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Abstract

Certain parallel software performance evaluation problems are equivalent to computational ge-
ometric problems. Consider a timed transition system representing a parallel program: a set of
variables, a set of states, an initial state, a transition function mapping a state to a set of successor
states, and a description of the time between transitions. Program execution is represented by a
sequence of states satisfying the transition function along with the times of state transitions, called
a timed erecution sequence {TES). For the program class considered, the TES may contain a suffix
of repeated states, called a limit cycle ezecution sequence (LCES). Given a timed transition system,
the paper solves four problems: {(P1) State the hecessary and sufficient conditions for a TES to

contain a LCES. (P2) Given the initial starting time of each process

, find a representation of the set

of all possible TESs, (P3} Determine if there exists any initial process starting times that leads to
a LCES in which no process ever blocks, (P4) Find the set of all possible LCESs. P1 to P4 are ali
embellishments of the ray shooting problem from computational geometry: Given a collection of line

segments in a plane and a ray, find the first line segment that the ray

intersects, This is demonstrated

by defining timed progress graphs (TPG) and showing their equivalence to timed transition systems.
A TPG maps the progress of each process to one Cartesian graph axis. Line segments represent
interprocess synchronization, A directed, continuous path that does not cross a segment represents a

the novel analysis method raises the question of whether other software performance problems are

equivalent to computational geomelzic problems with known solutio

Categories and Subject Descriptors: 1).2.8 [Software]: Measures —
erating Systems]: Performance — Modeling and prediction; C.4 [P
ing techniques

Performance measures; D.4.8 [Op-
erformance of Systems]: Model-

General Terms: computational geometry, ray shooting, timed progress graphs, timed transition systems,

software performance analysis
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1 Introduction

Critical to the success of parallel and distributed programming are better methods to understand cor-
rectness and perforrnance. Methods for understanding algorithms can be broadly categorized as formal
versus empirical. Formal methods include proof systems and various analytic performance models (such
as stochastic processes and queueing networks). Methods for empirical understanding include algorithm
animation and performance visualization systems. Are these two worlds of formal and empirical methods
disjoint, or can techniques from one assist the other? Roman and Cox [33] argue in the affirmative for
correctness; this paper argues in the affirmative for performarnce.

The formal basis underling our work {and that of Roman and Cox) is to represent a program as a
transition system and to represent an execution of a program as an ezecution sequence. A transition
system consists of a set of variables, a set of states or interpretations of the variables, an initial state,
and a transition function mapping a state to a set of successor states. Chandy and Misra’s Unity [8]
demonstrates that many and possibly all applications, programming languages, and paradigms can be
represented by a transition system. Thus the ability to analyze transition systems yields the ability to
analyze programs.

Transition systems are used to specifly and formally reason about computations. Program execution
is represented by a sequence of states satisfying the transition function, called an erecution sequence.
Augmenting a transition system by a description of the time between transitions yields a timed transition
system (e.g., [16]), permitting proofs of properties about real time systems [17].

Roman and Cox illustrate that safety and liveness properties can be verified by defining 2 mapping
of program states to a visual representation, and then observing that the sequence of visual images
corresponding to an execution sequence meet some property. They discuss the ability “to render invariant
properties of the program state as stable visual patterns and to render progress properties as evolving
visnal patterns.” In this paper we show that the mapping of execution sequences to a visual image allows
analysis of program performance properties. Our analysis uses known algorithms from computational
geometry [31], which is a novel way to analyze performance. Although the algorithms in this paper
analyze a limited class of software, the paper raises the question of whether performance analysis of
other software classes is amenable to representation as computational geometric problems.

The precedence for mapping execution sequences to visual images to analyze software performance
exists in visualization systems for software performance analysis (e.g., [2, 19, 25, 27]). In visualization
systems the execution sequence is a trace of time stamped events obtained from instrumented source
code [35]. One visualization of an execution sequence is an x-y plot of state as a function of time.
Visualization systems lend insight into why a performance measure, such as program execution time or
mean waiting time for a resource, has a particular value. The answer to “why” helps identify how to
change the program to improve the measure.

Timed transition and visualization systems represent an execution sequence as a linear list of states
and as a path in a geometric space, respectively. In the literature only the first has been used for formal
analysis of timing properties. This paper demonstrates that the second can also be used, and in doing
so shows that certain performance evaluation problems are equivalent to geometric problems.

Example: To motivate the problems to be solved, consider an example: the two process mutual ex-
clusion problem. There are two processes that share a resource in a mutually exclusively (i.e., at most
One process can use the resource at any time). A program solving the mutual exclusion problem must
serialize access to the data. Figure 1 illustrates a solution using a timed transition diagram. The program
consists of two instances of the diagram, representing the two processes that share the resource. (Timed
transition diagrams are presented in §3.) Diagram vertices represent all possible code segments, and are
labeled by consecutive integers starting at -1, called locations. Location -1 represents a process that is
waiting to start execution. Diagram edges are labeled above by a delay (a real number) and below by a
condition (a set of locations). Let r € {0,1)} denote a process. The intended meaning of an arc directed
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Figure 1: Timed transition diagrams of a mutual exclusion program.

from locations 7 to ¢ 4+ 1 in the diagram for process » that is labeled by delay ti and condition ¢ is that
the process remains in a location ; for # time units; then the process makes a transition from location
# to location ¢ 4+ 1 mod 2 at the first instant when the location of the other process is not in set ¢. In
Fig. 1, location 0 represents a code segment in which a process is not accessing the shared resource, and
location 1 is a code segment that uses the resource and hence can be executed by at most one process.
Due to the label «{ 1}” on the edge out of location 0, a process blocks on transition out of location 0
if the other process is in location 1. The table in Fig. 1 llustrates one possibie set of delays. Because
thl= 7= 0, both processes simultaneously start execution.

Consider now execution of the program in Fig. 1. Let # = 1 — ¢ {f r = 0, then # = 1 and vice
versa.) We use an ordered four-tuple (my, go, 7y, p1) as the program state: , is the location of process
r and p, is the minimum time that Process r must remain in its current location. Thus the initial
state is (—1,0, -1, 0). Two transitions out of a state (mg, pg, m, /1) are defined. The first, called a state
transition, takes time 0 and advances the location of one process. The location of process r will advance
from 7, to m. + 1 mod 2 iff the remaining delay of process r {i.e., p;) is zero and the condition labeling
the edge out of location #, in Fig. 1 does not name the location of the other process (i.e, wx¢cr). The
minimum time p, is set to the delay of the newly entered state, 12, To illustrate, initial state (-1,0,-

each state. Both transitions result in the same state: {0,1,0,2). The second transition advances time,
and takes time ¢, where (0 < ¢ < min{po, p1), by subtracting ¢ from each non-zero remaining delay.
Returning to our example, we left off at state (0,1,0,2). After 1 time unit elapses, the system will reach
state (0,0,0,1) by a time transition. Now process () must block for 1 time unit due to label {1} on the
edge out of location 0. Thus the systemn reaches state {0,0,0,0) after 1 time unit by a time transition.
Figure 2 continues this process to illustrate all states reachable from the initial state. Becanse the state
space is continuous, we use the notation (g, ..z, 1y, pr..z1) in the figure to denote the set of states
{(mo, po, 1, p1) | (¥, Tt v € {0,1} A0 < ¢ < min(py — 20,1 — 21} fpr = pp — )}, (Fig. 2 contains
letters, such as II, points labeling each state. These will be explained when used later, in Example 2 in
§4.)

For cach state (mo, pg, 71, 1), consider an ordered pair (mp, m1}; this pair denotes the location of each

!We use the notation from (8] { <quantified variable> : <demain of quantification> : <quantified formula> ), and
omit <domain of quantification> when it is obvious from context.
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Figure 2: The set of all states reachable in the mutual exclusion program of Fig. 1.

process. From Fig. 2, there is only one possible location sequence for any possible execution of the
program;:

process locations:  (—1,-1), (0,-1), (6,0), { (1,0), (0,0), (0,1), (0,0) \”
time in location: 0, 0, 1, 4, 0 1 0

where {...}* denotes an infinite repetition of a subsequence. Informally, the above sequence is called the
timed exceution sequence (TES) of the program, and the repeated subsequence the limit cycle ezecution
sequence (LCES), due to its qualitative resemblance to limit cyeles in a dynamic system. We will see
that for a wide variety of initial process starting times (i.e., £;' and t71), the program converges to the
same location pairs of a LCES. If we imagine a knob whose setting determines one delay ¢, and vary
the knob, then the location pairs of the LCES remain the same until we turn the knob past a critical
point, at which point the location pairs of the LCES to which the program converges suddenly change.

Problem statement: Given a timed transition diagram and a set of timings (e.g., Fig. 1) the following
problems are solved:

P1: State the necessary and sufficient conditions for a TES to contain a LCES.
P2: Given the initial starting time of each process, find the set of all possible TESs.

P3: Determine if there exists any process starting times that lead to a LCES in which no process ever
waits for any resource. Furthermore, if there exists such times, then output an example.

P4: Find the set of all possible LCESs in a timed transition diagram that are reachable from some
initial process starting times (i.c., any values of t51 and 471,

The solution to P1 is used in solving P2 thorough P4. P2 is important because any performance
measure of interest about a program can be computed from a TES, and the TES structure may give
insight into how the program behavior governs measure values. Solution of P3 identifies cases in which
no process in a parallel program ever blocks.



The analysis of LCESs (P4) is valuable becanse limit cycles represent periodic behavior. Periodic
behavior is not limited to programs as academic as the mutual exclusion problem. For example, low fre-
quency oscillations in queue length and packet traffic has been observed experimentally in communication
protocols [2, 37]. Periodic behavior occurs with periodic tasks, such as operating system daemons [6]. In
fact, experience with our own visualization system [2] demonstrates that the TESs of many long running
programs that spend the bulk of their time looping in small fractions of the code repeatedly exhibit cer-
tain state subsequences. If the program execution time is chiefly determined by a small set of repeated
subsequences, then finding these subsequences given the code and timings is an effective way to diagnose
performance problems.

Assumptions: To obtain a tractable problem, we make the following assumptions. They are stated in
terms of resource operations on serially reusable resources, which are code segments in which a process
acquires a resource (and possibly blocks, while another process holds the resource) or releases a resource.
A resource operation could be implemented by a binary semaphore or a spin lock (e.g., see [20, pp.
102,113}).

Al: A program contains two processes,

A2: Fach process meets the following assumptions:

A2.1: A process executes a nonterminating loop.
A2.2: The execution time of each code segment within each process that either:

e starts at the initial statement of the loop body and continues to and includes the first
resource operation, or

» follows cach resource operation and continues to and includes the next resource operation
is an independent constant, exclusive of time spent blocked.
A2.3: A process executes on a dedicated processor,

A2.4: Resource operations are executed unconditionally.
A3: Processes synchronize only to achieve mutually exclusive access to each of a set of resources.

Although our assumptions constrain the class of programs analyzed in this paper, we lay the founda-
tion for studying other parallel program classes by relating them to equivalent problems in computational
geometry. Consider the two process assumption in A2. The initial solutions to some classic paralle] pro-
gramming problems — such as shared memory mutual exclusion algorithms — were initially solved only for
two processes. And one important performance evaluation tool - queueing networks - started only with
the ability to solve just one kind of queue (M/M/1) in isolation. In principle the analysis presented here
can be extended from two to an arbitrary number of processes; see the conclusions (§7) for a discussion.

Consider next the remaining assumptions. Although the analysis is constrained to two processes (A1),
a recent performance analysis of Lamport’s mutual exclusion algorithm [5] using Petri nets requires so
much computation that its numeric solution s limited to only four processes. Regarding A2.1, certain
programs can be considered non-terminating for the purpose of analysis. Examples include long running
programs that execute the same code repeatedly, such as simulations, and reqctive programs [8], such
as operating system algorithms, that react to external stimuli. In fact, Chandy and Misra [8] suggest
that all computations can be represented as non-terminating transition systems that reach a fixed point.
Regarding A2.2, the assumption of constant timings is perhaps no more or less reasonable than the
assumption of exponential timings required by the Markov chains underling some Petri net and queueing
network models. In fact, one could view a {constant time) geometric model of the type used in this
paper and an (exponential time) Markov process model as two extrermes in modeling program behavior,
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Figure 3: Timed progress graph for Fig. 1

A2.3,A2.4, and A3 could be relaxed by using the discussion in later sections on how to map a transition
system to a geometric model as a guide to developing mappings for other classes of transition systems,
For example, [1, pp. 41-44] illustrates how certain other synchronization constructs (CSP’s [10] input
and output commands) can be mapped to a geometric model.

Method of Solution: The geometric representation of timed transition diagrams used here is a timed
progress graph (TPG). TPGs are based on unfimed progress graphs (UPG) used in the literature. Carson
and Reynolds [7] define an UP(} as a “a multidimensional, Cartesian graph in which the progress of each
of a set of concurrent processes is measured along an independent time axis. Each point in the graph
represents a set of process times.”

Figure 3 illustrates a finite portion of the TPG corresponding to Fig. 1. The dotted lines are not
part of the TPG - they are a grid provided to help the reader determine point coordinates. A TPG
illustrates program execution after both processes have made a transition out of location -1 and thus
started execution, which starts with state (0,1,0,2) in Fig. 2. The lines with arrows in Fig. 3 form a
directed path, called a timed ezecution trajectory (TET), that represents the single possible TES. The
coordinates annotating Fig. 2 are the TET points corresponding to the first occurrence of each state.
Each coordinate of a TET point may be interpreted as a clock associated with the corresponding process
that initially is enabled and has value zero, is disabled whenever the process to which it corresponds
waits for a resource, and is re-enabled whenever the process acquires a resource for which it was waiting.
For example, point (15, 8) denotes that process {) {respectively, process 1) has run for exactly 15 (8) time
units. Process 1 has waited 15-8=7 time units longer than process 1 in all resource requests 1t has made
s0 far.

To understand the mapping from transition diagram set to TPG, first consider what would happen if
the resource operations in Fig. 1 are deleted, so that the two processes never synchronize. Then process
0 is in location 0 during time interval [0,3) = [0,1), location 1 during [t3,13 + ) = [1,5), location 1
during [t +¢3, 80+ £} +¢3) = [5,6), and so on. Process 0 repeats the cycle of locations 0,1 every t3+£} = 5
time units. Therefore to find the location of process 0 corresponding to graph point (29, z;), we calculate



zo mod 5 and see if it lies in interval [0,1) or {1,5). Similarly, to find the location of process 1 we see if
z1 mod 3 lies in interval [0,19) = [0,2) or [i9,#} 4+¢}) = [2,3). This mapping from point (2o, x1) to state
implies that the TET representing the TES will be a diagonal ray with slope one, rooted at point (0,0).

Next consider the program as shown in Fig. 1, with resource operations. An acquire resource operation
potentially blocks one process; therefore the TET portion representing a TES portion in which one process
is blocked is a horizontal or vertical ray, depending on which process is blocked. The “L” shaped lines
in the plane in medium thickness lines, called constraint lines, represent all possible situations in which
one process is blocked acquiring a resource because the other process holds the resource. A TET cannot
cross a constraint line. An intuitive justification for the generator locations in Figure 3 follows. Process
0 blocks iff it is about to enter location 1 and the current location of process 1is 1. Therefore process 0
blocks iff the point (zg, 21) representing its current state satisfies

zo mod 3 + ¢} = ¢§ and
z; mod Y + 41 e [tV 47),

or 2o mod 5 = 1 and #; mod 3 € [2,3). Thus if point (x¢ mod 5, £; mod 3) representing the current state
lies on vertical line [(1,2), (1, 3)) then process 0 is blocked; this line is congruent to all medium thickness
vertical lines in Fig. 3. Similarly, process 1 blocks iff the point equivalent to its current state lies on a
horizontal line congruent to [(1,2), (5, 2})).

The TET subpath rooted at (3, 2) consists of an infinite number of repetitions of the following subpath:
a horizontal ray of length 2 and a diagonal ray whose projected length on either axis is 3. This path is
called the limit cycle execution trajectory (LCET), and represents a LCES. Note that the LCES given
earlier and the LCET both have equal length: 5 time units. In the LCET, process 1 waits for 2 time
units and process 1 does not wait. ‘The TET subpath from (0,0) to (3,2) is a transient period, and (3,2)
is the initial point of the first repetition of the LCET.

Additional features of TPGs are illustrated in Fig. 4. The figure shows, in the lines with arrows, the
case of an initial condition (point (2,0)) that leads to two TETs. Both TETS contain a point that is
the initial point of two constraint lines (point (3,1)), representing a nondeterministic state — one that
would have two successors in a reachability graph such as Fig. 2. The nondeterministic state represents
the situation when both processes simultaneously attempt to acquire the same resource (i.e., a race
condition). One TET contains point (3,3), which lies on two constraint lines but is not the initial point
of either line, and represents program deadlock. Finally, the graph illustrates through shading the set of
all TETs rooted at points on line segments [(0,0), (0, 11)] and [(0,0), {11,0)]. All TETs cither lead to a
deadlock (at points (3,3), (3,14), or (14,3)) or to a TET of infinite length that extends off the diagram
and never intersects a constraint line.

The paper is organized as follows. The following section compares the use of TPGs to find limit
cycles to other techniques in the literature. §3 defines timed transition diagrams. §4 formally defines
timed transition systems, to make precise terms describing program execution, such as “dead state” and
“TES.” §5 formally defines TPGs and TET and defines when a 'TET in a TPG represents a TES in a
corresponding timed fransition system. Sections 4 and 5 serve the secondary purpose of illustrating how
other program classes, and their corresponding transition systems, could be mapped to other forms of
timed progress graphs. §6 presents a computational geometric algorithm to solve problems P1 to P4. §7
discusses extending the algorithms in §6 to more than two dimensions, and lists open problems.

2 Related Work

The problem of finding limit cycles in parallel programs that synchronize only to achieve mutual exclu-
sion and execute for constant time between synchronization operations is related to three areas of the
literature: UPGs, Petri nets, and resource scheduling algorithms.



Figure 4: Geometry of deadlock and nondeterminism.

Related work on UPGs: Dijkstra [9] devised UPGs. Later, Papadimitriou, Yannakakis, Lipski, and
Kung [21, 28, 36] used UPGs to detect deadlocks in lock-based transaction systems. Recently Carson and
Reynolds [7] used UPGs to prove liveness properties in programs with an arbitrary number of processes
containing P and V operations on semaphores that are unconditionally executed. TPGs differ from
UPGs in two ways. First, TPGs represent the time required for transitions, and can be used to derive
performance properties of a program. UPGs represent timed transition diagram sets in which all times
are equal. Second, UPGs are used to characterize deadlocks for any number of processes, any number
of processors, and any scheduling discipline. In contrast, TPGs as defined here can be used to detect
deadlock only for two process programs executing on two dedicated processors.

Related work on Petri nets: The class of programs analyzed in this paper may be studied using
Petri nets [18], queneing networks (e.g., [14, 15]), stochastic processes (e.g., [12, 29]), and stochastic
automata ([30]). A survey of these approaches is contained in [1], Chapter 1. Of these, the most closely
related work has been done using consistent Petri nets (i.e., nets that return to their initial marking) in
which a deterministic firing time is associated with each transition.

Ramamoorthy and Ho [32] address minimum cycle time (MCT) calculation, or the minimum time
required for the program to return to its initial state (corresponding to an initial marking of the Petri
net). The Ramamoorthy and Ho method takes exponential time and works for both decision-free and
persistent Petri nets, in which a token never enables two or more transitions simultaneously. Methods
to compute bounds on the MCT of conservative, general Petri nets are given; finding the exact value is



proved NP-complete.

Magott [22] formulates the MCT problem for decision-free and persistent Petri nets as a linear pro-
gramming problem, and therefore solvable in polynomial time. He gives an improved lower bound and
shows that it also applies to non-conservative general Petri nets. Magott [23] gives an O(N) algorithm
to compute MCT for nets consisting of a set of N cyclic processes that mutually exclusively share a
single resource. Finally, Magott [24] extends his earlier paper [23] by showing that finding MCT in most
nets with more complex resource sharing is NP-hard. Also proved are complexity results for systems of
processes communicating through buffers.

The problem considered in this paper, of processes sharing reusable resources, cannot be represented
by decision-free or persistent Petri nets. One mutual exclusion problem, the dining philosophers prob-
lem [11], has been analyzed by Holliday and Vernon [18] assuming deterministic as well as geometrically
distributed local state occupancy times. Their Petri net model uses frequency expressions to resolve
deterministically which transition fires when a token enables two or more transitions simultaneously. In
their model of the dining philosophers problem, this expression takes the form of a probability. The
dining philosophers problem has also been modeled using colored Petri nets by Gorton [13].

Compared to a Petri net approach, TPGs have two advantages:

1. TPGs yield the ezact LCES that the program follows; in contrast the Petri net solutions listed above
provide average measures. The Ramamoorthy/Ho and Magott solutions yield the mean cycle time,
while the Holliday/Vernon solution yields the long run fractions of time that each process spends
in a state.

2. TPGs give the TESs for all possible Petri net markings in a single solution, while existing Petri
net solutions require repeatedly solving of the net for each marking.

However, the TPG solution presented here is limited to two-process programs, while Petri net solutions
have no such limitation.

3 Timed Transition Diagrams

Qur model of a program is based on Henzinger, Manna, and Pnueli’s timed transition diagrams [16).2
Time is represented by nonnegative real numbers. Let R, Rt, Z, and Zt denote, respectively, the
set of nonnegative reals, positive reals, nonnegative integers, and positive integers. We assume that
(Vn:n € Z ::n < 00) to simplify our notation. Let (Vr :: n,) denote finite, positive integers.

Each process r is represented by a finite, connected, directed graph containing n, + 1 vertices, each
labeled by an integer in {—1,0,1,...,n, — 1}. Each integer label is called a location. Each vertex has
exactly one outgoing edge; therefore the graph contains one cycle. The program uses variables {mo, 71},
which are shared by all processes; %, denotes the control point of process ». Each edge with initial vertex
i, for —1 < i < n,, is labeled by a delay ti and a condition ci. Delays satisfy (Ir 27 Y=0At7 le
RY A (¥l : 0 <4< n, = tl € RT). Conditions in the graph of process r name labels of process i
erl=0AVv:ved mve{0,1,...,n—1}). Given two labels i and # of process =, i@ (respectilvely,

.
i©i’) denotes addition (subtraction) modulo n,. The intended operational meaning of edge -1 ——— 0
@7

20ur diagrams fundamentally differ from those of Henzinger, Manna, and Prnueli (HMP) in that the condition labeling
an edge need not hold until the control point of the process has resided at the initial vertex of the edge for the time labeling
the edge, whereas in the HMP diagrams, the condition must be continuously true for the time labeling the edge. Otherwise
our diagrams are a special case of HMP diagrams because we allow no program variables, we limit edge conditions to a
test for set membership, we require the minimal and maximal delays labeling an edge to be equal, and we require all but
one graph nodes to be contained in a single cycle.
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is that process r waits for {7 ! time units before it starts execution. The intended operational meaning
t:

of edge i ——— i@ 1, for i > 0, is that if, for exactly #. time units, control of process r has resided at
€7

vertex i, then control will move to vertex i @ 1 at the earliest time at which the control point of process

7 is not a label in ¢/, Process = is blocked whenever it has remained in its current location, £, for longer

than # time units. After process r starts execution, it is running whenever it is not blocked. Figure 1

illustrates a set of two timed transition diagrams.

Tirned transition diagrams represent mutual exclusion in programs as follows. Let Ro, R1,...,Rp,-1
denote the resources used by a program. Each graph edge out of vertex i, where 0 < ¢ < n,, corresponds
to at most one resource operation. We say that a process holds resource R; (where 0 < j < n,) in
locations 4,7+ 1,...,i+ k if edge ¢ — 1 corresponds to an acquire R; operation, edge i + k corresponds
to a release R; operation, and none of the edges in {i,i+1,...,1+ k — 1} correspond to a resource
operation on R;. Let a?" denote the set of locations in process r that hold resource R;; formally
{i4+1,...,i+k} C aXi If the edge out of vertex i in process r corresponds to operation acquire
R;, then ¢! is the set of all locations in the diagram for process 7 in which process 7 holds resource R;.
Formally, if the edge out of a location i corresponds to operation acquire R;, then ¢ = af" ; otherwise
¢ = 0. For any condition ¢f = {i,741,...,i+ 2}, for some z € Z, we write (z,1+ 2y € k.

The set of timed transition diagrams representing a parallel program are denoted by enumerating, for
each diagram, the number of vertices and the delays and conditions labeling each edge. Formally, a timed
transition diagram set D = (¥q, ¥}), where {¥r :: ¥, = (n,, &7, 80,41, .., 12~ 1), (2, ek, ..., cf 1)),

Example 1 For Fig. 1, ¥ = (2, {0,1,4), {{1},1) and %; = (2, (0,2,1), {{1},H)). O

4 Timed Transition Systems

To make precise the terms PES, LCES, and dead and nondeterministic state, we formalize the timed tran-
sition system introduced in the introduction. A timed transition system Sp = (V, X, ©, 1) corresponding
to a timed transition diagram D = (3, 1) consists of four components:

V: a finite set of four variables, denoted g, 71, po, p1, satisfying (Vr 7 € {i| =1 <i<n.}Ap, €R).
(Variables 7. and p, were informally described in the introduction.)

¥: aset of states. Every state ¢ € X is an interpretation of V; that is, it assigns to every variablev € V a
value o(v) in its domain. Every state o € ¥ satisfies {¥r :: =1 < o(m.) < n. A0 <L o(pr) < tf.("’))‘
For a particular state o, a process r may be in one of three mutually exclusive, exhaustive categories:

running(r, o): Process r has not yet spent an amount of time in its current location equal to the
delay associated with the location. Formally, running(r, o) défa(p,) > 0.

blocked(r, &): Process r has been in its current location for a time period at least equal to the delay
associated with the location, but cannot advance its location because the current location
of process 7 is an element of the condition labeling process 7’s outgoing edge. Formally,

d . .
blocked(r, o) éfo(pr) =0 A o(m) =i A o(x5) €.
intransit(r, c): Process r is ready to advance its location because it has been in its current location

for a time period at least equal to the delay associated with the location, and the current
location of process 7 is not an element of the condition labeling the outgoing edge of the vertex

corresponding to process r’s current location. Formally, intransit(r, a)dgo'(p,-) =0Aca(m)=
i A a(my)gel.
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©: an initial state, satisfying © € ¥ and (Ir = 0(p,) =171 A O(pr) = 0 A O(mr) = O(n7) = —1). (The
location of both processes is initially -1, and process r starts execution ¢} time units after process
)

r: a transition function 7, which maps each stale s € Lto a {possibly empty) set of successors o) C X,
where [|r(7)|] < 2. Function 7 advances exactly one of the following: time (e.g., by reducing po

and/or p1) or the location of exactly one process (e.g., by increasing one of mp or m from { fo
i@®1). Let AT(o) (respectively, AL({c)) hold if 7(0) advances time (location). A time advance

. . . - : d
occurs iff at least one process is running and no process is in transit. Formally, AT{c) f—-f(E]r :

running(r, o)) A (¥r 2 ~intransit(r,o)). A location advance occurs iff some process is in transit.
Formally, AL(cr)déf (3r :: intransit(r, )}. State o’ € 7(o), also denoted o — ¢’, iff

[AT(c) A (¥r = &' (m,) = o(m) A{3t:0 <t < minfo(ps) | # € {0, 1} A running(#, o)}
cr"(pr) — { U(Pr) —t if Tﬂﬂﬂmg(r, 0—) })1 \/

o(pr) otherwise

[AL(c) A (3r : intransit(r,a) :: ¢'(7,) = o(m Y@ 1A o'(p) = A
AV v € {mr, pr} 1 07 (0) = a(u)) )]

A state o is dead, denoted dead(c), iff all processes block. Formally, a’eua’(n:r)d-i.-Jf (Vr :: blocked(r, o).
The definition of r implies (o) = § iff dead(c).

Example 2 Consider the timed transition system corresponding to Fig. 1 and its state space (Fig. 2).
To restate precisely comments from the introduction, we denote each state ¢ € T by the four-tuple
(o{m0),o(po), o(m1),0(p1)). The initial state is ® = (~1,0,—1,0). The notation (o, Yo.-20, T1, Y1--%1)
for a state in Fig. 2 denotes the set of states {¢|(¥r3t : 0 <1 < yo—20 o(m) = &, Aolp,) = y-—1)}. In
the figure, states ¢ and ¢’ are written on successive lines, or an edge is drawn with initial state & and final
state o iff @ — ¢. Annotating each state in the figure is a pair that classifies the state. The pairs use the
symbols R, I, and B to denote the predicates running, intransit, and blocked, respectively. For example,
“IR” next to o = (-1,0,0,2) denotes intransif(0, o)A running(1, o). An analogous meaning applies to other
pairs. Finally, the notation RR .. IR next to state (0,1..0,0, 2..1) denotes running(0, &) A running(l, o)
in state o = {0,1,0,2) and intransit(0, ¢} A running(1, o) in state & = (0,0,0,1). a

¥ is a continuous state space with infinite cardinality. We now define a discrete state space, denoted
T*, with finite cardinality that is embedded in ¥ at the time instances when a process changes location.
The closure function, mapping a state to a state, defines this discrete state space: L* = {e|{3o' 0’ €
¥ i o = closure(o”)) }. The closure of a state is obtained by first advancing time, if possible, and then
advancing the location of as many processes as possible.

Definition. The closure of a state o under 7, denoted closure(c), satisfies o’ € closure(c) iff there exist
m > 2 unique states o9 = 0,01, .., 0m-1 = & such that op — 01 -+ = Om—1 salisfying

(AT(50) A (3r 2 oo(pr) > 0Aa1(pr) =0) A (Vi:1<i<m—2: AL0i)) A AT(om-1)] V
[AL(og) A (Vi:1<i<m—2: Al{ov)) A AT(0m-1)]-
A state o € %* is nondeterministic iff |iclosure(a)]] > 1.

Example 3 Figure 5 shows the discrete embedding £* for Fig. 8. The figure is obtained from Fig. 2 by
eliminating any states in which a process is in transit, and for each state (2o, Yo.-70, T1, Y1.-21) retaining
only (2o, Yo, %1, Y1). Stales o and o' are written on successive lines, or an edge is drawn with initial state
¢ and final state &' iff o’ € closure(c).
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IrT (-1,0,-1,0)

RR ( 0,1, 0,2) (0,0}
RR ( 1,4, 0,1) (1,1}
RB { 1,3, 0,0) (2,2}
RR (0, 1,1, 1) (5,2)
RR {1, 4,0, 2) (6,3)
RB (1; 2101 0) (8!5)

J

Figure 5: Embedded, discrete state space £* corresponding to continuous space ¥ of Fig. 2

The introduction informally defined a TES. We now formalize the term by defining it as a sequence
of states in £*. The sequence has finite length iff the final state is dead.

Definition. A possibly infinite sequence of m states (where m may be infinite} 1 = 69,01, -, Om-1
is a TES of the timed transition system S = (V,5,0,7) iff 6o = @ and (Vi : 0 S i < m — 2 g1 =
closure(a;)) A [m < oo iff T{om-1) = 8].

Example 4 From Fig. 5, there is one possible TES for the mutual exclusion program: 1 = (—1,0,-1, 0),
(0,1,0,2), (1,4,0,1), (1,3,0,0}, (0,1,1,1), (1,4,0,2), (1,2,0,0), (0,1,1,1), .... This corresponds to the
location sequence defined in the introduction.

‘A TES contains some but not all states that a transition system reaches in a particular execution,
because the TES contains only states in discrete space £* and not continuous space 1. The set of ali
states reached in an execution satisfying TES I = 0¢, 01, ..., 0m—1 (where m may be infinite) is denoted
by II*. State o & IT* iﬁ’crzcrgV::r:crm._lV(EIi:Ogigm—Q::a’,---}...-—}a'—}...a,-.,.l).

Example 5 (1,3.4,0,0) € TI* because (1,4,0,1) — (1,3.4,0,0.4) — {1,3,0,0).

Definition. A TES can be partitioned into two subsequences, either of which may be empty. The first
subsequence, the transient execution sequence, consists of states that occur exactly once in the TES. The
second consists of an infinite number of repetitions of a subsequence containing states that occur exactly
once in the subsequence. The repeated subsequence is called the LCES.

Example 6 When both processes in Fig. 1 simultaneously start execution, the program always reaches
one unique LCES, as evidenced by Fig. 5: (0,1,1,1), (1,4,0,2), (1,2,0,0). This is equivalent to the limit
eycle of program locations listed in the introduction: (1,0) for 4 time units and (0,1 for 1 time unit.
Figure 5 shows that there is only one possible transient execution sequence that leads to this LCES:
('1:0’_1:0)7 (0?1:0:2): (1:41011)) (1)310)0) =

Recall from the introduction that a TPG represents program execution only after both processes
have stated execution. Defined next is a modified state transition system, called a concurrent timed
transition system, which eliminates all states in which a process is in location -1 and hence has not
started execution.

Definition. The concurrent timed transition system of a timed transition system § = (V, L,0,7) s
St = (V,X,0¢,7), where o¢ is defined as follows: Choose any TES in 8. Delete the longest initial
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subsequence of the TES in which in each state o, (Ir :: ¢(m;) = —1). Then oc is the initial state of
the remaining subsequence. ( All TESs of a given timed transition system have the same o¢ because a
nondeterministic state can only arise when both processes are executing.)

Example 7 In Fig. 2, ¢ = (0,1,0,2). Thus, deleting state (-1,0,-1,0) from the TES in Example 4 yields
the TES of the corresponding concurrent timed transition system. O

5 Timed Process Graphs

This section defines a TPG, and discusses its equivalence to a timed transition system.

5.1 Notation

The following notation is used throughout the paper. Let upper case letters with optional superscripts
denote graph points (e.g., GD). Let the subscripts 0 and 1 denote the components of a point (e.g.,
G°® = (G],GY)). Unless otherwise noted, every point G € R? — {(co0,c0)}. For any two points G and G,

G < G"défGa + G1 < G+ GY. For any continuous path 4 and any point G on v, we write G € v. For
any directed, continuous path v, we write 4.7 (respectively, 4.f) to denote the initial (final) point. We
assume that .7 # v.f. For any two continuous paths ¥ and %' in R%, yN+' denotes {G|G € yAG € ¥'}.
A line segment with open end point G and closed endpoint G is denoted L = [G, G"); if both end points
arc open then L = (G, 7). A ray, which is a directed line segment, uses the same notation. Line or ray
[G, (00, 00)} has slope one and infinite length.

We define the cycle time of process r, denoted ¢, as the time required for process r to pass through
each location once, ignoring the time spent blocked. Formally, (¥r :: (;Brd-i_f > o<icn, tr}. For any point

G € R?, mod(G)déf(Gg mod ¢g, G3 mod ¢;). T'wo points G and G’ are congruent, denoted G = &', iff

mod(G) = mod(G'). Two continuous paths v and ' are congruent, denoted v = +/, iff there exists a
one-to-one correspondence between their points such that corresponding points are congruent. For any

line or ray L = [, G'), let mod(L} denote [mod(G), mod{G')).

5.2 Definitions

A TPGTp = (C,A, G, f), corresponding to a timed transition diagram set D = (10,71}, consists of
four components:

®: a set containing cycle times ¢g and ¢y,

A: a set of constraint line generators, which are a set of line segments that lie in the R? plane in the
rectangle with opposite vertices {0,0) and (¢o, ¢1), each corresponding to one edge in one transition
diagram labeled by a non-empty condition. Formally, generator [W, X} € A iff

(3rFIiF :0<k <n,, = {§,iY €A

We=X,= Y i AW:= D tAXe= Y t)

0<i<k 0<j<i 0<ji<it

The instances of a constraint line generator are defined to be all lines in the R? plane congruent to

the generator. The set of all instances of all constraint lines in A is A*dg{[ﬂf, X)|\WeR*AX€
R* A mod([W, X)) € A}.
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Figure 6: Illegal constraint line geometries.

GC: an initial point satistying (Ir 1 £-1 = 0 : G = 0 A G¢ = ;' mod 4, ). Therefore G lies on either
the x or y axis, within one cycle time of the origin.

1 a transition function, which maps each point G € R? — {(00,00}} to a (possibly empty) set of

successors () C R2, where ||f(G)|| € 2. The definition of f is stated in terms of two more
def

primitive functions, fi and fa: f(G) = f1(G) U f2(G). Informally,

G € f1(G) iff G lies on a constraint line instance L and G is the smallest point on line L, excluding
L.i, at which L intersects another constraint line instance and G # L.f, or, if there is no such
intersection point, G = L.f; and

G € f2(G) iff G does not lie on a constraint line instance and G is the smallest point at which a
slope one ray rooted at G intersects a constraint line instance; or, if there is no such intersection
point, G = {00, 00).

To formally define f; and fa, let S1(G, L), where G € L, be the smallest point in set {L.fIV{G|G’ >
GAQBL :LeA* AL# L =G e(({Li, LANL ) — {L.i}))}. Let S2(G) be the smallest point
in set {(o0,00)}U{G'|{(3L: L € A* = G' € [G, (00, 0})N L). Then
Gef(G)if AL : LeA*AGeL = G=51(G,L) A G#G), and
Ge fR(G)iff (AL : LeA*AG L) A G=S(G).
Example 8 Figure 3 contains TPG T = {{¢o = 5,61 = 3},A,(0,0), ), where A = { [(1,2),(1,3)),
[(1,2),(5,2)) }. To illustrate set A , W, X) = [(1,2), (1,3)) because (1,1) € cf, Wo = Xo = Togicott =

1, Wy = quﬂii = 2, and X1 = Jocierq0tl = 3. Figure 3 dllustrates twelve instances of each
constraint line generator. T O

Because each timed transition diagram edge t., for 0 < i < n,, with a non-empty condition must have
a positive delay and correspond to at most one resource operation, no constraint lines may overlap (see
Fig. 6(a)), the final point of one constraint line can never lic on another constraint line (see Fig. 6(b)),
and the final point of all constraint lines must be distinct (see Fig. 6(c)).

Recall from Fig. 4 that (3,3) is dead and points (1,3) and (3,1) are nondeterministic. A point is
nondeterministic iff the transition out of the point is not unique. All other points are deterministic. A
point is dead iff there is no transition (in the sense of transition function f) out of the point. Informally,
dead points represents states in which both processes are blocked
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Definition. A point G € R? — (00, 00} is nondeterministic, denoted Cy (G), if HF (G > 1. G is dead,
denoted Cp(G), iff f(G) = .

“Execution” of a program is represented by a TET. A TET is either a dead point or a directed
continuous path consisting of a sequence of horizonta] and diagonal rays. Just as there may be multiple
PESs given an initial state, there may exist multiple TETs rooted at a given point.

Definition. A timed ezecution trajectory of a TPG T rooted at any point G® € R? — {{oc0, 00)} is either
(1) a point G® or (2) a directed, conlinuous path rooted at G°. Case (1) holds iff f{(G°) = @. Case
(2) holds iff the path is a ray sequence [GY,GY), [GY,G?), ..., [G*=1,G") (where n may be infinite)
satisfying (Vi :0<i<n: tl ¢ FG)).

Example 9 Consider the TET in Fig. 3: (0,0),(2,2), (2,2),(5,2), (5,2), (8,5), (8,5),(10,5), .... Each
line segment [G, G') satisfies G' € f(G). For example, (2,2) € £2(0,0) because (0,0} does not lie on
a constraint line instance and a slope one ray rooted at (0,0) first intersects a constraint line instance
at_point (2,2); hence S((0,0)) = (2,2). In Fig. 4, there are two TETs rooted at (2,0): {(2,0),(3,1)),
[(3,1),(3,3)) and [(2,0), (3, 1)), [(3,1), (6, 1)), [(6, 1}, (o0, 0)). Let Ly (respectively, Ly) be the vertical
(horizontal) constraint line containing point (3,1). The two TETs arise at point (3,1) because £(3,1) =

{Sl((?’s 1)’L1):Sl((3a 1): L2)} = { (313), (6’1) } =

In Fig. 3, the TETs rooted at {5,2) and (10,5) are congruent. That is, adding the vector (g, #1)
to all points on the trajectory rooted at {5, 2) yields the trajectory rooted at (10,5). In general, TETs
rooted at congruent points containing only deterministic points are congruent, as the following Lemma
establishes.

Lemma 1 Consider any two TETs v and %' of a timed progress graph I' with initial points G and &',
respectively. IfG=G' AMFG:GeyvGey Cn(GY) then vy =+

Proof: See Appendix A. (The proof establishes that the algebraic form of f preserves a property that
is apparent from illustrations of TPGs.) o

5.3 TPGs that Represent Timed Transition Systems

The continuous state space ¥ of a timed transition systemn can be interpreted as a four dimensional
Cartesian product, in which two dimensions are integer (i.e., representing current locations mp, m) and
two real (i.e., representing minimum times py, p1). A state is a four dimensional coordinate in this space.
A TPG is a two dimensional graph, which represents a projection of the four dimensions of a timed
transition system. The projection is defined by function h. Function % maps a state o € ¥ in a timed
transition system to an infinite set of congruent points h(¢) C R? in a TPG. Note that multiple states
may map to the same congruence class of TPG points.

Definition. Consider a point G of TPGT = {C,A, G, ) and a state & of concurrent timed transition

system (V,Z,0¢, 7). Then h(o‘)dg{G’ IGeREA (Y, 3, = o(n)=4r A Gy = zwks:‘r th—a(p))}
Point G represents state ¢ if G € h(o). -

Example 10 The correspondence of states and points in Fig. 2 exemplifies function h; £((0,0,0,2)) =
h((1,4,0,0)) = {G'| G = (6,3)}. Note that in Fig. 2 h(o) is undefined for states (-1,0,-1,0) up to but
excluding state (0,1,0,2) because these states do not arise in a concurrent timed transition system (See
Example 7.).) Q
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The correspondence between states and points, defined by function &, allows definition of when a
TET in a TPG represents a TES ir a corresponding timed transition system.

Definition. Given a TPG T' and a concurrent timed transition system S*, a TET ~ of I' represents a
TEST of 8% iff (¥o,3G : 0 € IAG € v : G € h{e)).

A TPG I'p = (V,X, A, 7) represents a concurrent timed transition system S, = (V,E, o¢,7), both
corresponding to timed transition diagram set D, iff initial point G represents initial state o¢ and every
TES in Sp is represented by some TET in I'p.

Definition. Given a concurrent timed transition system ST = (V,Z,0¢c,7) and TPGT = (C,A,GC, f),
T represents St iff the following conditions are satisfied:

El: G° € h{oc), and
E2: Given any TEST of 8T, (Iy: v is a TET in T :: 4 represents IT).

In general, a TET consists of a transient portion followed by an infinite number of repetitions of a
LCET. Either portion may be empty. The final state in the transient portion is the initial state of the
first cycle of the LCET. These concepts are formalized in the following definition.

Definition. Consider ¢ TET . A directed, continuous path 4 is a LCET of v iff (YG : G €4 =G €
YA-CN(G)) A ¥i=4.f. 4.4 and §.f are called the initial and final points of the LCET, respectively.
The transient execution trajectory is the portion of v consisting of all points that do not lie on a LCET
The initial point of the transient execution trajectory is 4.i. The final point of the transient execution
trajectory is the smallest point of vy lying on any LCET, if the TET contains a LCET.

Consider an equivalent concurrent timed transition system 8t and TPG I'. Consider any TET in I'
and the TES in &* that the TET represents. The transient {respectively, limit cycle} execution trajectory
of the TET represents the transient (respectively, limit cycle) execution sequence of the TES.

Example 11 In Fig. 3, the TET contains a transient execution trajectory with initial and final points
(0,0) and (3, 2), respectively, followed by an infinite number of congruent LCETs. One is [(3, 2}, (5, 2)),
[(5,2),(8,5)); another, congruent LCET is [(10,5), (13,8)), [(13,8),(15,8)). The two are congruent
because the first and second rays of the first subtrajectory are congruent to the second and first rays of
the second subtrajectory, respectively. o

6 Computational Geometric Analysis of TPGs

This section solves four software performance problems by casting them to an equivalent geometric
problem.

Problem P1: State the necessary and sufficient conditions for a TET in a TPG to contain a LCET.

Problem P2: Given a TPG and any point G € R?, output a representation of the set of TETs rooted
atG inT.

Precise statement of P3 requires the following definition. A point G is free, denoted Cr(Q), if
G represents some deterministic state in which all processes are running, and in all TESs containing
the state, in some subsequent state some process is block. (A diagonal ray rooted at a free point

never intersects a constraint line in A* thus has infinite length; hence the name “free.”) Formally,

Cr(GYE(BL L e A* =G € L) A 53(G) = (oo, 0).
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Problem P3: Given a TPG, determine if there exists any free initial point G ; if there is, output one
such point.

Statement of P4 requires categorization of LCESs as blocking or non-blocking. A non-blocking LCES
contains only running states. Geometrically, the corresponding LCET is a slope one diagonal ray. A
blocking LCES contains a state in which a process is blocked. Geometrically, the corresponding LOET
contains a horizontal or vertical ray. Furthermore, we say that two TETs are homotopic if they are
continuously transformable avoiding the constraint lines; the term originates with Lipski and Papadim-
itriou [21] for paths in UPGs. For example, the TETs rooted at all points in {G'|5 < Go < 6 A Gy =0}
in Fig. 4 are homotopic.

Problem P4: Given a TPG, output one element of each equivalence class of blocking LCETs, and one
(non-blocking) LCET from each set of homotopic TETs rooted at a free initial point.

6.1 Problem P1

The following theorem, along with the equivalence of transition systems and TPGs, implies that any
TES that does not contain a dead state and contains a finite (possibly zero) number of nondeterministic
states reaches a limit cycle. Therefore Theorem 1 solves P1. Appendix B contains the theorem proof.

Theorem 1 A TET + in a timed progress graph consists of a transient execution trajectory followed by
an infinite number of congruent LCETs iff |{G|G € v A Cn(G)H] < o0 A {AG : G € v :: Cp(G))-

6.2 Computing Function f

Essential to solving P2 to P4 is a method of computing transition function f. By definition, computation
of f(G) for any point G in R? requires either computing fi(G) if mod(G) lies on a line in A; otherwise
we compute fo(G). Computation of f; and f, is discussed below.

A practical consideration: We henceforth assume that the delays in a timed transition diagram are
integers, rather than reals: (Vr = #71 € ZA(Vi : 0 < i < n, u & € Z%)). Otherwise the computa-
tional geometric algorithms to be presented will not work correctly with finite precision arithmetic (e.g.,
computation of the mod operation is subject to roundoff error). The assumption of integer delays is
not unreasonable in practice for software performance evaluation. For example, in measurements from a
computer with a microsecond period clock and all measured times are rational numbers of the form %,
where z € Z. Therefore scaling all measurements by the inverse of the clock period (e.g., 10%) yields the
integer quantities required by the proposed algorithms.

Computation of f,(G): Computation of f,(G) for point G on line L requires computation of $1(G, L),
which in turn requires computation of all points of intersection of line (L.7, L.f) with all lines except L
in A*. We cannot directly compute Sy by its definition because ||A|| = co.

The problem of A* containing an infinite number of lines will recur throughout this section, so we
introduce a partitioning of the R? plane into rectangles called guadrants. The axes and dotted lines in
Figs. 3 and 4 form quadrant boundaries. Formally, quadrant boundaries are formed by the lines & = fo¢o
and y = i1¢1, where (Vr = i, € Z). The quadrant bounded by the z-axis, y-axis, and lines # = ¢¢ and.
y = ¢ is called the initial quadrant. Thus the subset of A* contained in the initial quadrant is exactly
A.
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To compute Sy, we map G to a congruent point in the initial quadrant, then compute G' =
S1{mod(G), mod(L)) (because G € L = mod(G) € mod(L)) by Lemma 1), and finally map G’ back
to the quadrant containing G. Formally,

51(G, L) = 81 (mod(G), mod(L)) + (|G/do], | G/$1])-

The correctness follows from Lemma 1.
An algorithm solving problems P2 to P4 may require computation of f1{G) and hence S| for many

points G. Therefore we can reduce the execution time of each evaluation of S; by precomputing

S’(L)déf{G’ | (3L : L' € Az (L, L.fyn L')} for all L € A, which then reduces the computation of each

evaluation of $1(G, L) to evaluating the smallest point in set {mod(L).f} U {G' |G’ > mod(G) AG' €
Si(L)}. Computing S; is equivalent to computing all intersections of a collection of horizontal and
vertical lines, which is a well known computational geometric problem (e.g., see [34, Ch. 27]).

Computation of f3(G): We propose algorithm F2 (Fig. 7) to compute f2(G). This and successive
algorithms are written in a Pascal-like psuedocode. They use a data structure called point:

point: record x0,x1: integer end.

Recall that f3(G) is the smallest point at which a slope one ray rooted at ( intersects a constraint line
instance, or, if there is no such intersection point, G = (0o, 00). The well known problem of ray shooting
with line segments [4, pp. 234-247) can be used to find f2(G): Given finite set of line segments in a
plane, a point, and a direction, find the first line segment intersected by a ray rooted at the point with
the given direction. The typical ray shooting solution first stores the line segments in a data structure,
so that subsequent queries consisting of a point and a direction can be answered in sublinear time. We
assume that we have a ray shooting algorithm, invoked as

ShootRay(in peint P, direction D, set of line L; out point Poi, line Loi).

The input parameters (labeled by in) are point P; direction D (either + for a ray directed away from
the axes or - for a ray directed toward the axes); and set I, containing a finite number of line segments.
The output parameters (denoted by out) are Poi, containing the point of intersection or (00, c0) if the
ray does not intersect a line segment; and Lo, containing the line in I, on which Poi lies, if Pot is not
(o0, 00).

Finding f2(() is equivalent to the ray shooting problem using as the set of line segments A*. However,
because A* is an infinite set, ShootRay cannot be used directly. Earlier, we proposed computing f1{G)
by mapping G to the initial quadrant. Similarly, we compute f2(G) by shooting a ray with initial point
mod(G) and using as the line segment set A unioned with two more line segments, closed at both end
points, which are the top and right edges of the initial quadrant rectangle. Algorithm F2 repeatedly
calls ShootRay until ShootRay returns either P = (00, 00) or a Loi that is not the top or right initial
quadrant edge. A TPG and point G requiring two ShootRay operations because ray (G, f2(G)) lies in
exactly two quadrants arises in Fig. 3 and is illustrated in (Fig. 8). In general, a TET whose points
lie in n different quadrants can be partitioned into n subtrajectories, each contained within exactly one
quadrant. Formally, any TET + can be partitioned into vp,41, . - ., Ye~1 satisfying

Yi=YAAYS =Y FAN 0K f<n iy f =741 DA
(Vj:05j<n—1::(HG!GZ‘Yj.f/\(GoEtf)()VGl_——_(;51)).

So to compute v, each iteration of the while loop in Fig. 7 computes ¥p, then v;, and so on, using only
the initial quadrant.



point function F2(in point G)

var
f0,#1:  integer;
G point;
P set of point;
L: line;
L: set of line;
begin

{line segments to shoot are those in A along with top and right initial quadrant edges}
L= AU{[(0, ¢1), (0, $1)], [(¢0,0), (¢0, $1)] };
{map G to initial quadrant}
(Vr i, = [%}J,G,’, = G, mod ¢,);
ShootRay (&', +, £, G, L);
while (LEA) begin
if (L € A) then exitloop
else if G’ € P then return {00, 0o)
else P :=PU{G'};
{map G’ to left or bottom edge or initial quadrant}
(¥r gy =4, 4 [%J;G{, = G mod ¢,);
ShootRay(G',+, £, G/, L);
end
{=Cr(G) holds; map G' to correct quadrant }
(Vr: Gy o= G, +irde);

return G; end

Figure 7: Algorithm to compute fa(G).

PROCESS 1 A
PROCESS 1

» PROCESS 0 3 PROCESS 0

Figure 8: Illustration of using ShootRay, but only within initial quadrant.
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Figure 9: TPG containing an infinite number of TETSs.

6.3 Problem P2

The definition of TET suggests a method of constructing a TET. The definition cannot directly be used,
because f(G) may contain either one (for deterministic &) or two (for non-deterministic () points. If
F(G) contains two points, then there are at least two possible TETs rooted at . We say “at least
two” because if a point on one of the TETs rooted at G contains a point distinet from G that is
nondeterministic, there will be more than two TETSs rooted at G. Therefore a solution to P2 requires
calculating a set of TETs. More importantly, there could be an infinite number of TETs rooted at a
point, as illustrated in Fig. 9. (This occurs when the program timings are such that in any state in any
possible TES, the program wil] eventually reach another race condition.) To insure that algorithm B2
terminates, we choose an integer value mazNPaths such that if we find more than mazNPaths possible

which case the entire TET can be explicitly output) or has infinite length and ends in a LCET (in which
case, algorithm B2 should output the transient execution trajectory and the first LCET).

The proposed algorithm (B2 in Fig. 10} constructs a graph. If the set of all possible TETS rooted at
GUis simply the point G, then the graph contains one vertex, labeled G°. Qtherwise the graph contains
one vertex for each ray end point in both the transient execution trajectory and the first LCET of all
possible TETs rooted at G°, A vertex is labeled by the TPG point to which it corresponds. An edge
directed from vertices labeled by TPG points G’ to G exists if either G € J(G") or G is on the graph
path from G° to G’ and ¢ = ', Therefore, with a sufficiently large value of mazNPaths, each LCET
is.represented by a graph cycle, and that if the set of all possible TETs rooted at G° contains no LOETs
then the graph is a tree.

Each vertex is colored green or red. Initially, a green vertex for G0 is inserted. The for all loop picks
a green node (let the node be labeled G) and adds || £(G)]| vertices, each labeled by a unique point in
f(G). The initial vertex color is red iff the point labeling the vertex is either dead or congruent to a
vertex on the path back to the root (and hence in a LCET). The algorithm terminates when all vertices
are red.
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function B2(in point G/, out vertex v)

type
colors:  enum { green, red };
vertex:  record
label: point;
color: colors;
children:  set of pointer to vertex;
lcet: pointer to vertex;
end
var

nPaths: integer;
P: point;
G, G, G": vertex;

P set of point;
begin
nPaths ;= 0;

{Insert tree root}

¢ = new(vertex);

G.label := GI; G .color := green; G.nPaths := 1; G.children := §; G.lcet := null;
v:i= G}

repeat
begin
G := any point in v such that G.color=green;
if (Cp(G)} then G.color := red
else begin
P = F(C);
nPaths := nPaths+||P||-1; if (nPaths>maxNPaths) then return;
for each P € P begin
G’ := new(vertex);
("' label := P;
G’ color := green;
G .children := G.children U {G'};
if ((3 G” :: G" is on path from GI to G’ A G".label = G'label )} then
begin G'.Icet := G*"; G'.color := red; end
end
end
end
until {{(¥G : G € graph rooted at v :: G.color=red });
end

Figure 10: Algorithm solving P2.
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point function B3()

var
G°. point;
L teft,bottom: line;
L set. of line;
begin

G% := (o0, o0);
{line segments to shoot are those in A along with bottom and left initial quadrant edges}
left := [(0,0}, (60, 0)]; bottom := [(0,0), (0, ¢1)};
L= AU { left, bottom};
for all (L € A) begin
ShootRay(L.f, —, £,GC, L);
if (L € {left,bottom}} then begin G¢ := fa(L.f); if (G€ = (00, 20)) then return G€; end
end
end

Figure 11: Algorithm solving P3.

6.4 Problem P3

There exists a free initial point G¢ in a TPG iff there exists a constraint line generator L € A satisfying
(1) f(L.f) = (00, 0) and (2) a diagonal line segment whose end points are L.f and a point on an axis
does not cross a generator in A. Condition (1) identifies a potential LCET tooted at a free point, and
condition (2) insures that this LCET is reachable from some initial condition. Algorithmically (B3 in
Fig. 11}, we must examine the final point of each generator in A until we find one that satisfies (1) and
(2}; if no such point exists, then the algorithm reports that a free trajectory does not exist. Evaluating
condition (1) simply requires algorithm F2 (Fig. 7). Evaluating (2) requires shooting a ray rooted at the
final point of a constraint line generator in the negative direction and seeing if its first intersection point
lies on an axis. B3 returns (00, 0c) if there exists no free initial point G€. As in algorithm F2, we add
two edges of the initial quadrant (in this case, the left and bottom) to the set of line segments A that
are used in the ray shooting algorithm.

6.5 Problem P4

The set of all non-blocking LCETSs can be found by modifying function B3 as follows. In Fig. 11, add the
declaration “L’: set of lines” with initial value §. Change the return value of B3 from point to “set of
line.” Change “return G¢” to “C’' := L' U{[L.f, L. + (¢o, #1)]}.” Finally, add “return £'” just before
the final “end.”

Informally, the set of all blocking LCETSs can be found as follows. Observe that a set of TETSs that
intersects a given constraint line instance, denoted I, can share a common point that lies on L. The
common point is either a dead point, in which case the point is the final point of all the TETS, or L.f.
In the later case, this set must either have the same LCET or reach the same dead state that lies on
another constraint line instance. If they reach a LCET, it is therefore only necessary to consider the
TET rooted at L.f and determine if it contains another point congruent to L.f. Therefore, to find all
LCETs that intersect a constraint line, we must generate just the initial portion of each TET rooted
at the final point of each constraint line in A with a final point either congruent to the initial pont or
a nondeterministic point. (By Lemma 1, we need only consider the lines in A and not A*) Lemma 2
makes this precise.
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Lemma 2 The set of all (possibly unreachable) blocking LCETSs can be found by finding all L € A and
alli € 2% satisfying 0 <i <2Y|Al A |FLAl=1 A GEF(LS) A G=LF
Proof; See Theorems 3 and 4 in [3]. a

Let ¢ denote the set of LCETs that satisfy the Lemma 2. We can determine which LCETs in ¢ are
reachable by calculating, for each line [, in a LCET in ¢, ShootRay(L.f,—, L, P, L), where £ is the same
line set as in algorithm B3. If P, the point of intersection returned, lies on the bottom or left edge of
the initial quadrant, then the LCET containing L is reachable. Therefore we propose as a solution to P4
the exhaustive testing of all L and i, evaluating f(L.f) as described in §6.2.

"The final solution to P4 is the union of the set of non-blocking and blocking LCETs.

7 Conclusions

This paper demonstrated that properties about the set of all possible timed execution sequences of certain
parallel programs can be exactly analyzed by solving an equivalent computational geometric problem.
The obvious question is whether other program classes can also be analyzed with geometry.

The analysis is limited to two processes. The extension to d processes requires ray shooting in a
d dimensional Cartesian graph with d — 1 dimensional hyperplanes in a non-simple arrangement that
are bounded in one dimension is required. To our knowledge, this is an open computational geometric
problem, whose solution would allow solution of problems P1 through P4 for an arbitrary number of
processes. The closest problem solved in d dimensions is ray shooting with unbounded hyperplanes that
form a simple arrangement (e.g., see [26]).

" A second open problem, in two dimensions is the following. Consider a TPG for which we have
already computed the TET (e.g., Fig. 3). How does the solution change if we vary one delay £ by
a small amount? This is a common question asked when maintaining a program, and changing one
code segment in one process by a small amount. Recall from the introduction the analogy of turning a
knob: a small change retains the same location sequence of a LCES, but when the knob is turned past a
“critical point” the location sequence of the LCES suddenly changes. Geometrically, changing one delay
represents stretching or shrinking (dilating) each interval of the process r axis, corresponding to location
i. The consequence of dilation is for sorme non-free diagonal rays in a TET to change to point at which
they intersect a constraint line, If the dilation is sufficiently large, the ray will miss a constraint line
altogether, which results in the location sequence of a LCES changing. The geometric problem is: given
2 TPG and a TET, determine how much one delay can be changed before any diagonal ray in the TET
misses a constraint line that it formerly intersected. This yields the critical point values.

Anocther open problem is to replace A2.3 by the assumption that execution of both processes is
interleaved on the same processor. The resulting TET no longer contains diagonal rays. The geometric
problem is to solve P2, given a schedule of execution (e.g., round robin scheduling).

A final open problem is the following. The program class considered permits no program variables,
Can this assumption be relaxed? Because parallel programs can be represented as transition systems,
the ability to represent variables and their changes in values would allow geometric representation of an
arbitrary parallel program.
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A  Proof of Lemmma 1

The following lemma will simplify the proof of Lemma 1.

Lemma 3 For any two congruent points G and G’ in a TPG, if Cp{G) then HG) = f(G").
Proof:
f(G)=10
» by hypothesis and definition I
(AL, AL L, e A =GeLlnl - {L.i})
» by hypothesis Cp(G?) and definition of 7
@LAV:LIeAN =G ecLnl — 1L.i})
, by the last deduction, the definition of A*, and because G = ¢/
Cp(G")
, by last deduction and definitions of fand Cp
FGH=¢p
, by last deduction and definition of f
£(G) = £(c")
, by first and last deductions =

Lemma 1 Consider any two TETSs v and ' of a timed progress graph T with initial points GG and (&,
respectively. If G=G' A (3G : G € YVGey Cn{(G)) then v=v.
Proof: The TET 7 is either a single point or a ray sequence. Consider first the single point case. Then
7 =G and G is dead. By Lemma 3, 7=+

Consider next the ray sequence case. The proof consists of demonstrating that the -th (i=1,2,..)
noncollinear ray in the execution trajectories rooted at ¢ and G' are congruent by induction on the
value of 4. Let G* and G2 (respectively, G* and G2) be the initial (respectively, final) points of the i-th
noncollinear ray in the execution trajectories rooted at G and G » respectively. The formula to be proven
by induction is
Cp(G?) if Cpl{G")
FGY) = {GY A f(G?) = {GIAG =G otherwise
The proof for all i is the same. If i — 1, G’ = G* by hypothesis. If i > 1, G! = G2 by the inductive
hypothesis that the (i ~ 1}-th noncollinear rays are congruent. The proof considers the two cases implied

by the inductive formula above (Cp(G") and its negation), further dividing the second case on the basis
of whether f = f; or f = fa.

CIL: Cp(G"): Follows from Lemma 3.
C2: -Cp(GY) AFIGYY = fi(GY)
G = 1(G?)
» by hypothesis G! = G2 and the definitions of f; and A*
There must exist lines L1, Ly &€ A such that Ly = Lo A(Vi:ig 11,2} =G e L)
» by hypothesis F(GYHY=# (GY), last deduction, and the definition of I
51 (Gl, Ll) = Sl (Gz, Lz)
, by the definition of Sy, hypothesis G* = G?, and the last deduction
There must exist G and G2 such that (Vi:ie {1,2}:: £i(GY) = (&)
» by hypothesis =Cy (G1) A =Cn(G?)
Gl= G2
, last two deductions

GIEG2=>{



27

08: ~Cp(GY) A £(GY) = /()

G*) = f2(G?)

» by hypothesis G* = G2 and the definitions of J2 and A*
(AL : L e A* Gl eLVGre L)

» by hypothesis f(G) = f;(G?), last deduction, and the definition of f,
(VL:LeA*: [GF, (00, 00N L # 6 = [GF, (00, 00}) N L # 8)

» by hypothesis G' = G? and the definition of A*
SQ(GI) = SQ(G:Z)

» by last deduction and the definition of Sy
There must exist points G and (2 such thai, (Vi:ie{1,2} : fo(G") = {G'})

» by last deduction (and observing that (VG : G € F?2 — (oo, 00) :: f1S2(@)]) = 1))
Gl = G2

» combine previous two deductions O

B Proof of Theorem 1

The following notation is used. For & continuous path v and a set of continuous paths S, yN S is the set
of points in 4 that lie on some path in $: Uﬂf, es YN Y. We first require two lemmas.

Lemma 4 [jA|[ < cc.

Proof: The definition of timed transition diagrams requires (¥r i n, < 00). Therefore Qﬁ, Yr:0<i<
e 2 |le; ]} < 0o). Thus there exist a finite number of integers ¢ and # satisfying (i,#) € ¢f.. O

Informally, a point G in a TPQ is live, denoted CY, (@), if G represents some deterministic and blocked
state, calied a live state, in which exactly one process is blocked (call it r), and in all TESs containing the
state, in some subsequent state process = is running. (If in all subsequent states process r is blocked, then
the TES would be of finite length and its final state would be dead; hence the name “live,”) Formally,

CLGE@EL Ler :Gel A 5(q, Ly=L.j).
Lemma 5 Consider any TET v in « TPG. FIHG|G ey ACN(B)}] < o0 and (BG: G ey :Cp(G))
then v contains a LCET.
Proof: Consider two cases: {a) 7 intersects a finite number of constraint lines and (b) the complement
of (a). Formally, (a) is (AG:Gevyu(AL:LeA* . Ge Ly A 5:(G) = {{o0, 0} ).
case (a):
There must exist a ( such that G YAAL:LEA =G e L)A 52(G) = {(00, )}
, by hypothesis

F(G) = (G A £2(G) = {(00,00)}
» by last deduction and definition of I

G+ (dod1, dod1) €
» by last deduction

G =G+ (dog1, dod1)

s by the definition of congruence
(3G’ : &’ €[G, (0, o0) :: Cn(G"))
» by hypothesis and definition of Cn

v contains a LCET
; by last deduction and definition of LCET
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case (b): (Hypothesis is (3L : L € A* :: ¢ € L)V 53(G) # {(c0,0)}.)

F(EG:Gexy: Cn(G)) then choose G to be max{G |G € y ACn(G)} and let ¥ be the subpath
obtained by deleting +.i up to but excluding GV ; otherwise F=.

VG :Geq @) =1y
» by the definitions of Cy and %
(VG:GeYAN@BL:LeA @ €EA™) = CL(G))
» by hypothesis (VG : G ¢ 7 1 =Cp(G)) and definitions of %, Cp, and Cyg
(VG:GEeZA(AL L cAr 2 G EAY) : =Cp(G))
» by hypothesis S,(G) # {(c0, %)} and definition of C'r and S
() (vG:G ey ~Cr(G)V CL(G))
; by last two deductions
FNA*l = co
» by last deduction and hypothesis (VG : G € v 1 =Cp(GQ))
(FL:LeA yn{r | EA AL =L} = o0)
, by last deduction and Lemma 4
(VG :GeqynA*:: CL(G))
» by deduction 1 and definitions of CrL,Cp
(VL : Li,L.fe RPAmod(L) e ANYNL #0:Lfes)
» by last deduction and definition of fi
(3G,6¢":G,G' e % nG =)
» by last two deductions
¥ contains a LOET
, by second and last deductions

¥ contains a L,CET
» by last deduction and because 7 is a subtrajectory of v o

Theorem 1 4 TET v in a timed progress graph consists of a transient ezecution trajectory followed
by an infinite number of congruent LOETS i {GIG € y ACN{G)H] < 00 A (3G : G € v : Cp{G)).

Proof of Theorem 1:

Only if part:

IHGIG € y A Cx(G)}]] < o0

, by the hypothesis that 7 ends I an infinite number of LCETs and the definition of a I,CET
as a set of deterministic points
(VG:GE‘y::f(G’);éﬁ)

, by hypothesis that 7 ends in an infinite number of LCETs and definitions of f and LCET
(3G : G € v : Cp(G))

, by definition of C'p and last deduction

If part: The inductive proof below dernonstrates that % contains at least i congruent LCETs, for all
> 0. Lemma 5 establishes the base case (i =1). The proof for i > 1 follows:

7 contains at least i — 1 LCETSs
, by the inductive hypothesis



Let +;_; denote the (¢ = 1)-th LCET; then y; 1.1 = Yie1.f
, by definition of LCET

TETSs rooted at Yi-1-% and ¥_y.f are congruent
, by Lemma 1

(3G” : G" € 'TET rooted at V-1t fAG > 41 f 2 G = ¥-f)
» by last deduction

The subtrajectory of ¥ with initial point 4.7 and final point v.f is a LCET
» by last deduction and the definition of LCET

There exist at least ¢ congruent LCETs in ¥
» combine last deduction with inductive hypothesis
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