial
map {rom [R,] to [S(Ry,8)]. These definitions give an even more general setting for graph

embeddings.



Homology is a functor from some category of topological spaces (in our case, triangu-
lated polytopes with simplicial maps) to the category of sequences of abelian groups with
sequences of group homomorphisms, the sequences being indexed by the nonnegative in-
tegers. We actually use reduced homology because it simplifies the proof of Corollary 7.
The standard homology groups of a topological space are the same as its reduced homol-
ogy groups, except in dimension 0, where the rank of the reduced homology group is one
less than the rank of the homology group. In particular, if X is a polytope, then the sth
reduced homology group of X, denoted fIE-(X ), is an abelian group of finite rank and is
denoted fIZ-(X ). Roughly speaking, fI,;(X ) gives information about cycles formed by the
i-dimensional simplices of X. In particular, if X contains no i-dimensional simplex, then
H i(X) = 0. In dimension 0, reduced homology directly gives the number of components of

a polytope.

Proposition 4 (Munkres [12]) Suppose X is a polytope that has k components. Then

Ho(X) is a free abelian group of rank k — 1.

By slight abuse of notation, we write a free abelian group as being equal to (rather than
merely isomorphic to) a direct sum of copies of Z. The homology group in the last propo-

sition 1s then
H(X) = & Z.
o(X) E—1

In particular, H,(X) = 0 if X is connected.
The first reduced homology group of a graph gives its cycle space. (See Harary [9], page
38.)

Proposition 5 (Massey [11] Theorem 3.4) Suppose G = (V, E) is a graph with s com-
ponents. Then I, (|G|) is a free abelian group of rank |E| —|V]+ s.

This is all homology tells us about a graph as a topological space unless we derive additional
complexes from a graph, such as the r-dimensional complex of a graph that we defined

earlier.



To continue the definitions from algebraic topology, suppose

is a (possibly infinite) sequence of abelian groups and group homomorphisms. The sequence
is ezact at A; if the image of ¢;_; equals the kernel of ¢;. The sequence is an ecact sequence
if it is exact at every 4;. One of the many exact sequences that arises in algebraic topology

is the Mayer-Vietoris sequence (Munkres [12]).

Theorem 6 (Mayer-Vietoris Sequence) Let K be a complez with subcomplezes K, and

Ky such that K = Ky UK,. Let A=K, N K,. Then there is an infinite exact sequence
B ﬁP(A) - JFEI‘TJ:’(KI) D ﬁp(ffﬂ - ﬁp(ff) — ~p~1(‘4) —
This corollary bounds the number of components in the intersection of subcomplexes.

Corollary 7 Let K be a connected complex with connected subcomplexes K, and K, such
that K = K, U K,. Let A = K, NK,. Then the number of components in A is af most

rank H,(K)+ 1.
Proof: Since K, K, and K, are connected,
Hy(KY = By(K,) = Hy(K,) = 0.
This gives us the following subsequence of the Mayer-Vietoris sequence
H(K) S Hy(A) S 0.

Since g is trivial, its kernel is f, (A). Because the sequence is exact at Hy(A), f is surjective.
It follows that rank ﬁo(A) < rank E’l(I(). By Proposition 4, the number of components of
A s at most rank H(K) + 1. 0

This corollary is the important result used in proving the central lower bound, Theorem 11.
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4 Bidecomposability

This section defines the measure of the bidecomposability of a graph. The bidecomposability
of the butterfly network and of the k-dimensional torus are derived.

The motivation for the upcoming definition of bidecomposability originates in the obser-
vation by Bhatt et al. that if one takes a subgraph of the butterfly induced by the vertices
of consecutive levels, then that subgraph has numerous components, each rather small. The
observation remains valid even if the subgraph is of a power of the butterfly, as long as the
power is a bit smaller than the diameter of the butterfly.

A set of vertices V' is bicolored blue and red if V is partitioned into two nonempty sets
Wotue and Vieq. If K is a complex whose vertex set is bicolored, then Kpue is the subcomplex
of K induced on Ve, Kyeq is defined analogously. Let f : Z* — Z% be an increasing
function defined on the positive integers. A graph G = (V, E)is f (p)-bidecomposable if and
only if, for each p > 1, there is a bicoloring of ¥ such that no component of GP,.. or of GP_,
has more than f(p) vertices; alternately, every component of S(G, pluiue and of S(G, plrea
contains at most f(p) vertices.

As an example, we show an upper bound on the bidecomposability of the butterfly.
Theorem 8 (Bhatt et al. [4]) The butterfly B(m) is 5p25 -bidecomposable.

Proof: If m < 5p, then the size of B(m) is at most 5p2° and the result follows trivially.
Henceforth, assume m > 5p. Write m = 4pg + r, where 0 < 7 < 4dp. Recall that V; is
the ith level of B(m). Partition the levels of B(m) into g consecutive units of size 4p and
one additional of size r. Color the first 2p levels blue and the second 2p levels red. Color
the last r levels first half red, then the second half blne. More precisely, for 0 <z <g—1
and 0 < j < 2p— 1, color Vy,y,; blue and color Vipitapy; red; for 0 < 7 < [2/2], color
Vipgss red; for [r/2] + 1 < j < 7, color Vipg+j blue. The greatest number of consecutive
levels of one color is 2p + [+/2] < 4p. By the transitive symmetry of levels in B(m), we
need only consider the components of the subgraph of B(m)” induced by levels 0 through

Ap — 1. Since m > 5p, vertices in V, and Vap_1 cannot be adjacent. A path in B(m)®

11



between two vertices in these levels can involve changes to at most 5p of the bit positions
in the PWL string. Hence there are at most 4p2° vertices in any component, implying the
desired result. O

To make a comparison, we show the following bounds on the bidecomposability of the

torus.

Theorem 9 The torus 7(n) is 2pn-bidecomposable. Suppose f is a function such that, for

some p > 1, we have f(p) < n. Then T(n) is not f(p)-bidecomposable.

Proof: To show that 7(n) is 2pn-bidecomposable, let n = pg+ 7, where 0 < » < p. Color
vertex (i, j) of 7(n) red, if |i/p| is even, blue, otherwise. It is easy to verify that this
is a bicoloring of V such that no component of 7{(n)},.. or of 7(n)?, has more than 2pn
vertices. Hence 7(n) is 2pn-bidecomposable.

To show the lower bound, we shift to a topological argument that assumes more fa-
miliarity with topology than is needed elsewhere in the paper. The reader without the
necessary background may skip the remainder of the proof. Embed 7(n) in a surface T
known also as a torus (a compact surface of genus 1). Without loss of generality, we think
of each face of this embedding as a unit square. Triangulate each square by adding a new
vertex in the center of each square adjacent to all four vertices of the square. This trian-
gulation gives a simplicial complex whose polytope is T'. For each vertex v € V, define
the square neighborhood §(v) to be the simplicial complex consisting of all simplices in the
triangulation that contain v (generally known as the closed star of v [12]). Note that each
S(v) consists of eight triangles together with their faces and has a polytope that is a square,
Also, if u,v € V belong to the same square of T(n), then S{u) and S(v) intersect.

The homology group H,; (T) is a free abelian group of rank 2, generated by two cycles
of T', one going around the torus in each of the two directions. Neither of these cycles is
homotopic to a point. On the other hand, any cycle homotopic to a point in 7 is homologous

to 0 in H’l(T).
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Let (Vitue, Viea) be any bicoloring of V. Define

K.o= |J s

UEVhlue

and

K, = |J S(w.

v EVred

By construction, Ky U Ky = T, and any point in K; 1 K, is in the square neighborhood of
a vertex in Vypiue as well as in the square neighborhood of a vertex in Vieq.

We claim that there is a cycle in either H 1(K4) or H 1(K2) that is not homologous to
0in H 1(T) (call such a cycle a non-zero cycle). To prove this claim, we first show, via a
substitution argument, that we may assume that no component of X, or K> is contractible
(to a point). Suppose a component I of K is contractible. Then X 5 UL contains a non-zero
cycle if and only if K, contains a non-zero cycle. Hence, replacing K, by K; — L and K5 by
K> U L yields a pair of subcomplexes with the same non-zero cycles as Ky and K, (up to

. homology). Continuing the process a finite number of steps yields a pair of subcomplexes
K1 and K such that no component of K/ or of Ky is contractible and such that K{ and
I, have the same non-zero cycles as K, and K.

Since no component of K or of K} is contractible, any cycle in X! N K that is not
homologous to 0 in H,(K{ N K4) must be a non-zero cycle. There are two cases to consider.
In the first case, rank H,(K{n K.) > 0. Hence both K 1 and K contain a non-zero cycle.
In the second case, rank #,(K| 1 K3) = 0. Consider this part of the Mayer-Vietoris exact

sequence:
Hy(Ky 0 KS) — By(K) @ Hay(K) — Hy(T) = Hy{(K.nK}) =0,

where H,(T) = Z (see Munkres [12]). Clearly K{ N Ky # T, so Ho(K| N K}) = 0. By
exactness, we get that H,(K{) = % or Hy(K}) = Z. This can happen only if k! = T or
K, =T.

In both cases, either K, or K, contains at least one nontrivial loop (a closed topological

path not homotopic in T to a point; see Rotman [13]), call it P. Either P passes through
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each column of 7{n) or through each row of T(n). Without loss of generality, assume
P passes through each row of 7(n). Then there is a monochromatic cycle C in T(n)?
that contains at least one vertex in each row. Then the component of T(n)? of that color
containing C has at least n vertices. This establishes the lower bound on bidecomposability.
A

By adapting the previous proof to the case of the k-dimensional torus, the foﬂo*&ing

generalization is obtained.

Theorem 10 The torus T(n, k) is 2pn*~-bidecomposable. Suppose f is a function such

that, for some p > k, we have f(p) < nF~1. Then T(n,k) is not f(p)-bidecomposable.

Comparing Theorems 8 and 10, we see that the bidecomposability of the butterfly does
not depend on its size, while the bidecomposability of the torus does depend on its size. As
we consider the lower bounds that follow from Theorem 11, we find that the lower bounds

established for the torus are not strong for this very reason.

5 Central Lower Bound

- The following theorem is the central lower bound.

Theorem 11 Suppose Gy = (V;, E,) is f(p)-bidecomposable and G, = (V,, E;) is a con-
nected graph with separator size N(G). Suppose that ¢ > 1 and that rank fIl([S(Gl, Q)=
A. Let 0 be any graph embedding of G4 in Gy, and let its dilation be 8. Then the following
bound holds:

(G < (A+1)f(L8).

Proof: To prove this theorem, we utilize some additional notation. If v is a vertex of a

complex &, the neighborhood of v in S is the following set of vertices

M8 = |J {u | {u} € A(O)} ~ {v}.

vEAES
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If V is a subset of the vertex set of S , the neighborhood of V in S is the following set of
vertices
Iv,s) = |Jrws)-Vv.
veV

Let n = |Vi|, and let p = (6. Let K = [S(G1,()]. Cleatly, Z(G,} < S(K). We
actually show that (K} < (A + 1)f(p). The existence of 8 implies the existence of an
injective simplicial map from K to [$(Ga, p)], which we also céll #. Bicolor V; to witness
the f(p)-bidecomposability of G». The inverse #-! induces a bicoloring of Vi; clearly, the
components of Kype and Keq have size at most f(p).

Our intention is to find a triple (K 1,402, A) of subcomplexes of K such that K, and
K5 are connected, K = K, U K,, and A = K, N K, is a monochromatic separator of K.
Applying Corollary 7, A has at most A + 1 components. Since A is monochromatic, each
component has size at most f(p), for a total size of at most (A + 1)f(p). Since A is a
separator of X', A has size at least Z(K) < (A+1)f(p). From this inequality, the theorem
follows.

The proof constructs inductively a sequence
(Lo, RD) AG): (Lh Rl: Al)') ey (Lk'-: Rka Ak)

of triples of subcomplexes of K until one triple fulfills the intention. To construct the
first triple, choose an arbitrary v € (Vi)yme. Let Ly be the component of the subcomplex
Kpue that contains v. Let Ry = K, and let 4, = Lo = Ly N Ry. Clearly, Ly and R, are
connected. If the components of K — A, are of size at most [2n/3], then Ay = Lo N Ry is
a monochromatic separator of Gy, and we are done. Otherwise, the construction continues
as follows.

For purposes of induction, assume that we have constructed a triple (L;, R;, A;) that

satisfles the following properties:

1. L; and R; are connected;
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2. K = Lg U Ri;
3. A,‘ = L,‘ i R“
4. AED) is monochromatic;

5. I'(A;, K) contains no vertices the color of A; (the neighborhood of 4; is monochro-

matic, of the other color);
6. The size of the largest component of R; — 4; exceeds [2n/3].

To begin the induction, we easily verify thai the triple (Lo, Ro, Ao) satisfies these properties.

We now construct (Liy1, Bis1, Aryr). Without loss of generality, assume that AP s blue
(Property 4). Let E; be the component of E; — 4; that has size exceeding [2n/3] (Property
6). By Property 5, I'(A;, R;) is red. Let A;,, be the union of the components of (E)red
that intersect T(A;, Ry). Let Riyy = Ry Let Liyy = ASC(K, V(E) = V(Rip1) U V(4111)).
Then A;4; = Ly N R,

First we show that the triple (Lit1, Rigr, Agyy) satisfies Properties 1-5. (Property 1)
Ry = R; is connected since FR: is a component of R;. By assumption, ; is connected.
Any vertex in Ly, ~ L; is connected to a component of 4; by a path in L;.; and hence
by a path to L;. We conclude that Liy1 is connected. (Property 2) Since A4;,; was chosen
such that there is no 1-simplex {edge) having one vertex in Lit1 — A;¢1 and another vertex
I Ripr — Agpq, any 1- or higher-dimensional simplex has all of its vertices in L;41 or in
;1. Hence, every simplex of K is ejther in Liyy orin Ryyy. (Property 3) By the definition
of Ay, every simplex in 4, is in both L; and R;. (Property 4) Since A; is chosen to he
red, Af-o) is monochromatic. (Property 5) As A, is the union of components of (E)red,
its neighbors must all be blue.

If no component of R;y; — Ay, has size greater than [2n/ 3], we claim that A, is a
separator for K. The components of K — A;;; consist of the components of L, — 4,44
together with the components of R;y; — A;yy. Each of the components of Liy1 — Ay has

size less than |[n/3], since the size of R;.; exceeds [2n/3]. Hence, A,,, is a separator for
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K. If some component of RB;; — A;;1 has size that exceeds [2n/37, then Property 6 holds
for the triple (Liy1, Riy1, Ais1).

Since
Ro£R1 2 "'th

the induction must end with some A; being the desired monochromatic separator. O

6 Lower Bounds for the Butterfly

The following corollary of the central theorem is our most general lower bound on embed-

dings in the butterfly graph.

Corollary 12 Suppose G is a connected graph with separator size $(G). Suppose that
¢ > 1 and that rank ﬁl([S(G’,C)]) = A. Let 0 be any graph embedding of G in B(m), and
let its dilation be §. Then the dilation of 8 is at least

()
A+T1

& = (8(0)'log,
Froof: From Theorems 8 and 11, we have
(GE) < (A+1)5062°¢,

Algebra shows

(G
log, ﬁ% < 5(8 + log, 5C4.
Since {§ > 1, the desired bound on § follows. O

The next corollary is the lower bound of Bhatt et at. [4].

Corollary 13 (Bhatt et al. [4]) Suppose G is a connected planar graph with separator
size X(G) such that G has a planar embedding with no interior face larger than ®(G). Then
any embedding of G in B(m) has dilation at least
log, ¥(G)
8(2(G) - 1)
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Proof: We construct from G a 2-dimensional simplicial complex embedded in the plane.
Consider a face f of the planar embedding of G. If no vertex of f appears more than once
on the boundary of f, then place a new vertex v ¢ in f, and add an edge from v; to every
vertex of f. The result is that f is triangulated. If one or more vertices of f appear more
than once on the boundary of f, it is necessary to add more than one new vertex in f so
that it can be triangulated. Call the resulting planar graph with only triangular interior
faces G. For each triangular interior face of @, add the corresponding 2-simplex to § (6’),
ultimately obfaining a complex K. (.For the purpose of applying Corollary 12, we are taking
( =®{G)-1.) K is a 2-dimensional simplicial complex embedded in the plane. Since every
interior face of G isin K as a 2-simplex, every loop in K can be continuously deformed to
(is homotopic to) a point. Hence K is contractible, and H 1(K) = 0 (Munkres [12], page
108). Since each face of  is covered by a simplex in S(G, ®(G) — 1), K is a subcomplex of
S(G, ®(G) — 1) with the same vertex set. Hence, H,(S(G,®(G)— 1)) = 0. This corollary
follows by an application of Corollary 12. O

By a similar but more elaborate argument, we can prove this more general corollary.

Corollary 14 Suppose (7 is a connected planar graph with separator size T(Q) such that
G has a planar embedding with no more than A interior faces larger than (. Then any
embedding of G in B(m) has dilation at least

(G)

(3(¢ ~ 1) log, T2

FProof: Again, we construct from G a 2-dimensional simplicial complex embedded in the
plane. Consider any face f of the planar embedding of G with size no greater than (.
Triangulate each face as in the proof of Corollary 13. Call the resulting planar graph with
only triangular interior faces . For each triangular interior face of C:“, add the corresponding
2-simplex to S(G), ultimately obtaining a complex K. K is a 2-dimensional simplicial
complex embedded in the plane, but it may contain as many as A holes. A loop around

one or more such holes is not homotopic to a point. Hence, we can only deduce this bound:
rank H (S(K,(—1)) < A.
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Since K is a subcomplex of (@, ¢ — 1) with the same vertex set, we obtain
I(S(G,¢ - 1)) < A

This corollary follows by an application of Corollary 12. ]
The following is our most general corollary for a. guest graph embedded in an orientable

surface,

Corollary 15 Suppose G is a connected graph with separator size $(G) such that G has
an embedding in an orientable surface of genus g with no more than A faces larger than (.

Then any embedding of G in B(m) has dilation at least

3G
(30 logy s D

Proof: We use Euler’s formula, W|—|E|+ f = 2—2g, for a connected graph embedded in

an orientable surface of genus ¢ to obtain

oGl = |Bl-[V]+1

= f+29_17

where f is the number of faces in the embedding. Asin the proof of Corollary 14, construct
a 2-dimensional simplicial complex K embedded in the surface of genus g. As before, K
may have up to A holes. Tn addition, there are up to 2¢ nontrivial loops due to the surface

of genus g. Hence, we can deduce this bound:
rank H1(S(K,(~1)) < A+2g.
Since K is a subcomplex of S(G, ¢ — 1) with the same vertex set, we obtain
H(8(G,¢-1) < A.

This corollary follows by an application of Corollary 12. W

As an example, we apply this coroliary to the n x n torus.
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Corollary 16 Any embedding of T(n) in any butterfly graph B(m) has dilation Q(log, n).

Proof: Apply Corollary 15 with 9=1A=0,{=4,and Z(7(n)) = 6(n). 0

One more application of Corollary 12 is to the k-dimensional mesh.
Corollary 17 Any embedding of M(k,n) in any butterfly graph B(m) has dilation
2 (log, n*~1).

Proof: As H(IS(G,3)]) = 0, we get T(M(k,n)) = © (n*~") from Corollary 12. 0

7 Open Problems

I this paper, we have proved in a topological setting a general lower bound on the dilation
of graph embeddings. Applying this lower bound to a specific pair of guest and host graphs
requires knowledge of the separator size of the guest graph and the bidecomposability of
the host graph. Several open problems are suggested: we mention those we find most

interesting.

Bidecomposability of the de Bruijn graph. It is not known whether the butterfly
and the de Bruijn graph are equivalent with respect to graph embeddings (that is, whether
each can be embedded in the other with constant dilation). It is not even known whether
there is a constant dilation embedding of the de Bruijn graph in the butterfly or vice versa
(but see Annexstein, Baumslag, and Rosenberg [1]). Our central lower bound suggests a
weaker question: Is the bidecomposability of the de Bruijn graph sufficiently close to the
bidecomposability of the butterfly that the lower bound of Corollary 12 holds (within a
constant factor) when the de Bruijn graph is the host? More specifically, is the de Bruijn

graph ep2?-bidecomposable for some constant e?

Bidecomposability of the hypercube. What bounds can be proved on the bidecom-

posability of the hypercube? Unfortunately, it is clear that the bidecomposability of the
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hypercube is so large that the resulting lower bounds an dilation of embeddings in hyper-

cubes will be very weak.

Lower bounds on embedding grids in hypercubes. For the case that a general k-
dimensional grid is the guest graph and a smallest-possible hypercube is the host graph,
“optimal, or nearly-optimal, dilation embeddings are not known. One conjecture is that there
is no constant bound on dilation that applies to all such embeddings (see Leighton [10],
Problems 3.25 and 3.26). As was just mentioned, the bidecomposability of the hypercube is
too large to prove this con Jecture using Theorem 11. A possible line of attack for this special
case is to again study simplicial maps but to associate different simplicial complexes (other
than our r-dimensional complex of a graph) with the grid and the hypercube, complexes
chosen specifically to expose & topological mismatch between the grid and the hypercube.
For more general pairs of guest and host graphs, there may be other lower bound theorems

based on different associated simplicial complexes.
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