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Abstract

The behavior of random graphs with respect to graph partitioning is considered. Conditions
are identified under which random graphs cannot be partitioned well, l.e., a random partition
is likely to be almost as good as an optimal partition.
Graph algorithms are often tested using random graphs as input (see, e.g., Heath and Lavinus [5]).
Tn the simplest and most common model [1], Rn, denotes the class of random graphs with n
labeled vertices in which each edge is present with probability p. A natural question is whether
such random graphs are useful for testing algorithms for various graph optimization problems.
Turner [7] considers the problem of minimizing the bandwidth of a linear ordering of a graph,

which is the length of the longest edge under that ordering. He shows ([7}, Theorem 2.2) that the

bandwidth of a random graph from R, , almost certainly exceeds {1 — ¢)n for any constant € > 0;
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that is, with respect to bandwidth minimization, a random ordering of a large random graph is
almost as good as an optimal ordering. Thus, random graphs are not useful in testing bandwidth-
minimization algorithms. McDiarmid and Miller [6] show analogous results for an extension of
bandwidth to multi-dimensional Iattices.

In this paper, we prove that a similar phenomenon occurs with respect to partitioning a random
graph. The problem of partitioning a graph consists of dividing the vertices of the graph into subsets
of cardinality not exceeding some bound K such that the number of edges whose endpoints lie in

different subsets is minimized. More precisely, the problem of graph partitioning is the following:

Given an undirected graph G = (V,E) and a set size K, find a partition of V into disjoint
subsets V1, Va,. .., Vi such that |{(u,v): (u,v) € E,u € Vi,v € V;,i # j}| is minimized,

subject to |Vil| < K foralli,1<i<m,

The corresponding decision problem is.NP-complete (see Garey and Johnson [3], page 209). In
this paper, we prove that a random graph cannot be partitioned well in the sense that a random
partition is almost as good as an optimal partition.

For simplicity, assume that the number of vertices in the graph is an integer muliiple of K.
Suppose G = (V,E) is a random graph from Bnp. Let IT = {V1,V3,...,V,yx} be a random
partition of V' in which every subset V; contains exactly K vertices. An edge whose endpoints lie
in different subsets is ezternal. Let ¢(II) be the number of external edges in the partition II. Let

#(G) be the number of external edges in an optimal partition of G.



The number of non-external edges (both of whose endpoints lie in the same subset) in II falls

between 0 and % (%). The number of external edges falls between 0 and

) -#(:)

n(n— K)/2.

=
|

The expected number of external edges in a random partition II is

E[¢(ID)] = pN.

We proceed to derive conditions under which a random partition is almost as good as an optimal
partition of G (Corollaries 3 and 4). The following lemma bounds the probability that ¢(II) is much

below its expected value,

Lemma 1 Let G be a random graph from R, ,. Constrain partitions of G to n/K subsels. Let

¢ = ¢{(n) be a real-valued function of n. Then

InPrigp(G) < (1 =¢{)pN] < nlan—nlnK —

(3N Inn i, (nan)

Wi-p) 2 K



Proof: Let II be a random partition of & into n/K subsets. The number of external edges (1)

follows a binomial distribution with parameters N and p; that is,

Prg(IT) = k] = (f:)p’“(l - )Nk,

The probability of interest is a tail of this distribution, to wit,

PN A\ :
Prigp() < 1= OpN] = Y~ (i)Pi(l -

i=0

An upper bound on this probability can be obtained from Hoeffding’s inequality (sec [2], page 126),

which asserts

Pr{E[S()] - §(I1) 2 1] < e~r"/ANP0-1)

for arbitrary r. Substituting E[¢(IT)] = pN and selecting r = CpN, we have
Pr[g(IN) < (1 - ()pN] < e~ CpN/A(1-9),

There are n!/(K1)"/K such partitions II. For the optimal layout of G' to have at most (1 — ¢ JpN
external edges, at least one of these n!/ (KW*X partitions must have (1= {)pN or fewer external

edges. Hence,
nle—¢2pN/4(1-p)
(Khyn/K

Prig(G) < (1-(pN] <



Taking natural logarithms, we obtain

2pN
InPrf$(G) < (1 - OpN] Shun! - ZIn K! - _.4511’_ =

Applying Stirling’s approximation for the factorial function (see [4], page 467), we have

InPr[¢(G) < (1 - OpN] < nlnn—n-l-lnTn—%(Klnff—]&’+@5{£+0(1))—
¢*pN
———— + 0O(1).
qi-p TOW

= nlnn-nlnkK —

¢?pN lnn+0 (nlnfi’)

A1-p) ' 2 K

as required. o
Our central result is Theorem 2, which identifies conditions under which Pr[¢(G) < (1 — {)pN]

is asymptotically 0.
Theorem 2 Let G be a random graph from R, ,. Constrain partitions of G to n/K subsets.

Let ( = ((n) be a real-valued function of n. Suppose K = o(n), and

Tlnn
1>y2p2
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where ¥ and T are constants such that, for sufficiently large n,

¢2r
8(_1—7) > 1.
Then
Pr{¢(G) < (1 - QpN] -0
as n — oo,

Proof: By Lemma 1,

IpN Inn
CpN_ Inn

lnPr[q&(G)g(l—ng')pN]Snlnn—nlnlf—4(1_p) 3

Substituting the definition of N and the bounds on p, we obtain

+o(

3n{n ~ K)rnlnn/n

nlnn —nln K —

nln K
o("%")

In Pr{e(G) < (1 ~ )pN]

A

41 -7)

Cr(n— K)lnn

Inn

= nlan—ninkKk —
8(1—)

Cr Cr Inn
= lw ———Jalnn+ ——"——Klnn—nln K+ — +
( (1—7)) 8(1—) 2
nin K
o (%)
¢*r )
= l—-————inlnn+olnlnn
( 8(1-1) (ninm)

2

nlnfx’)
K /)

Inn
2

nln K
+o( = )




which approaches —co as n — oo. Hence

Pr{a(G) < (1 - ()pN] — 0

as n — 00, as desired. 0

As a corollary, we obtain this special case,

Corollary 3 Let G be a random graph from Rnp. Constrain partitions of G to n/K subsets,
where K = o(n). Suppose that ¢ is a positive constant and that v is a constant satisfying 1 > ~ > p.

If the expected degree of G is w(lnn), then

Pr{$(G) < (1 —e)pN] - 0

a8 n — 00.

Proof: The expected degree of G is p(n—1). If the expected degree is w(lnn), then p = w(lnn/n).

Since K = o(n), N = ©(n?). Hence we have pN = ninn). Choose r sufficiently large that

gl

8(1—7) > 1.

Choosing { = ¢ in Theorem 2, we conclude

Prl¢(G) < (1 —e)pN] =0
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as n — 00, as desired. a
In other words, if the degree of a random graph is slightly greater than logarithmic, then the
number of external edges in an optimal partition is, asymptotically, almost the same as the number
of external edges in a random partition.

If we want the degree to be ezacily logarithmic, we obtain a slightly weaker corollary.

Corollary 4 Let G be a random graph from R, , where p = rln n/n. Constrain partitions of G

to n/K subsets, where K = o(n). Suppose that ¢ is a positive constant. If T > 8/¢?, then

Pr[¢(G) < (1 - g)pN]— 0

as n — oo.

In particular, if 7 > 32, then the probability that an optimal partition of G has fewer than half the
expected number of external edges in a random partition is asymptotically 0.

In the face of Corollaries 3 and 4, we conclude that random graphs, in the standard model we
study here, are not useful for testing heuristics for the graph partitioning problem. Experimental
evidence for this conclusion is presented in Heath and Lavinus [5]. In that work, some alternate

random graph models based on geometry do prove useful in testing heuristics.
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