Heuristics for Laying Out Information
Graphs

Lenwood Heath and foseph W. Lavinus

TR 93-27

Department of Computer Science
Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061

August 27, 1993

Submitted to COMPUTING, 1993.

Heuristics for Laying Out Information Graphs*

Lenwood S. Heath
Department of Computer Science
Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061-0106, USA
FAX: (703) 231-6075

Joseph W, Lavinus
Department of Computer Science
University of Virginia
Charlottesville, Virginia 22903, USA
FAX: (804) 982-2114

Running Title:
Laying Out Information Graphs

*The authors gratefully acknowledge the support of National Science Foundation grant IRT-9116991.

1

Abstract — Zusammenfassung

Heuristics for Laying Out Information Graphs. The concept of an information graph
is introduced as a representation for object-oriented databases. The retrieva] layout problem

A new heuristic, connectivity traversal, is found to be fast and to produce high quality layouts.
AMS Subject Classifications: 05C99, 68P20, 68R10, 90027
Key words: Graph layout, graph partitioning, combinatorial optimization, information retrieval,

sgraphen wird als eine Représentation fiir objektorientierte Datenbanken vorgestellt. Dag
Wiederauffinden von Informationen ergibt sich als Optimierungsproblem beziiglich der so ent-
standener Informationsgraphen. Dag Layout stellt nicht nur den Raumbedarf der Datenbank
sondern auch den Zeitbedarf des Wiederauffindens der Informationen dar. Heuristiken fiir
das Wiederauffindensproblem werden identifiziert und experimentell ausgewertet, Eine neue
Heuristik—-connectivity traversal-—ergibt sowohl ein schnelles Widerauffindensverfahrens wie
auch qualitativ hochwertige Layouts.

1 Introduction

ment and information retrieval. A common application of such databases is the storage of many
small pieces of information (objects) connected by well-defined relationships. Examples include a
dictionary of the English language (with connections for Synonyms, antonyms, is-a, and other re-
lationships) and a bibliographic archive (with connections for cited-by, same-author, same-sub ject,

and other rela,tionships). A natural representation for such databases is the information graph [15]

achieved through vertex packing, is fundamentally the classic bin packing problem [12]. The added

Tequirement of efficient retrieval makes retrieval layout a significant new problem.

new objective functions, number of interpage edges and number of long edges; optimizing over these
objective functions is also N P-complete [14]. As g consequence, we turn to heuristics for optimizing
these objective functions. The heuristics are ranked according to their efficiency in optimizing
the objective functions by testing them with various input graphs, including actual databases,
random graphs, geometric graphs, and two graph models designed specifically for the retrieval
layout problem: gravitational graphs and quaesitum graphs. The actual databases tested are a
medical thesaurus called MeSH and a bibliographic archive from Communications of the ACM,
Among the heuristics we consider are a greedy heuristic, breadth-first and depth-first traversal,
simulated annealing, tabu search, two variants of genetic algorithms, and recursive decomposition.
In addition, we test a hierarchical hybrid approach consisting of recursjve decomposition combined
with more expensive heuristics such as simulated annealing and tabu search. Finally, we introduce
connectivity traversal, a fast heuristic tailored to the retrieval layout problem.

Our intention is to identify those ob Jective functions that are clearly useful in finding good lay-

outs. Consequently, we rank each objective function according to its value as a measure of retrieva]

model actual retrieval operations that might be performed by a user or by a database application,

The patterns studied are random browse, breadth- first retrieval, and depth-first retrieval, By com-

Network Database (LEND). LEND supports the storage and retrieval of information graphs. To

enhance LEND performance, Chen informally examines the retrieval layout problem. However,

he tests only one layout heuristic (recursive decomposition) and only examines that heuristic with
respect to one objective function (number of interpage edges) and one type of retrieval pattern
(random browse). Our study purstes the problem to a greater depth than previous research.
Information graphs for information retrieval applications are quite large-—hundreds of thousands
of vertices and tens of megabytes in size—so heuristics of low time complexity (nearly linear) are
essential. Previous experimentation with graph layout heuristics has been limited to graphs with
1,000 or fewer vertices (for examples, see [14]). The graphs we consider are fairly sparse like real
information graphs, that is, they have low average degree. In any case, moderately dense random
graphs cannot be laid out well (Theorem 1). We also assume that an information graph is statie;
gince its ultimate home is probably a high-capacity medium such as CD-ROM, layout is performed
infrequently, and the database remains unchanged for long periods of time, Thus, it is cost-effective
to spend a great deal of computing time—hours or even days—to achieve a high-quality layout.
The remainder of the paper is organized as follows. Section 2 defines some notation for the
retrieval layout problem and describes the objective functions. Section 3 describes the heuristics
tested, and Section 4 deseribes the types of graphs used as input to these heuristies. Section 5
describes the framework used for correlating the objective functions with retrieval cost, the ex-
periments performed, and the periormance of the heuristics. Finally, Section 6 concludes with a

summary and some possible directions for future work.

2 DBasics

Notation. An information graph is an undirected graph ¢ = (V, p, E) where
® V is the set of vertices;
o The function p:V — Z gives the size of a vertex in bytes; and
* E is the set of edges.

The size of a subgraph of G is the sum of the sizes of its vertices. The neighbor set of v
is I'(v) = {u: (u,v} € E}, and the degree of a vertex v is 6(v} = |I'(v)|. The mazimum degree of G
is D(G), and the average degree of G is §(G). Each edge is stored in the adjacency list of both of

its endpoints; thus, the size of each vertex must be sufficient to store pointers to its neighbors. A

4

mbjective function Definition —’
Total edge length TL(A) = 2 Ax(u,)
(w,v)eE
Number of interpage edges NI(A) = H(u,v)e E: Alu) # A(v)}]
Bandwidth BW(A) = max Ay(u,v)
{(w,v)eE
Number of long edges NLLL) = |{(u, v) € E: Ay(u,v) > L}
Cutwidth CW(A) = .G{I?a.xR} Hlu,v)€ B: Mu) < i< A(v}}

Table 1: Objective functions for the retrieval layout problem,

constant P defines the page size in bytes. A layout X is a function that maps vertices to pages
such that the sum of the sizes of the vertices in any page does not exceed P. A partial layout is
a layout function whose domain is restricted to a subset of V. Since most layout functions are
many-to-one, a layout function rarely maps to the full range 1 to |V|. For a layout A, it is assumed
that the layout begins on page 1, and the page utilization R(}) is the highest page index used
by A. In a layout A, the length of an edge (u,v) is the linear distance in pages from u to v; stated
mathematically: Ay (u,v) = IA(w) — A(u)].

Objective functions. An ob Jective function for the retrieval layout problem associates an ob-
Jective value with each layout. An objective function must be easy to evaluate, and it must be
possible to compute good lower bounds on the ob Jective function for partial layouts created during
construction of a complete layout, Obviously, an objective function must also be related to the
quality of a layout produced by optimizing it. The candidate objective functions we examine are
defined in Table 1. Optimizing over any of these is NP-complete; Lavinus [14] provides references
and proofs of NP-completeness. For each objective function, a lower ob jective value indicates a

higher-quality layout, so the related problem is always a minimization problerm.

3 Heuristics

The NP-completeness of optimizing over the ob Jjective functions suggests that there is no efficient

algorithm to solve the retrieval layout problem exactly. Thus, we examine a number of heuristics for

5

Heuristic Time Complexity | Reference
Random o(V]) [14]
Greedy o[V %) [14]
BFT/DFT oVl +|E)) —
Connectivity traversal OV + |E]) [14]
Clustering traversal ov)) [16]
Recursive decomposition O(1E|log|V]) (3]
Local optimization unpredictable [13]
Simulated annealing unpredictable [18]
Tabu search O(m(B(A) - |E| + 1) 18]
Genetic algorithms unpredictable [9]

Table 2: Summary of heuristics examined.

producing good solutions. These heuristies are described briefly in this section and are summmarized

in Table 2. Full descriptions and implementation details appear in Lavinus [14].

Random solution. Due to the exponential number of layouts, a random solution is very likely

to be a poor one; nonetheless, we implement it for comparison with better heuristics.

Greedy heuristic. The greedy heuristic inserts vertices into a partial layout from page 1 to

page R(A)} such that at each step, the objective value of the current partial layout is minimized.

Breadth-first and depth-first traversal. The vertices are assigned to pages from page 1 to

page R(A) in the order specified by a breadth-first or depth-first search of the graph.

Counnectivity traversal, This heuristic, devised specifically for the retrieval layout problem,
also relies on a traversal of the graph, but the traversal strategy is more complex. In connectivity
traversal, an initial vertex is chosen uniformly at random, and subsequent vertices are inserted
into the layout from page 1 to page R(\); at each step, the vertex chosen is the one that is most
heavily connected to those vertices already inserted in the current page. While one may contrive
an artificial example graph for which connectivity traversal performs quite poorly [14], such graphs

are unlikely to occur in practice.

Clustering traversal., In clustering traversal [16], vertices are inserted from page 1 to page R(A),
and the next vertex chosen is always an arbitrary vertex of minimum degree. There are graphs for
which clustering traversal performs very badly {14], and unlike the bad examples for connectivity

traversal, such graphs are likely to occur in practice.

Recursive decomposition. A recursive decomposition heuristic partitions V into two subsets,
and then recursively partitions the subgraphs induced by these subsets in the same manner, until
some threshold is reached. Qur implementation uses the Fiduccia-Mattheyses heuristic [5] to par-
tition each subgraph into two smaller subgraphs such that the number of edges with endpoints in
different subgraphs is minimized and such that the sizes of the two subgraphs are roughly equal.
The decomposition stops when the subsets each fit in a single page. We also test a faster heuristic
called greedy partitioning. This heuristic, reminiscent of connectivity traversal, begins by placing
a different randomly selected vertex in each of the two partitions, then inserts each subsequent

vertex into the partition to which it is most heavily connected.

Local optimization. Local optimization is a simple iterative improvement heuristic; from an
initial (usually random) layout, it locally modifies the layout if the modification improves the
objective value. In our implementation, this modification (called a move) takes a vertex from its
current page and places it in a different page, provided there is space in the new page for the
vertex. Some objective functions—A/Z, TL, and NL—can be computed incrementally, and thus
each move can be made in effectively constant time. For the others—BW and CW-—the ob Jective

function must be entirely recomputed after each move,

Simulated annealing. Simulated annealing [18] is a well-known iterative improvement heuristic
designed to avoid entrapment in globally poor local optima. Tt accomplishes this aim by incor-
porating the notion of temperature. As in local optimization, improving moves are always taken.
However, moves that increase the ob Jjective value of the layout may also be taken with probability
directly dependent on the temperature and inversely dependent on the change in objective value.

As the temperature is slowly decreased, the solution converges to some locally optimal value, which

is typically @ much better solution than one produced by local optimization. Our implementation

is similar to that of J ohnson, Aragon, McGeoch, and Schevon [13].

Tabu search. Tabu search (8] takes a different approach to iterative improvement: rather than
avoiding local optima, it provides a mechanism for escaping local optima after they are encountered.
The key notions in tabu search are aggressiveness and a tabu list of forbidden moves, Aggressiveness
means that rather than examining randomly chosen moves, tabu search examines all possible moveg
at each step and takes the one that results in the best objective value. (Note that this does not
imply an improvement in objective value; if the current layout is a local optimum, then tabu
search chooses the non-tabu move that increases the objective value by the smallest amount.) The
tabu list, which typically contains the last ¢ moves that were made (where ¢ is a small constant),
prevents the heuristic from cycling in and out of a local optimum, The heuristic allows a tabu move
to override its tabu status if it results in a layout with lower ob Jective value than any seen so far.
Tabu search halts when a certain number of moves have elapsed without finding a new best layout,
or when the total number of moves exceeds & constant m. Thus, the worst-case time complexity of

tabu search is O(m(R(X)- |E]+ 1)) (though in practice this bound is quite pessimistic).

Genetic algorithms. A genetic algorithm [9] maintains a current generation of solutions, which
are mated with one another by means of a crossover operator such that solutions with lower
objective values are more likely to survive to the next generation. We implement genetic algo-
rithms for the retrieval layout problem using two different crossover operators: partially mapped

crossover (PMX) [4] and order crossover (0X) [17].

4 Graphs

This section describes the types of graphs used as input for testing the heuristics. For all randomly
generated graphs, vertex size is either constant or drawn from a normal distribution, which is a

reasonable approximation to the vertex sizes found in actual databases,

Actual databases. The first, and perhaps most important, type of input is two actual databases.

The MeSH (for Medical Subject & eadings) database [11] is a medical thesaurus containing 287, 724

[Database] o6y | D 7 a*(p) | maxp | minp
CACM | 21.480 [31.199 | 599 63.362 | 50.836 | 270 5
MeSH 2.360 | 9.407 | 1800 | 58.491 | 93.391 1510 0

Table 3: Vertex degree and vertex size statistics,

vertices and 339, 489 edges. CACM is a bibliographic database extracted from Communications of
the ACM [6] and contains 6,093 vertices and 65,438 edges. Vertex degree and vertex size statistics
for MeSH and CACM are shown in Table 3.

Random graphs. Random graphs [2] are also used as input. In the simplest model, R, , denotes
the class of n-vertex random graphs in which each edge is present with probability 4. We conjecture
that random graphs are not an accurate model of the real problem domain. Moreover, we [10] show

that a random graph cannot be laid out well, in a sense emhbodied in the following result.

Theorem 1 (Heath and Lavinus [10]) Zet G be a random graph from Ry 4. Suppose that page
size is P = o(n), that ¢ is a positive constant, and that Y is a constant satisfying 1 > v > q. Let
E be the expected number of nterpage edges in a random layout of G. If the expected degree of G
is w(lnn), then, as n — o0,

PiNI(G) < (1 - e)E) — 0.

In other words, if the degree of a random graph is slightly greater than logarithmic, then the number
of interpage edges in a random layout is asymptotically about same as the number of interpage

edges in an optimal layout.

Geometric graphs. | Johnson, Aragon, McGeoch, and Schevon [13] discuss a class of randomly
generated graphs they call geometric graphs. An element of the class Un,a of n-vertex, distance-d
geometric graphs is generated as follows. Each vertex is a point chosen uniformly at random in
the unit square. An edge exists between two points u and v if Ly(u, v) < d, where L, is Euclidean

distance. The expected average degree of a geometric graph is nrd2.

Gravitational graphs. Geometric graphs are too simple to accurately mirror the complex struc-
ture of an actual information graph; thus, we devise a modification called gravitational graphs. In
a gravitational graph, each vertex v is agsigned a random mass m(v) drawn from a lognormal
distribution (see [1]). For the class My,4 of n-vertex gravitational graphs, an edge exists between

two vertices u and v if
Lo (ua 'U)

ma{m(u), m(o)] < &

Thus, vertices with high mass are adjacent to more distant vertices than those with lower mass. the
resulting degree distribution resembles that of the MeSH and CACM databases described above,

The expected average degree of a gravitational graph is somewhat greater than nred?.

Quaesitum graphs. The final type of input is a quaesitum graph, also devised specifically for the
retrieval layout problem, which is a graph generated in such a way that a good upper bound on its
optimum objective value is known. An n-vertex quaesitum graph from (2 n,p,q 15 generated as follows.
Assign vertices to pages as in a random layout. Then, add an edge between a pair of vertices (w, v)
with probability p for intrapage edges and ¢/Ax(u,v) for interpage edges, where p > g. The
resulting graph is heavily connected within pages and loosely connected between pages, and the
probability of the existence of an edge is inversely correlated with its length. Thus, the layout from
which the graph is generated is likely to be nearly optimal with respect to AN'Z, 72, and AL and
good with respect to BW and CW, so the results of applying the heuristics to the graph can be

compared against the objective values of this original layout.

5 Experiments

We use empirical testing to analyze three aspects of heuristics and ob jective functions for the

information retrieval problem:
1. Time complexity of each heuristic;
2. Solution quality of each heuristic; and

3. Correlation between an objection function and actnal retrieval cost.

10

layout
production

performance
assessment

Figure 1: Flowchart of the testing process. A4 is a layout heuristic, T is a
retrieval sequence, and u is a measure of retrieval cost.

To study these three aspects, we apply the layout heuristics to various inputs, using different
objective functions and combinations thereof, In addition, some heuristics (such as simulated
annealing) depend upon parameters for which good values cannot be determined analytically. Thus,
good settings for these parameters are determined experimentally (as in [13]).

A suite of experiments exercises each heuristic with respect to various objective functions and
tests the results with respect to different retrieval patterns in the resulting layouts. The diagi‘am
shown in Figure 1 illustrates the testing process used. The performance assessment and layout

production phases of the process are covered in the subsequent sections.

5.1 Performance assessment

The phase of this study labeled performance assessment in Figure 1 tests the quality of each ob Jjec-
tive function (generically denoted ®) as an approximation of retrieval efficiency. The performance
assessment phase involves retrieving vertices from a layout X according to some retrieval sequence T,
determining the retrieval cost u of this traversal, and determining any correlation between P(A)
and g for each ®.

To approximate retrieval cost in an information graph, we define an access model to approximate
access to an information graph by a database application or a2 human user. The order in which the
vertices in the graph are retrieved is defined by a retrieval sequence T =< ¥1, V2, ... > that consists

of vertices of G, that may contain repetitions, and that may be infinite. We assume that a buffer 8

11

that holds |3| pages is maintained in main memory. Let vy be the vertex most recently read from
secondary storage (this is always a vertex in the page most recently read into a page of 3). Initially
set 5 to be empty and set v; to be some vertex in page 1. The cost u(v;) of retrieving a vertex v

is:
_ A,\(’Uf,i)g))\(Uz) ¢ ﬁ;
plv;) =
0 /\(1’)1‘) S ﬁ

The first case corresponds to a page fault when A(v;) replaces a page p in 8 after the storage
hardware seeks a distance of A A(vs,v;) and reads page A(v;). A page replacement policy specifies
the choice of p; in our model, p is the least recently used page. The costs of determining whether v;
is in # and choosing p are assumed negligible compared to the cost of accessing a page not in 3. In
testing a retrieval sequence T, the buffer size |3] is fixed, and the first ¢ vertices in T are retrieved

in order. The retrieval cost of Y is then

c
#(T) =3 uv).
i=1
Let f(T) be the number of page faults. With respect to media access, f measures the number of
times the media is accessed, while # measures the total seek distance traveled during those accesses.
The relative importance of these two measures is dependent on the storage hardware.
In an actual application, |8] can be no larger than the available main memory of the machine.
In practice, the application is likely to run in a multiuser environment, and |3| is much smaller. Tn
LEND applications, where P = 8192, a reasonable value is |3 | = 20, which is the value we use in
our testing.
A retrieval strategy is a procedure that generates a retrieval sequence Y. The aim of such a
strategy is to approximate a retrieval sequence that might result from a user or application using

the database. The following retrieval strategies are defined:

s Random browse. The initial vertex 1 in the retrieval sequence is chosen uniformly at random,

and each subsequent vertex v; is chosen uniformly at random from T(vi_y).

 Breadth-first retrieval. The initial vertex is chosen uniformly at random, and successive

vertices are generated by a breadth-first traversal of the information graph.

12

o Depth-first retrieval. The initial vertex is chosen uniformly at random, and successive vertices

are generated by a depth-first traversal of the information graph.

Note that a random browse retrieval sequence is infinite, while a retrieval sequence of the latter
two types has length bounded by [V]. Random browse models a user who is simply browsing in
a hypertext-like system;-while the latter two model a systematic search by a database application -
for some kind of information, as in a relational query.

We first examine the behaviors of these retrieval strategies on a layout of the CACM graph
produced by connectivity traversal; this layout has low values for all objective functions., We find
that randem browse is a low-cost retrieval strategy. This is because it chooses each edge to traverse
at random, so it often doubles back on itself, traversing portions of the graph that have already been
visited and are likely to be in 3. In contrast, breadth-first and depth-first retrieval never revisit an
edge and result in higher retrieval cost, We optimize for breadth-first or depth-first retrieval for
two reasons. First, in an actual database, these operations are far more time-critical than random
browse, since they typically involve a far wider search and are directed by a database application
that is much faster than a browsing user. Second, the performance of breadth-first and depth-first
retrieval is more statistically stable than random browse,

The purpose of the performance assessment phase is to determine the accuracy of the various
objective functions as approximations of retrieval efficiency. Note first that the objective functions
are highly codependent. This makes intuitive sense: if many edges have length 0 (i.e., the layout
has low N'T), then 7L is likely to be low as well; reducing one objective function typically reduces
others as a side effect, This codependence makes it difficult to construct experiments comparing the
objective functions. However, we are able to contrive layouts that have unnaturally independent
objective values for the different ob jective functions for the purpose of testing the objective functions
against each other.

The results of these tests largely reflect intuition. The three objective functions A L, BW,
and CW are almost completely irrelevant; testing on layouts in which the values of NZ and T£ are
the same, but in which the values of NL, BW, and CW differ, demonstrates that their values have
no significant correlation with retrieval performance. In fact, for small |3, retrieval cost is actually

slightly worse for layouts with low A/ L, BW, and CW; while optimizing these objective functions

13

reduces the number of very long edges, it tends to increase the number of medium-length edges in
the layout. This trend reverses for large | 8], since the endpoints of the medium-length edges are
often already in 8. The effect of these three objective functions on fis almost nil. It is fortunate
that BW and CW are not useful ob Jective functions, as their computation is expensive,

As intuition indicates, AT and 77 are the most relevant objective functions. The testing
reported below is designed to determine the relative importance of these two objective functions
and to develop some insight into how each reflects upon retrieval performance.

Toward this aim, we devise four layouts of the CACM graph, corresponding to the four combina-
tions of low and high values of AT and TL. The layout with low values for both objective functions
is generated by a run of connectivity traversal, and the layout with both high values is generated by
a run of the greedy heuristic, The layout with low A'Z and high 7L is generated by randomly shuf-
fling the pages in the layout produced by connectivity traversal, This shuffle leaves NI unchanged,
but deteriorates 7L. Producing a layout with high N7 and low 7T £ is more difficult. We devise
such a layout by running simulated annealing with the objective function B(A) = TLA) - NT(N),
which serves to minimize 7£ while maximizing A7,

Applying the retrieval simulation to these layouts, we find that the infinence of NZand TLon
retrieval performance depends on [B]. This reflects the fact that AT measures intrapage locality,
whereas 7L measures interpage locality. For 181 = 1, the cost i is largely dependent on the
probability that the next vertex retrieved js in the current page, which correlates with NZ. As |4
grows, u depends less on the probability that the next vertex is in the current page, and more on the
probability that it is in a recently accessed page. This probability correlates with 72, However,
the layout that optimizes both ob Jective functions outperforms the layout that optimizes either
separately, for all values of |4, Predictably, number of page faults depends only on N7, Thus, it is
desirable to minimize both AT and TL. The relative weights assigned to these ob Jective functions
depend on the buffer size and on the relative costs of seeking (proportional to) versus the other
overhead involved in a page fault, such as the time required to actually read the page into memory.
These costs vary between media and between specific pieces of hardware, For a CD-ROM, seeking
is more expensive than reading (see [7], Chapter 6), and thus a higher weight should be assigned

to 7L. For a magnetic medium such as a hard drive, the reverse is true, and a higher weight should

14

be assigned to A7, In any case, the choice of weights is probably not crucial, and the two ob jective

Tunctions are typically in agreement.

3.2 Layout production

time. BEach test inputs a heuristic A, a graph G, and, for those heuristics that evaluate an objective
fonction (such as the greedy and iterative improvement heuristics), an ob jective function ®. The
output is a layout A. A heuristic 4 dominates (empirically) a heuristic B if it is both faster and

produces a layout with g better objective value,

First-cut testing. Since the number of possible combinations of heuristics and input graphs is
large, three representative graphs are tested on all heuristics to make a first cut, i.e., to eliminate
heuristics that are dominated by some other heuristic. The three graphs are the CACM database,
a geometric graph from U10000,0.01, and a gravitational graph from M10000,0.01.

Figures 2 and 3 plot the performance of each heuristic Versus its running time on the three
first-cut graphs. The heuristics are represented by the single-letter mnemonics listed in Table 4.
Fach heuristic is run at least 10 times, and beyond that, a sufficient number of times to reduce the
variances in objective value and running time to less than 1% of their mean. The dashed horizonta]
line near the top of each plot indicates the value of T for a random layout. The testing
platform is a DECstationT™ 5000/200 with 40Mb of main memory. In all three tests, connectivity
traversal is clearly the best heuristic, in the sense that it always gives a high-quality solution more
quickly than other heuristjcs that give quality solutions. We eliminate from further consideration
those heuristics that are dominated by connectivity traversal in all three tests; these are genetic
algorithms (G and 0O), the clustering heuristic (M), and the greedy heuristic (A). Connectivity
traversal also dominates recursive decomposition for the case where decomposition progresses until
the subgraphs fit in a single page. Thus, recursive decomposition is tested further only in the

context of the hierarchical hybrid approach (described later).

15

Heuristic Muemeonic | Heuristic Mnemonic
Greedy heuristic A Greedy recursive decomposition K
Breadth-first traversal B Local optimization L
Depth-first traversal b Simulated annealing S
Connectivity traversal C Tabu search T
Clustering M Genetic algorithm (PMX) G
FM recursive decomposition R Genetic algorithm (0X) O

Table'4: The mnemonics used for each heuristic.

35000

111 T II‘ T ||| T ||| T llj T T rf T ||| T ||! T ||! T || T/ 1 1]
110000 =
30000 F x
25000 K & O 100000 |- ar ¢ j
90060 |- -
AT 20000 - f - 1 M so000 |- i R =
15000 |]

0 c B 70000 € L .
10000 - g — T_l
5000 ot [T IR P . 60000 - T R N B

1100 302 103 104 105 18 10 102 103 g0t 95 18

CPU time in seconds

CPU time in seconds

Figure 2: N7 versus running time for all heuristics on CACM (left) and My0000,0.01 (right).

i_gggg T III T T I.' [II, T I|! T lll T 2000 T ||[T llj T lll T T |' T llI T T
14000 [w 1500 T
12000 K

w100 T NT 1000 .
8000 - B s
4000 | R 500 s 4
zoogtL_‘_u_@’Lfl..lfs...l.e.uT.. 0 RN T B I P

L1000 102 503 104 1p5 18 L1 102 103 g0t gpf 8

CPU time in seconds

CPU time in seconds

Figure 3: N7 versus running time for all heuristics on Uioo00,0.01 (left), and enlargement
of the lower portion thereof (right).

16

Connectivity traversal outperforms several of the simpler heuristics in layout quality but not
in running time. These are BFT, DFT, and greedy recursive decomposition. For the sake of
comprehensiveness, these are tested further.

Local optimization performs rather sporadically; its solution quality is mediocre for both CACM
and Uiao0,0.01, but it attains a good solution for Mio000,0.01. In all cases, local optimization requires
significantly more time than connectivity traversal, In addition, local optimization has an advantage
that the other iterative improvement heuristics lack: its rtunning time is strongly correlated with
the amount of layout improvement it achieves.

Simulated annealing performs as expected: it produces high-quality layouts but requires large
amounts of computing time, Its runping time is impractical for large graphs, but it is exaiined
further in the context of the hierarchical hybrid approach.

Tabu search also requires large amounts of computing time, and in two of the three first-cut
tests, produces results no better than connectivity traversal. I is examined further as part of the

hierarchical hybrid approach but is too slow to he of practical use on large information graphs.

Further testing., While recursive decomposition performs rather poorly if the decomposition
progresses until each subgraph fits in a single page, an approach that warrants further investiga-
tion is hierarchical hybrid, i.e., recursive decomposition into subgraphs that are small enough to
apply more expensive heuristics to them. Specifically, the approach taken here is to run recursive
decomposition until each subgraph has size less than or equal to kP, where % is a small constant.
Simulated annealing, tabu search, or connectivity traversal is then run on each resulting subgraph,
and the results appended to form a complete layout. The results indicate that hierarchical hy-
brid using simulated annealing or tabu search is a viable approach that sometimes outperforms
connectivity traversal, though it requires far more running time.

Table 5 shows the ob Jective values and running times of BFT, DFT, greedy recursive decom-
position, connectivity traversal, and hierarchical hybrid using simulated annealing (54) and tabu
search (7y) on subgraphs of size 4P, The inputs are MeSH and three 100,000-vertex graphs: a
random graph, a geometric graph, and a gravitational graph. The results for these large graphs
emphasize the need for linear-time heuristics; even simple linear-time heuristics such as BFT re-

quire approximately a day of computer time to lay out MeSH. We suspect that a contributing

17

1562 43259 10274620 16h42m Sq | 1847 177324 1542323 18h13m
1741 48231 12235712 | 21h17m Ty | 1889 186331 2033851 21h47m

PN 7L [CPUtme)[4 B __NT 7 [CPUtme]
MeSH U100000,0.003
B 12082 191361 02371362 24h31m B | 1244 7084 T84 33m
D 2082 189109 137024787 25h18m D | 1244 6718 8585 33m
C 2252 117603 70609237 40h0m C | 1241 4424 4434 35m
K | 4024 165315 233144072 8h34m K 11992 8121 10278 2lm
S, [3632 108321 102736125 89h38in S4 | 1649 23381 80273 | 19h37m
T4 | 3864 134923 178361641 93h16m LT4 1672 25235 72358 24hl1im
T M100000,0.001 £160000,0.0001
B | 1244 79691 8126969 38m B 11242 9213428 794223 48m
D | 1244 54618 8512165 34m D | 1242 203139 1037233 4Tm
C 11240 47781 8259206 39m C 11239 181342 642312 1hlim
K 12003 72371 10371612 29m K | 2107 199324 2381741 alm
S4
T,

Table 5: Results of further testing on four large graphs.

factor to these large running times is virtual memory. Most of the heuristics examined exhibit poor
locality of reference, and for graphs larger than the available main, memory, a great deal of time
is spent swapping pages to and from secondary storage. A notable exception is récursive decom-
position, which has high reference locality, since it spends the majority of its execution working
on small subgraphs. In Table 9, note the difference between the running times of greedy recursive
decomposition and those of connectivity traversal, BFT, or DFT. In spite of the fact that recursive
decomposition has O(nlogn) time complexity while the other three are linear, greedy recursive de-
composition is significantly faster. An improvement in running time might be realized by improving
the reference locality of the better heuristics, or by devising an explicitly disk-based approach in

which the heuristic handles its own paging rather than relying on the operating system.

6 Conclusions

This is the first formal study of the retrieval layout problem, an optimization problem for infor-
mation graphs. Using a simulation of various retrieval patterns in an information graph, we have
shown that among a variety of objective functions, number of interpage edges and tota) edge length

are sufficient to approximate retrieval performance in an information graph. We have introduced a

13

linear-time heuristic called connectivity traversal, and by comparing its performance with that of
many other heuristics, we have shown that it efficiently and consistently produces good layouts of
several types of information graphs. Hierarchical hybrid with simulated annealing sometimes pro-
duces better layouts than connectivity traversal, but itg performance is erratic and jt occasionally
produces layouts far worse than connectivity traversal, In addition, its running time is significantly
higher than that of connectivity traversal. All the other heuristics either produce consistently

poorer results than these or require an impractical amount of computing time.

References

[1] L. J. BaN axp M. ENGELHARDT, Introduction to Probability and Mathematical Statistics,
Duxbury Press, Belmont, 1992,

[2] B. BovroBAs, Random Graphs, Academic Press, Orlando, Florida, 1985,

(3] Q. F. CHEN, 4n Object-Oriented Database System for Efficient Information Retrieval Ap-
plications, PhD thesis, Department of Computer Science, Virginia Polytechnic Institute and
State University, 1992,

(4] P. J. DEeNNING, Genetic algorithms, American Scientist, 80 (1992), pp. 12-14.

[5] C. M. Fipuccia anp R. M. MATTHEYSES, 4 linear-time heuristic Jor improving network
partitions, in Proceedings of the 19th IEEE Design Automation Conference, 1982, pp. 175-181.

[7] W. B. Frakes AND R. BAEzZA-YaTEs, eds., Information Retrieval: Data Structyres and
Algorithms, Prentice Hall, Englewood Cliffs, 1992.

[8] F. Grover, Taby search—part I, ORSA Journal on Computing, 1 (1989), pp. 190-206.

[9] D. E. (GOLDBERG, Genetic Algorithms in Search, Optimization, and Machine Learning,
Addison-Wesley, Reading, Massachusetts, 1989,

19

(10] L. S. HeaTH anp J. W, LaviNuS, Optimal and random partitions of random graphs. Sub-
mitted; available as Tochnical Report TR 93-24, Department of Computer Science, Virginia
Tech, 1993.

[11] S. M. HUMPHREY AND N, E. MiLLER, The NLM indezing aid project, in Proceedings of the
49*%® Annual Meeting of the American Society for Information Science, 1986, pp. 106-112.

[12] D sS. JOHNSON, Fast algorithms. for bin packing, Journal of Computer -a,nd'System.-.:Science'S',
8 (1974), pp. 272-314.

[13] D. 8. Jounson, C. R. ARrAcon, L. A, McGErocH, anp C. SCHEVON, Optimization by
simulated annealing; part I, graph partitioning, Operations Research, 37 (1989), pp. 865-892.

(14] J. W. LaviNus, Heuristics for laying out information graphs, Master’s thesis, Department
of Computer Science, Virginia Polytechnic Institute and State University, 1992. Available as
Technical Report ST92—01.

[15] H. V. D. PARUNAK, Ordering the information graph, in Hypertext/Hypermedia, Handbook,
E. Berk and J. Devlin, eds., MecGraw-Hill, 1991,

[16] A. L. SANGIOVANNI~VINCENTELLI, L. CrEN, AND L. O, CHUA, An efficient heuristic clus-
ter algorithm for tearing large-scale networks, IEEE Transactions on Circuits and Systems,
CAS-24 (1977), pp. 709-717.

[17] K. SHAHOOKAR AND P. MAZUMDER, A genetic approach to standard cell placement using
metae-genetic parameter optimization, IEEE Transactions on Computer-Aided Design, 9 (1990),
pp. 500-511.

{181 P. J. M. van Laar#OVEN aAND E. H. I, AARTS, Simulated Annealing: Theory and
Applications, D. Reidel, Boston, 1987.

20

