A Task Scheduling Algorithm for Minimum
Busiest Processor Idle Time

Emile Haddad

TR 93-32

Department of Computer Science
Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061

December 12, 1993

A Task Scheduling Algorithm

for Minimum Busiest Processor Idle Time

Emile Haddad
Computer Science Department
Virginia Polytechnic Institute and State University
2990 Telestar Court, Falls Church, Virginia 22042,
Tel. (703) 698-6023, E-mail: haddad@vtopus.cs.vt.edu

Abstract

- This paper provides a heuristic to minimize the idle time of the busiest processor in a system in
which the number of modules to be executed by every processor has been predetermined fora
given precedence graph. Except for the busiest processor, the assignment of modules to the
other processors is as evenly as possible. Each of the modules involved is of unit size. An
exhaustive enumeration solution of the problem is of NP-complete complexity. The heuristic
presented in this paper is of polynomial time .

1. Introduction

Task scheduling has been a widely investigated problem in the area of parallel
processing. A typical scheduling assignment of modules to processors is to minimize the total
time to execute the interactive modules without any constraint on the number of modules that
each processor must handle. The resulting optimal schedule will heavily depend on the number
of processors involved and the precedence of modules as given in the task graph. Haddad in [2]
investigates a systemn with unit-length modules in which the number of modules assigned to each
processor has been predetermined for optimizing an objective function consisting of a linear
combination of four performance and cost metrics representing workload completion time ,
communication cost, processor utilization cost, and processor idle time cost. The resulting
optimal load distribution assigns to the busiest processor a specified peak load, with the
ramaining modules distributed as evenly as possible to the other processors. The implied time-
constraint is that the total execution time of any other processor may not exceed the total
execution time of the busiest processor. Execution time is the actual amount of time during
which the processor is busy plus the amount of synchronization delay in which the processor has

to wait for a predecessor module to complete its execution . The goal of the scheduling is to
minimize the idle time of the busiest processor, which results in minimizing the overall
completion time (turnaround time) of the total workload

2. Description of the Scheduling Algorithm

We first define the following terms which are employed in the description of the algorithm to
follow:

Time slot : Each time unit in the scheduling.

Predecessor of module A : a module that has to complete before module A can be executed.

Th delay - the number of time units during which processor k is idle.

X(x) : the predetermined number of modules assigned to the busiest processor.

The description of the scheduling algorithm is as follows:

At every time slot, we assign the modules that do not have any predecessors (call these
{M'i }), to the processors. We keep track of the number of modules that has been assigned to
each processor so that it will not exceed its prescribed upper limit . Once a processor reaches its
limit, we eliminate it from the set of available processors, {P,}, ie., the processors that can still
be assigned some modules. We repeat this process of assigning modules for each time slot to
{P'i} until all the processors but the first have reached their limits (To ensure that the other
processors reach their limits before P; does, we always assign the modules to the other
processors when H{P; }| >1{M;}I). Let us denote this time slot in which all the other processors
have reached their limits as saturation point.

It may seem that the next step of the algorithm is to simply assign all the remaining
modules sequentially to P,. However, since some of these modules can actually be executed in
parallel assuming some of the other processors had not reached their limits, we can move some
module already assigned to some other processor, P;, in a previous time slot, to P, if P, is idle
at that time slot. We then assign one of the modules that can be executed in parallel after the
saturation point to P;. This reallocation of modules is to reduce the number of idle slots of P,
(yet retain the required number of modules of P;) and hence is unnecessary when P, has no idle
slots. Therefore, when P, has some idle slot(s), the next step in the algorithm is to assign all
sequential modules starting from this time slot to P until {M,}i > 1 or {M,} = &, i.e., until we
find modules that can be executed in parallel, or until there are no more modules left. If there
are no more modules left, then we will no longer be able to perform reallocation and thus the
algorithm is terminated. Otherwise, we take the module assigned to some P; in the idle slot of P,
and assign this module to P, instead. We then take two modules from {M.}, and assign each of

them to P; and P, at some appropriate time slot k, where k > SaturationPoint. To remove Py's
other idle slots, we first check if there is a module in {M,} that can be executed at time slot k,
i.e., parallel with P; and P, in the previous step. If not, we repeat the previous step of assigning
all the sequential modules to P; until I{M;}i > 1 or (M,} =@. We then repeat the reallocation
step until there are no more modules left (in which the algorithm terminates), or until P, no
longer has any idle slots. In this case, the final schedule is obtained by arbitrarily assigning any
ready module to P;.

Note that in the step where we assign the modules to the processors, if I{ P'i I < I{M'i H,
we can only assign 1{ P,}| modules for the processors. Our tie-breaking scheme uses «;, the
longest path from node i 1o a terminal node, and the numerical label of each module. The nodes
with the highest o 's will be selected. This is based on the justification that these modules have
the longest path to a terminal node, and thus delaying its execution can delay any of its
successors, which in turn can delay its next successors. This delay can create idle time slots of
P, that cannot be eliminated even in the reallocation stage of the algorithm. The numerical label
is used when there is a tie among o's.

There is also a case where I{ P;}| > I{M;}I. Each time this occurs, we will attempt to
distribute the modules evenly among the available processors whose index is greater than 1.
This is useful when we attempt to assign all the modules at time slot k, k > SaturationPoint, as
parallel as possible to reduce the number of idle slots of Py. When a situation where I{P,}| >
I{ M'i jl occurs more than once, the distribution of the modules to different processors will cause
us to take modules from different processors as an attempt to reduce the idle slots of P;. This
creates distinct available processors at time slot k in the swapping process, which causes M,)
to be executed as parallel as possible, and thus increases the chance of possible reallocation
(Recall that we only eliminate an idle slot of P; when we can execute some elements of { M} in
parallel).

The following is a listing of all the variables that are necessary to implement the
algorithm:

1. {oy} - the set of the longest paths from each node i to a terminal node. This can be
obtained before the execution of the algorithm using a recursive procedure:
function Alpha (Module): integer;
begin
if the successors of Module is nil then
return 1
else
return (1 + max { Alpha's of Module's successors})

end

2.

A

[x'i] - an array representing the number of modules assigned to processors [P;] so far, i.e.,
it is an accumulator of the number of modules assigned to each P; until it reaches its limit, x;.
[P'i} -- the set of processors that have not reached their limits of modules, i.c., the
processors with x; < x;. In the beginning, none of the processors have been assigned any
module, so the accumulator array is initialized to zero, which implies that {P,} = {P,).

{M;.} -- the set of modules that can be executed in the current time, i.e., the modules
without any predecessors. This is stored in a heapsort with the root being the module with
Olpax- 10 the beginning, the modules that do not have any predecessors at this point are the
starting modules, and thus we initialize {M.} to be the set of all starting modules.

[Syl -- the matrix representing the resulting schedule whose element sj denotes the
module assigned to P; attime j. For convenience, sij=0 indicates that P, is idle at time j.
LPS -- the index of the last processor selected to execute a module when {P;}I >

I{M, }I. This is used to keep track of which processors should be used if another case of
I{P;}l > I{M,}| occurs in the future.

The algorithm:

Let [x]=0

Let {P,} = all the processors

Let {M,} = all modules without any predecessors
Let LPS=1

While I{P,}i>1 and {M,}# @ do

5.1 Assign the modules to processors:

5.1.1 If (P}l = I{M;}!, simply assign to each P; the modules in {M,} and build a
new heapsort consisting of the ready successors (the successors without any
other predecessors) of these modules.

512 Else if I{P;}| > I{M;}l : assign the modules in {M,} to {(P; : P

€ {P.}), j> 1}, starting from P; where j > LPS. Build
a new heapsort consisting of the ready successors and let LPS = the last
selected processor's index. If LPS = p, change LPS to 1.

513 P}l < {M}}I: take from {M,) the modules with the largest o's (by deleting
the root of the heapsort one by one). In the case of a tie, select the ones with the
lowest numerical label. Then insert into the heapsort the ready successors of
these modules one by one.

5.2 Increase x; of each of the assigned processors.
5.3 Let {P,} = all the processors with x, < x;.

6. Let SaturationPoint be the current time unit

7. While Ty gelay >0and (M} % 2 do
7.1 Let IdleSlot = the next time slot where s;;=0
7.2 Assign the modules:

7.2.1 If there exists a module M; in {M;) that can be executed in time slot =
SaturationPoint and some k such that sy 1gies10t # 0 and sy gaurationPoint = 0
then
7.2.1.1 Let S1.IdleSlot = Sk ldleStot 214 Sk Idteslor =0

72.1.2 Let Sk,SaturationPoint = M,
7.2.1.3 Insert the ready successor(s) of M, to { M'i} one by one

7.22 Elseif I{M;}I> 1 then
7.2.2.1 Increment SaturationPoint
7.2.2.2 Find the first k such that sy 1gjeg1o; # 0
7.2.2.3 Let s; sdiesiot = Sk IdleSlot and Sk Idiesior = O for some k
7.2.2.4 Remove two modules in {M,} with the largest o's and assign each of
them to P; and P, at time slot = SaturationPoint. 1In the case of a tie,
select the ones with the lowest numerical label.
7.2.2.5 Insertinto {M;} the ready successor(s) of these modules one by one
7.2.3 Else
7.2.3.1 Increment SaturationPoint
7.2.3.2 Remove M, from {M;} and assign it t0 $; SamurationPoint:
7.2.3.3 Insert the ready successor(s) of M1 in {M'i} one by one
8. While {M,} » @ do
Arbitrarily remove any element of {M, } and insert the ready successors of this element to
{M,}. The insertion is performed by merely copying them to the array used to store

1

{M;}.

4. Running Time of the Algorithm

The following approximation on major steps of the algorithm provides an upper bound of the
algorithm in terms of the number of comparisons performed:

Steps - Upper bound of the Explanation
number of comparisons

3 0 (m) The worst case is when all the modules
are the starting modules

511&5.1.2 0 (I{M'i i), simplified to O (m) The assignment of the modules is E{Mi H
since we need only copy the content of
{M,}. Also, building a new heap takes
O (I{M;, }1). Since I{M,}I <m, we
simplify the notation to @ (m)

5.1.3 O (G{P)1+ I1{M;})1gI{M]1), Deleting the max and inserting an element
simplified to O ((p+m) lg m) to a heapsort each takes Ig I{M, }l in the
' worst case. The root is deleted |{P, }! times
and we perform {{M, }| inserts. Since
I{M,}| <m and I{P, }| < p, we simplify the
first notation to (p+m) Ig m).

5.3 O (1{P.}1), simplified to O (p) We need to check all elements of {P;)

Entire of 5 O (m({P }1 +1{M;}h1g{M,}1),| The entire step 5 will be executed no more
simplified to O (m (p+m) Ig m) than m times. The worst running time of
its statements is @ ((p+m) lg m), and thus
the total ranning time for this step is

0 (m (p+m) lg m)

7.2.1 O ([M'i 1), simplified to O (m) We need to check individual elements of
{M; } if any can be executed immediately.

7.2.1.3,7.2.33 O ({M;) 1g M), We need to insert the successors one by
simplified to O (m g m) one
7.22.4,72.25 O(Q2+I{M}h]g M 1), See explanation on Step 5.1.3 and remove
simplified toQ (m lg m) the constant 2
Entire of 7 O(m2+I{M}DIgI{M}), See explanation on Step 5

simplified to O (m? 1g m)

8 0 (M,)1), ~ Insertion is performed merely by taking
simplified to O (m) each element of {M,} and copy its ready
successors to the heapsort array

Thus the total running time of the algorithm is the maximum of the above, which is
O (m (p+m) Ig m) (Recall that O (f+g) = max{O (f), O (g))). Note that, for simplification,
many of the upper bounds are approximated higher than the actual bounds. The results, however,
is still efficient, as it is a polynomial, which implies that the actual running time of the heuristic
is reasonable.

5. Examples

Consider the following task graph:

From the above graph (the numbers in parentheses indicate o's of the nodes) we observe that m
=14 and 0y, = 7. Consider the following examples:

1. Let p=3 and X(x) = oy, =7. So x=(7, 4, 3).
After completing steps 1 through 6:

time| 1 2 3 4 5
P10 0 3 6 9
P, |1 0 4 7 10
P; 10 2 5 8 0

SaturationPoint = 5

Step 7: (T} delay # 0)
After completing the first loop of Step 7:

timef 1 2 3 _4 5 6
P,l1 0 3 6 9 11
P, 10 0 4 7 10 12
P [0 2 5 8 0 0

(Tidetay > O and {M,} # @)
The schedule after completing the second loop of Step 7:

tmel1 _2 3 4 5 ¢
P12 3 6 9 11
P, {0 0 4 7 10 12
P10 0 5 &8 0 13

(T} delay = 0) After completing Step 8 we obtain the final (optimal) schedule:

imell 2 3 4 5 6 7
P, {1 2 3 6 9 11 14
P10 0 4 7 10 12 0
P, {0 0 5 8 0 13 0

. Let p=3 and X(x)= 6 < Opax. So x=(6, 4, 4).
After completing steps 1 through 6:

time] 1 2 3 4 5
PLb|O 0 3 6 0
P, |11 0 4 7 9
P;, 10 2 5 8 10

SaturationPoint = 5
Step 7: (T} getay # 0)
After completing the first loop of Step 7:

timej 1 2 3 4 5 6
P, |1 0 3 6 0 11
P, 10 0 4 7 9 12
P; 10 2 5 8 10 O

(Tl.delay >0and {Ml} # d)

The schedule after completing the second loop of Step 7: -
tmef1 2 3 4 5 6

P 1 2 3 6 0 11

P10 0 4 7 9 12

P, 10 0 5 8 10 13

(T1gelay > O and {M;} # @)

The schedule after completing the third loop of Step 7:

timef 1 2 3 4 5 6 7
P11 2 3 6 0 11 14
P, 10 0 4 7 9 12 9
P, 10 0 5 8 10 13 0

Now {M;] = & so the above schedule is the final one (with Tl.delay =1)

3. Let p=2 and X(X)= opax=7. So x=(7,7).
After completing steps 1 through 6:

timell 2 3 4 5 6 7

Ppbi0 0 4 6 8 9 1

P, |1 2 3 7 5 10 12
SaturationPoint = 7

Step 7: (T} getay # 0)

After completing the first loop of Step 7:

timefl 2 3 4 5 6 7 8 9
P10 0 4 6 8 9 11 13 14
P,bJ1 2 3 7 5 10 12 0 0

Now {M, } = @ so the above schedule is the final one (with Ty delay = 2)

6. Concluding Remarks

The above examples suggest a relationship between p, X(x), Omax » and the number of
idle time slots of the first processor. Another relevant factor that may not seem obvious is the
maximum number of modules that can be executed in parallel if there are enough processors
available. When p is less than the maximum number of modules that can be executed in
parallel, it will be necessary to execute some modules to the next time slot. Since these modules

may have some successors, delaying their execution can delay the successors of their successors,
which may cause an unrecoverable delay in the schedule of the first processor, i.e., a delay that
can not be reallocated to any other processor. On the other hand, X(x) and oy, are also
significant factors: when X(x) < Cmax. We are eventually forced to assign some modules to a
processor other than the busiest to satisty the loading constraint, which creates a time delay in the
corresponding time slot of the first processor.

The algorithm presented above was tested against several other examples. In all cases, it
provided an optimal schedule, i.e., a schedule in which the amount of idle time of the busiest
processor is the minimum possible. Like other NP-complete problems, however, it is not at all
trivial to prove that a solution to a graph-related problem is optimal. The proof is therefore still
an open problem.

References

[11 S. Bokhari, Assienment Problems in Parallel and Distributed Computing, Kluwer
Academic Publishers, 1987.

[2] E. Haddad, "Optimal Distribution of Random Workloads over Heterogeneous Processors
with Loading Constraints.” Proc. of the 1992 International Conference on Parallel

Processing, St. Charles, Hlinois, August 1992,

