Synthesis-Oriented Situational Analysis in
User Interface Design

Kevin A. Mayo and H. Rex Hartson

TR 93-20

Department of Computer Science
Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061

June 11, 1993

Accepted in East-West International Conference on Human-Computer

Interaction, Moscow 1993

Synthesis-Oriented Situational Analysis
in User Interface Design

Kevin A. Mayo & H. Rex Hartson

Department of Computer Science
Virginia Polytechnic Institute and State University
Blacksburg, VA 24061
(703) 231-4857 (703) 231-6931
lastname@cs vt.edu

Abstract. Analytic evaluation is a term describing a class of techniques for
examining a representation of a user interface design, and discovering design
flaws and/or predicting user task performance. In our work with analytic
evaluation, we have observed limitations on the effectiveness and efficiency of
analytic techniques for formative evaluation supporting the iterative design and
re-design cycle. Here we support those observations with arguments based on
theoretical limitations of the models underlying these techniques. By way of
comparison we discuss desirable characteristics for an alternative approach. In
our search for such an alternative, we have developed the Task Mapping
Model, a substantively different approach to analysis for supporting the user
interface design. We briefly describe the Task Mapping Model and give some
examples illustrating its desirable characteristics.

Keywords: User Interface Design, User Interface Design Requirements, User
Interface Evaluation, Task Description, Task Analysis.

1 Introduction

Analytic evaluation refers to a class of techniques based on examining a description
of a user interface design, often before it is prototyped or implemenied, in order to
detect usability problems or to predict user task performance. Many of the predictive
models associated with these techniques are validated empirically. Amalytic
evaluation techniques are usually intended as a substitute for early user testing and/or
a supplement for later user testing.

One measure of effectiveness of a formative evaluation technique is the number of
usability problems that can be found in a given design. A related measure, efficiency,
can be thought of in terms of the number of usability problems identified per unit of
designer effort. A measure based on usability problems identified and solved per unit
of designer effort might be even more useful, since it helps 1o close the iterative loop
by connecting to the redesign process within formative evaluation. These arc the
kinds of measures we have in mind as we discuss the role of analysis in formative
gvaloation.

While recently exploring existing analytic evaluation techniques and developing some
of our own, we have concluded that most existing models for analytic evaluation are

ineffective and inefficient as methods for formative evaluation in an iterative
development cycle, for reasons based on the theoretical limitations of the underlying
models. We are developing the Task Mapping Model, a model for analyzing usability
problem situations highlighted by the empirical formative evaluation process.
Knowledge needs that users have for performing tasks are determined, resulting in
clear and specific design/redesign requirements for solutions. This papers outlines
why we believe that the Task Mapping Model, when used in conjunction with
established empirical formative evaluation methods, is inherently more efficient than
many commonly known analytic evalnation techniques.

2 Background and Related Work

As increasingly infricaie computer systems are employed in every atea of our society,
many people find themselves reluctant computer users. To assist these users in
performing computer tasks, human-computer interaction researchers and specialists
have devised methodologics and models for aiding the design of complex computer
interfaces. These models differ in form and function, including:

Analysis of user knowledge (e.g., Action Language [27]; TAG: Task-Action
Grammar [26]; TAKD: Task Analysis for Knowledge Descriptions [13]; TKS:
Task Knowledge Structures [12]),

Performance prediction (e.g., GOMS: Goals, Operators, Methods, and Selection
Model [2]; Keystroke Level Model [2]; Cogritive-Complexity Theory {15]), and

Interface modeling {(c.g., CLG: Command Language Grammar [22]; ETAG:
Extended Task-Action Grammar [29]; ETIT [23]).

Most of these involve task descriptions, user mental models, and models of user
knowledge for task performance in one way or another. Overviews of these models
can be found in [30, 7].

Reisner's Action Langnage Model [27] is based on a grammatical analysis of a formal
grammar description of an interface design. Actions and inputs are viewed as
expressions in the language of the user. Complexity measures are applied to
grammars of the user's language, revealing inconsistencies, predicting user
performance, and identifying design decisions that might cause user errors. The
Action Language models computer and user as two cooperating and communicating
information processors.

The GOMS model [2] provides a foundation based on psychological theories for
purposes of predicting nser performance. Complex cognitive tasks are encapsulated
within the operators to simplify the modeling. The amount of detail generated in a
GOMS interface description allows for a very thorough evaluation at a very low level
of detail, but the GOMS description can be an enormous, difficult, and tedious to
produce, and typically requires the skills of a trained psychologist,

Using the GOMS model as a basis, Kieras and Polson [14, 15], have built a formal
model {0 describe user knowledge required for the performance of a task and for the
use of a device. This model uses computer program-like descriptions, written as sets

of production rules of user tasks that are analyzed or run as simulations (o predict user
performance complexity. Also, Kieras in [16] atiempts to relieve the need for
psychological training in the NGOMSL model.

The Command Language Grammar approach to user modeling [22] hierarchically
decomposes system functions into objects, methods, and operations. The
psychological hypothesis underlying the CLG is that *, . . to design the user interface
is to design the nser's model” [21]. Idealized user knowledge is represented with a
somewhat complex grammar having the appearance of a high level programming
language. As with GOMS, creating a CLG description is complicated and time-
consuming,

The Task Action Grammar [26] is another formal user model—specifically, a
cognitive competence model—with a command-language orientation. A meta-
fanguage of production rules encodes generative grammars that convert simple tasks
into action specifications. As in Reisner's work, a goal of TAG is (o capture the
notion of consistency. Marking of tokens in production rules with semantic features
of the task allows representation of family resemblances, a way of capturing
generalities of which the user may be aware [30]. Complexity measures taken on the
production rules are predictors of learnability,

Our own perspective in this paper is snbstantively different from the above
approaches, but has several points in common with the work of Carroll and Rosson;
we especially recommend their book chapter on usability specification f5]. Like our
Task Mapping Model and unlike the predictive models for analytic evaluation, Carroll
and Rosson's {3, 4] Task Artifact Framework has a significant empirical flavor.
Carroll and Rosson contend that interface designs coniain artifacts, user interface
objects, that are given meaning by user tasks. The artifacts represent various theories
through which properties of the artifacts imply certain psychological consequences
with regard to how users will view and use them. The interface designs incorporate
certain claims, which are articulated with both positive and negative (Carroll and
Rosson's upside and downside) clauses, about how the artifacts support the associated
tasks. Later, during evaluation, situated empirical evidence will arise tending to
confirm or refute the theory, and redesign, in the context of psychological design
rationale, may be necessary as part of the iterative process. The Task Mapping Model
also provides a framework in which situations {e.g., critical incidents identifying
usability problems associated with tasks) resulting from formative evaluation are
analyzed to produce interface design/redesi gn requirements for supporting user needs.

There is also a class of formative evaluation techniques not based on either formal
analysis or empirical user testing, These review-based evaluation procedures include
cognitive walk-throughs [18), other kinds of walk-throughs [1], heuristic evaluation
[24], and other usability inspection methods [19]. We believe review-based methods
have potential as efficient techniques for formative evaluation; however, the topic is
outside the scope of the present paper,

3 Theoretical Limitations of Analytic Evaluation Techniques

The Himitations in the ability of current analytic evaluation techniques to support the
iterative design cycle point directly to desirable characteristics for a more effective
approach. The analytic evaluation techniques we are discussing include techniques
associated with GOMS, CLG, TAG, TAKD, Kieras and Polson's approach, and
Reisner's Action Language Model. In grouping these techniques together, we
recognize that they are different techniques and do not all have the same
characteristics,. However, space does not permit making comparisons one by one,
with specific references to the literature. Thus, statements made about limitations
apply to the group in general, but each statement does not necessarily apply to every
technique.

3.1 Analysis vs. Synthesis Orientation

e Current; Most of the analytic evaluation techniques were originally oriented
toward analysis, intended to analyze existing interface designs. These methods
do not directty support iterative design. To improve an existing interaction
design, a developer must create a new design idea, modify the design model,
and see if the analysis shows the design to be better.

+ Desired: We seck a synthesis orientation, that could be used to capture new
interface designs as they occur and o aid the process of creating new designs.

3.2 Performance Prediction vs. Design Support

s Curent: Many of the analytic evaluation techniques have as a primary goal user
performance prediction, and successes have often occurred in special cases
where saving a keystroke or two can make a difference. Performance prediction
can be used only to compare two designs and, in itself, can suggest nothing to
improve a user interface design.

+ Desired: We have a goal of more direct design support. In particular, we seek a
technique that can produce design/redesign requirements,

3.3 Essentially Analytical vs. Essentially Empirical

» Current; The analytic evaluation techniques are based on manipulating design
representations and cannot take advantage of empirical data from users.

+ Desired: We seek an approach that involves analysis, but is still essentially
empirical, able to draw on the strength of empiricism inherent in the iterative
design cycle. This distinction is made cogently by Carroll and Rosson {5}, as
they point out that iterative design itsclf is essentially empirical.

34 Error-free Expert Performance vs. Error Handling

» Current: Almost all of the analytic evaluation techniques are based on the
assumption of error-free, expert task performance.

« Desired: We seck an approach that considers every task to be a potential error
site. As Carroll and Rosson [5] have said, error handling is an essential part of
task performance. In fact, error handling itself involves real tasks for
interpreting and reacting to feedback, which must also be accounted for in the
interface design. The study of error-related situations is essential in designing
for usability.

3.5 Task Hierarchies Oaly vs. Temporal Relations

= Current: While most of the analytic approaches produce a hierarchically
decomposed task structure, none deal with the temporal relations necessary to
provide a complete task-oriented representation of a design.

» Desired: We seek an analytic model in which task descriptions are built nupon
temporal relations. We need to be able to represent task performance in
contiguous time, task interruption, interleaving of tasks in time, and the inter-
relationships of concurrent tasks.

3.6 Global Modeling vs. Situational Analysis

+ Current; The analytic evaluation techniques are global modeling technigues,
requiring enormous effort and detail in modeling the entire design before
analysis, at any level, can be done.

» Desired: We seek a more situational approach that, like the analysis in Carroll
and Rosson's task artifact framework, can be applied where it is needed the
most—at specific situations or trouble spots identified by formative
evaluation—without first having to model the entire system in detail.

3.7 Closed-loop vs. Open-luop Inferaction

+ Current: Most of the analytic evaluation techniques are oriented toward open-
loop interaction, where a command is issued and the system executes it.

» Desired: We seek an approach oriented toward closed-1oop interaction, which
includes direct manipulation and incremental user planning within a tight loop
of concurrent action, feedback perception, and adjustment.

3.8 Consideration of Different User classes

» Current: Many analytic evaluation techniques cannot take different user class
definitions into account.

* Desired: We seek a model for analysis in which user class definitions constitute
an explicit separate dimension. The same task situation wili yield different
design/redesign requirements for different user classes.

3.9 Dependency on User Mental Models

* Current; Most of the analytic evaluation techniques are built upon mental
models of users. While this facilitates the application of cognitive psychology
to the modeling, so far the mental medels used have not been powerful enough
to provide direct solutions to many of the usability problems encountered in the
interface development process. The result is a dependency on mental models,
without having sufficient descriptive power of mental processes.

+ Desired: We seck an analytic approach that does not depend on user mental
models, but that can instead make creative use of empiricism to decide how
users view tasks.

4 The Task Mapping Model (TMM)

While the TMM can be used for initial design, our discussion here is limited to using
the TMM during analysis and re-design of user interface designs.

4.1 Supporting the Iterative Interface Design/Re-design Process

Currently we perceive a gap between the formative evaluation phase and re-design
phase of user interface design. There is a lack of methodological support for
translating formative evaluation findings into new design requirements or solutions.
TMM provides methodological support for bridging this gap, as seen in Figure 1. Ina
nutshell, TMM allows specialists to analyze users' tasks and system interfaces to
synthesize new interface design requirements. [t is worthwhile to note that TMM
analyses produce new interface design requirements and not interface design
solutions. It is not our intention to tie the hands of the designers, only to aid them in
focusing their creativity to meet specific requiremenis.

1 Start)

1

L

Functional Analysis
Task Analysis

Initial Interfuce
Design

TMM
Analysis of Design
Requirements

Design
Requirements

ﬂ\

Isability
Problems

Interface Evaluation Inte‘rface
T P——— Design &
ser lesting - 1
Usabilitﬁ Inspection Methods Re Design

Analytic Evaluation Techniques

f Evaluation]_nterfa.ce
Protatype Prototyping &
er Class Definitions Implementation
Representative User Tasks

Figure 1. Simplified Representation of Iteration within the Interface Design Process

Design
Specifications

4.2 Task Performance with Computers

It is a basic premise within the Task Mapping Model that the use of computers to
perform tasks requires each task to be conceptualized in various domains of
abstraction. These domains are viewed as levels (task, semantic, syntactic, and
interaction} in CLG [22], which is 2 model of interaction as well as a model of the
interface. Shneiderman, in his model of long term user knowledge [28] calls them the
task semantic, computer semantic, and syntactic domains. Since all of the domains
contain tasks (just at different levels of abstraction), we prefer to call this first domain
the Problem Domain. This is the domain in which the user deals with the problem to
be solved independently of computer-related considerations.

Figure 2 shows the domains of abstraction that comprise the TMM framework for
describing task performance. Each domain contains domain items (actions, objects,

and sub-tasks represented in the figure as open circles) associated with its level of
abstraction.

Problem Computer Compnter Arficulation
Domain Semantic Domain Syntactic Domain Deomain {TAN)
[TT5eT ATRON [T COMERK | 57s S1als |
o o =2 o
O— - :/ﬁ PO o
| -Ow___| o ‘ O
" o / i I, b . __ - O
o 25 i &
Higher Abstraction Lower Abstraction

o o = Domain Items / = Mapping m = User Knowledge Needs

Figure 2. TMM Framework to Describe Tasks

We make three observations about this framework as a model of task performance.
Our first observation is that the user must map each task to be performed using a
computer from one domain to the next, starting from the problem domain, which is
known to the user, and going to the computer articulation domain, which contains the
necessary physical interactions. Each mappings is shown as arrow in Figure 2,
transforming an individual domain item from one domain to the next. The net effect
of the mappings between domains is a reconceptualization, by the user, of the task
from one domain to the other, The small squares associated with each mapping
represent user mapping needs, i.e., knowledge users need to make the mappings.
Mappings from higher to lower levels of abstraction correspond to Norman's
execution paths. [25, 11]

The second observation is that the mappings also exist in the opposile direction—also
shown in Figure 2. OQriginating with the computer feedback in the articulation
domain, these mappings represent the abstraction of behavior occurring within
interface artifacts back to the problem domain. These mappings from lower to higher
levels of abstractions are equivalent to Norman's evaluations paths. [23, 11]

The third observation the articulation domain is the site of the User Action Notation
(UAN), a task-oriented notation we have developed for behavioral representation of
user interface designs [8, 9]. The UAN is based on user actions, system feedback,
and interface state changes that occur in the articulation domain.

43 TMM Task Deseriptions

As discussed above, TMM task descriptions are based on a framework within which
one can decompose tasks into levels of interaction or abstract domains. This
decomposition framewaork aids well the identification of user knowledge necessary
for making the mappings and performing the task, and also provides an indication of

Problent Domain Computer Semarnlic Computer Syntactic Arttcutation Domain
Domain Domain UAN
Actions Feedback State
L
Duplicate » Copy Refe <C0p;;_—-——'—"" ﬁ;l?bmm&
Document ————1 Cetarmand>
——= Fle~—__| /ﬁ <CR>
[T Reference
<Filename> /
Execule Comaand
High Abstraction Level Low

Figore 3: Example of TMM Domains with Mappings

the level of abstraction corresponding to a given element of this user knowledge. To
elaborate on the four domains that comprise TMM’s task description framework:

Problem Domain: Highest level of abstraction that includes items defined within
the users” work world, external to the computer sysiem,

Computer Semantic Domain: Highest level of abstraction of computer ifems
involved in a given task being modeled,

Computer Syntactic Domain: Grammatical components of interaction, including
commands, compuier objects, and associated user actions. Although more
abstract that the specific physical user actions of the articulation domain, these
syntactic components are somewhat dependent on interaction style (e.g., action-
object order verses object-action order, or ‘select command’ for direction
manipulation verses ‘reference command’ for a command line interface).

Articulation Domain: The actual communication sequence between user and
computer. (TMM currently employs the user action notation, UAN [9), as a
behavioral notation to describe user action and feedback at the articulation
level.)

Figure 3 depicts a command line interface example task (DUPLICATE DOCUMENT)
mapped from the problem domain down to the articulation domain. It should be
noted the computer syntactic domain terminology is derived from Lenorovitz’s et al.
user-internal and user-external taxonomies, [17]

In order to make the mappings, users have knowledge requirements. For example, to
perform the mapping between DOCUMENT and FILE, the user must know that a
DOCUMENT is stored in an abstract computer artifact called a FILE. Each mapping is
potentially associated with a set of knowledge elements—indicating the users’
knowledge needs for that mapping. TMM knowledge elements are not specified
within a formal grammar, but in natural language.

The TMM distinguishes diffcrent types of knowledge into the following categories:

Fuactual Knowledge (FK): Specific facts. E.g., documents are contained in files,
files can be grouped into folders,

Conceprual Knowledge (CK): Collections of knowledge that comprises a whole.
E.g.. general knowledge about direct manipulation interfaces, pointing devices.

Procedural Knowledge (PK): Course of action and outcome knowledge, i.c.,
knowledge that indicates how to do something necessary for task performance.
E.g., double-clicking on a folder shows contents.

The example in figure 4 shows part of a TMM description for the task DISCARD
DOCUMENT (problem domain) within the Macintosh environment (computer syntactic
domain). Notice that the system feedback starts an evaluation path from the
articulation back to the computer syntactic domains, and thus, interaction specialists
can incorporate feedback within their analysis. This example also shows various
knowledge elements associated with the paths. Of course, this example is only a
small piece of the overall description for DISCARD DOCUMENT.

Cotnputer Syntactic Aniculation Domain
Do UAN
User System
Action Feedback State
—_—
] ~[<File>-1]
Select <Fllename> CK: Direct Manipulation Interfaces | MV ilesr-h<Files-1
File Teon PK: File must be selected before [Feres
Deletion 3 Tie'>-| selecled =
"] <File>

~[xy* outtine
<File> -
Overlay <Filenames ~Trastican} fgine

FK: File, <Filename>, is Se[zcted;
File Ieon onte <Filess > ~

<Traghean> Teon PK: Selected Fil must b Dragged to (Teachcan]!
<Trashean> ieon for Deletion 4
High Abstraction Level Low

Figure 4: Example Task Description with Knowledge Needs on Mappings

Creating a full TMM task description for a particular task is an iterative process. First
a task is chosen, and decomposed as far as possible within the problert domain, (tis
possible that only one of its sub-tasks needs to be analyzed.) Next, the task is
represented within the computer semantic and syntactic domains, and finally the
articulation domain as the user would perceive it, These domains are not foreign to
the task analyst, but the notation and mappings among the domains are new. The
analyst links related adjacent domain items with mappings and identifies necessary
user knowledge for each mapping, This process continues until the analyst is satisfied
with the description; satisfaction is attained through task description walkthroughs
and peer evalnation.

The TMM Analysis Guide [20] farther describes notations for knowledge types,
variables within task descriptions, and task timing relationships (e.g., sequential,
interleaved, concutrent).

44 TMM Life Cycle

The discussion, thus far, has centered on TMM as a task description technique;
however, TMM consists of several methods for describing and analyzing tasks (o
derive interface re-design requirements. The process begins by focusing on a single
situation (thus, we call it situational arnalysis) involving a usability problem identified
during formative evaluation. Within the TMM framework, the analysts describe just
those user tasks directly relaied to the usability problem in question, decomposing

e N

TMM Task | = Synthesis of User Interface
- asi _ " . N
Description |, cription| ;im;: Dtﬁlgn Requirentents
K MII .d{ Needs Requlrements | —
Interface Desiven ch::; esi Ee Swpporied ‘
¥y Krowledge . {Store for
er Ligss Needs Suppaorted by User Class Profies S) terafive
Profilels) Design
Supported by nterface
—e—— o - SeppontedTy Teer Traming Use in
Traintin
Materials

Figure 5. TMM Life Cycle

them over the domains of the model. By analyzing the task description, the designer
can determing the total knowledge required by the user to map the task through the
domains,

User class profile(s) established for a design, which describe the skills and knowledge
users arc expected to bring to a task, are used to determine which knowledge
fequirements can be supported by the user. These are subtracted from the total
knowledge needs for the task. Similarly, knowledge already supported in the
interface design and knowledge expected to be supported by training can also be
subtracted from the total, as shown in the right-hand side of figure 5. The remaining
knowledge requirements are unsupported and our experience has been that, by now,
these needs are specific enough (o be stated almost directly as re-design requirements.
Within the broader interface development life cycle these requirement are given to
designers who will produce designs, which are passed on to the implementer, and so
on back through the iterative cycle of design and evaluation,

TMM provides analyses to derive only interface design requirements and not
interface design specifications. This is an important distinction becanse TMM will
hol stunt the creativity of the interface designers, only point them to unsupported
knowledge needs. This process of task description, analysis for nser knowledge
needs, and synthesis of interface design requirements represents the TMM life-
cycle—depicted in Figure 5.

A complete description of the TMM life cycle, and its component parts, is in [201.

4.5 Example

Limited space permits only a brief, simple example to illustrate the TMM life cycle
and the production of re-design requirements. Space limitations also preclude the use
of forms which have been developed to aid TMM analysts in carrying out this
process. Here we can only summarize,

Consider, as part of a broader word processing task, that a user wishes to discard
(remove from the system) a specific existing document, In the problem domain, this
is an instance of the DTSCARD DOCUMENT ask that we discussed in section 4.3, In
order to make this mapping the user must know that DOCUMENTS on the computer are
stored in FILES(factual knowledge, perhaps as part of a body of conceptual
knowledge). The user must also know that there is some kind of command (that we
are generically calling ERASE here) to remove a FILE within the compater systern,
So the mapping for this task from problem to computer semantic domain is a mapping
of DISCARD DOCUMENT (0 ERASE FILE, Suppose the user class definition makes it
clear that the users we are focusing on should know that documents are stored in files
and that files are discarded by crasing, then no re-design requirements are generated.

Next we look at the mapping from the computer semantic to the computer syntactic
domain, Since, in the syntactic domain, we are no longer independent of the
interaction style of the implementation platform, let us assume we are using an Apple
Macintosh compuier. The syntax involves a sequence (as seen in Figure 4): sErEcr
<FILENAME> FILE IcoN, followed by OVERLAY <FILENAME> FILE ICON
ONTO <TRASHCAN> ICON. A wser familiar with the Macintosh will have no
problem mapping this to the articulation domain as shown in Figure 4. However, if
the user is only a little familiar with desktop-metaphor computers, the knowledge of
how to map the ERASE command to the dragging and dropping of the file icon into
the trashean could be missing. In such a case the Macintosh design does not support
the users’ knowledge needs for this task.

Looking in the user class profile, suppose we determine that, although the user cannot
be expected to know the exact command name for erasing, the user will have
knowledge the concept of erase (conceptual knowledge), If, however, the profile
identifies a general understanding of a WIMP (window, fcon, menu, pointer)
interface, it is reasonable to assume users in this sitnation will know how to search for
a command name that matches the concept of erase (e.g., by looking at all button
labels and through all menus) and, with reasonable command names, will recognize
the match when it is found. If the system being used is, say, Microsoft Windows, our
analysis leads us to conclude that the user will discover the DELETE command on the
FILE menu and the task can be completed. Using the Macintosh, which has no
explicit DELETE comunand for files, the user will not be supported,

This leads directly to the following re-design requirement for this user class and this
task: provide an explicit visual cue to aid discovery of the file deletion command.
The way in which this requirement is satisfied is the responsibility of the designers
and outside the realm of TMM, but it could be somethintg as simple as inclnding a
DELETE choice on the FILE menu. To aid learning by the novice user of the drag and
drop alternative, the design could also provide animation of the file icon moving over
and into the trashcan icon as part of the feedback for the DELETE choice from the
FILE menu,

5

Conclusions

The Task Mapping Model has a synthesis orientation, intended to capture new
interface designs as they occur and to aid the process of creating new desi £ons.,

communicate interface designs to implementers,

The Task Mapping Model has a goal of direct design support, rather than yser
performance prediction, yielding specific design/redesign requirements.

The Task Mapping Model is essentially empirical in that it is explicitly designed
to take advantage of the empirical data generated by formative evaluation and
€an use empirical observations as models for how users perform tasks.

Not being limited to error-free, expert task performance, the Task Mapping
Model considers every task as potentially an error site, Error handling is
described and analyzed just ag any other task,

The Task Mappin 2 Model sk descriptions are more complete becanse they
inclnde the temporal relations of the UAN,

Although the Task Mapping Model can be applied giobally to an interface
design, a strength of this approach is in situational analysis that can be applied
where it is needed the most, "Trouble spots identified by formative evaluation
can be analyzed without first modeling the entire design,

The Task Mapping Model is oriented toward closed-loop interaction, which
includes direct manipulation and incremental user planning.

Different user class definitions are an explicit dimension of the Task Mapping
Model which uses these definitions to determine very specific user needs,

The Task Mapping Model does not depend on user mental models (i.e., models
of how users store and retrieve mformation),

TMM fills the gap between formative evaluation and interface design. TMM is a
Practical task-oriented approach that utilizes situational analysis to derive new user
interface design requirements, As a methodology, TMM is still in its infancy and
neceds empirical validation which is planned as future work,

There are many other avenues of future research for TMM. Task metrics are an

obvi

Acknowledgments

Apple is a registered service mark; Macintosh is 3 registered trademark of Apple
Computer, Inc, Microsoft and Windows are registered trademarks of Microsoft
Corporation.

CR Categories and Subject Descriptors: D22 [Software Engineering): Tools and
Techniques—yser interfaces; D.2.1 [Software Engineering]: Requirements and
Speciﬁcations—methodologies; H.5.2 [Information Interfaces and Presentation]:
User Interfaces—evaluation/mthodology, screen design, theory and methods

References

1. Bias, R, Walkthroughs: Efficient Colluborative Testing, IEEE Software, 1991,
8(5): pp. 94-95.

2. Card, S.K,T.P. Moran, and A. Newell, The Psychology of Human-Computer
Interaction, 1983, Hillsdale, New Jersey: Lawrence Erlbanm Associates.

3. Carroll, J. M. Infinite Detail and Emulation in gn Ontologically Minimized HCE
in Human Factors in Computing Systems, CHI ‘90 Conference. 1990, Seattle,
Washington, Apri 1-5: ACM, pp. 321-327.

4. Carroll, T. M., W. A, Kellogg, and M. B, Rosson, The Task-Artifact Cycle, in
Designing Interaction; Psychology at the Human-Computer Inrerface, ed.] M.
Carroll. 1991, Cambridge University Press: New York. pp. 74-102.

5. Carroll, J. M. and M. B. Rosson, Usability Specifications as g Tool in Iterative
Development, in Advances in Human-Computer Interaction, ed, HR, Hartson,
1985, Ablex Publishing Corporation: Norwood, New Jersey. pp. 1-28.

6. Gould, . D. and C. Lewis. Designing Jor Usability—Key Principles and Whar
Designers Think, in Human Factors in Computing Systems, CHI ‘83 Conference.
1983. Boston, Mass., December 12-15: ACM, pp. 50-53.

7. Haan, G.d,G.C.v.d Veer,and J. C, v. Vliet, Formal Modelling Techniques in
Human-Computer Interaction, Acta Psychologica, 1991, 78: pp. 27-67,

8. Hartson, H. R, and P, D. Gray, Temporal Aspects of Tasks in the User Action
Noration, Human-Computer Interaction, 1992, 7- pp. 1-45,

10.

11.

12,

13.

14.

15,

16.

17.

18.

19.

20,

Hartson, H. R., A. C. Siochi, and D. Hix, The UAN: A User-Oriented
Representation for Direct Manipulation Interface Designs. ACM Trans. on Info,
Sys., 1990. 8(3): pp. 181-203,

Hix, D. and H, R, Hartson, Formative Evaluation: Ensuring Usability in User
Interfaces, in Trends in Computing: Human-Computer Interaction, ed. 1.. Bass
and P, Dewan. 1993, John Wiley and Sons: New York.

Hutchins, E. 1., J. D. Hollan, and D. A, Norman, Direct Manipulation Tnterfaces,
in User Centered System Design, ed. DA, Norman and S.w. Draper. 1986,
Lawrence Erlbaum Associates: Hillsdale, New J crsey. pp. 87-124, Chap. 5.

Johnson, H. and P. Johnson, Task Knowledge Structyres: Psychological Basis
and Integration into System Design. Acta Psychologica, 1991 78: pp. 3-26.

Elsevier Science Publishers B V. (North-Holiand), Pp. 4é9-503.

Kieras, D. and P. G. Polson. A Generalized Transition Network Representation
Jor Interactive Systems, in Human Factors in Computing Systems, CHI ‘93
Conference. 1983, Boston, Mass., December 12-15: ACM, pp. 103-106.

Kieras, D. and P. 5. Polson, An Approach to the Formal Analysis of User
Complexity. Int. J. Man-Machine Studies, 1085, 22; Pp. 365-394.,

Kieras, D. E., Towards g Practical GOMS Model Methodology Jor User Interface
Design, m Handbook of Human-Computer Interaction, ed. M. Helander, 1988,
Norti-Holland: Amsterdam, pp. 135-157, Chap. 7.

Lenorovitz, D. R, M. D, Phillips, R. §. Ardrey, and G. V. Kloster, A Taxonomic
Approach to Characterizing Human-Computer Interfaces, in Human— Computer
Interaction, ed. G. Salvendy. 1984, Elsevier Science Publishers B. V..

Amsterdam. pp. 111-116.

Lewis, C., P. Polson, C. Wharton, and J. Rieman, Testing g Walkthrough
Methodology for Theory-Bagsed Design of Walk-Up-and-Use Interfaces, in
Human Factors in Computing Systems, CHI “9¢ Conference. 1990. Seattle,
Washington, April 1-5: ACM, pp. 235-242.

Mack, R. and J. Niclsen, (Workshop) Usability Inspection Methods, in Human
Factors in Computing Systems, CHI ‘92 Conference. 1992, Monterey, California,
May 3-7: ACM, pp. 691.

Mayo, K. A. Tusk Mapping Model Analysis Manual (TR-93-07). 1993,
Department of Computer Science, Virginia Tech (VPI&ST), Blacksburg,
Virginia,

21.

22,

23.

24.

25.

26.

27.

28.

29.

30.

Moran, T. P., A Framework Jor Studying Human-Computer Interaction, in
Methodology of Interaction, ed. e.a. Guedj. 1980, North-Holland Publishing Co,:
pp. 293-301.

Moran, T. P., The Command Language Grammar: A Representation for the User
Interface of Interactive Computer Systems. Tnt. J. Man-Machine Studies, 1981,
15: pp. 3-50.

Moran, T. P. Getting into a System: External-Internal Task Mapping Analysis, in
Human Factors in Computing Systems, CHI ‘83 Conference. 1983, Boston,
Mass., December 12-15: ACM, pp. 45-49.

Nielsen, I. Finding Usability Problems. Through Heuristic Evaluation, in Human
Factors in Computing Systems, CHI ‘92 Conference. 1992, Monterey, California:
ACM, pp. 373-380,

Norman, D. A, Cognitive Engineering, in User Centered System Design, ed.
D.A. Norman and S.W., Draper. 1986, Lawrence Erlbaum Associates: Hillsdale,
New Jersey. pp. 31-65, Chap. 3. ‘ :

Payne, S.J. and T, R. . Green, Task-Action Grammar: The Model and its
Developments, in Task Analysis for Human-Computer Interaction, ed. D, Diaper.
1989, Ellis Horwood Limited: Chichester. pp. 75-107.

Reisner, P., Formal Grammar as a Tool Jor Analyzing Ease of Use: Some
Fundamenial Concepts, in Human Factors in Computer Systems, ed. 1.C.
Thomas and M 1. Schneider. 1984, Ablex Publishing: Norwood, New Jersey. pp.
53-78.

Shneiderman, B, Designing the User Interface: Strategies Jor Effective Human-
Computer Interaction. 1987, Reading, Massachusetts: Addison-Wesley
Publishing Company.

Tauber, M. J. ETAG- Extended Task Action Grammar—Aa Language for the
Description of the User’s Task Language, in JETP Conference on Human-
Computer Interaction—INTERACT 90, 1990. Cambridge, UK., August 27-31;
Elsevier Science Publishers B.V. {North-Holland), pp. 163-168.

Wilson, M. D, P, J. Barnard, T R. G. Green, and A. Maclean, Knowledge-Based
Task Analysis for Human-Computer Systems, in Working with Computers:
Theory versus Outcome, ed. G.C.v.d. Veer, et al. 1988, Academic Press: London,
pp. 47-87.

