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Abstract.

The problem of finding a reduced order model, optimal in the H % sense, to a given system
model is a fundamental one in control system analysis and design. The addition of a H* con-
straint to the H? optimal model reduction problem results in a more practical yet computationally
more difficult problem. Without the global convergence of probability-one homotopy methods the
combined H2/H* model reduction problem is difficalt to solve . Several approaches based on
homotopy methods have been proposed. The issues are the number of degrees of freedom, the
well posedness of the finite dimensional optimization problem, and the numerical robustness of the
resulting homotopy algorithm. Homotopy algorithms based on two formulations — input normal
form; Ly, Bryson, and Cannon’s 2 X 2 block parametrization — are developed and compared here.

1. Introduction.

In a feedback control setting, order reduction techniques may be used either to simplify the
plant for control design or to simplify the controller for ease of implementation. In either case, the
resulting reduced-order systems must be constructed with their closed loop role in mind. Although
numerous order reduction techniques have been proposed, it is clear from small-gain type arguments
that the order reduction procedure should be to approximate the system frequency response to the
greatest extent possible. _

Several order reduction techniques have been proposed for approximating the frequency re-
sponse of a given system. For example, frequency weighting has been studied in [5] in conjunction
with balancing [12]. Moreover, Hankel norm reduction has been shown to have fundamental ram-
ifications for frequency domain approximation [1], [2], [7]. An overview and discussion of these
ideas is given in [3].

In the present paper we follow the approach of [8], which is based upon a state space H*®
formulation. In particular, by using a Riccati equation to enforce an H*° constraint on the norm
of the reduction error in conjunction with an H? upper bound or entropy cost [13], it was shown
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in [8] that H* constrained reduced order systems can be characterized by necessary conditions for
optimality of the H?* upper bound. The resulting algebraic conditions, which are a generalization
of the “pure” H? optimality conditions given in [9], consist of nonstandard coupled Riccati and
Lyapunov type matrix equations.

The purpose of the present paper is to make significant progress in developing novel, stable,
globally convergent numerical algorithms for solving the optimality conditions for # 2/H®> order
reduction given in [8]. The approach we take is based on the construction of probability-one
homotopy maps, similar to those developed for the H? order reduction problem in [6].

9. Statement of the Problem.

Given the controllable and observable, time invariant, continuous time system
#(t) = Az(t) + B Du(?), 1)
y(t) = Ca(t),
where t € [0,00), A € R"*" is asymptotically stable, B € R**™ (€ R, D € R™*? (m < p)

and the input Du(t) is white noise with symmetric and positive definite intensity V' = DDT, find
a N -th order model (7, < 1)

Em(t) = Am m(t) + Bm Du(t),

Ym (1) = Crm Tm(1),
where A,, € RmX"m B, € B*»*" Cp € R'X"m  which satisfies the following criteria:
(i) Ay, is asymptotically stable; :
(i) the transfer function of the reduced order model lies within 7y of the transfer function of the
full order model in the H, norm, i.e.,

|H () — Hrm(8)lloo < 7 (3)
where H(s) = EC(sI, — A)™'BD, Hy(s) = ECnm(sln — Ap)'B,.D, v > 0is a given constant,
E € R (g > 1) is a given constant matrix; and

(2)

(iti) the H? model reduction criterion

is minimized, where & is the expected value and R = ETE is a symmetric and positive definite
weighting matrix.

2. The auxiliary minimization problem.

Define
= n+ vy, EEEC’, D= BD,
= A 0 = B %
AE(O Am)’ BE( m), C=(C -Cun) (5)
T T
r=prp=cmao=( S ao )
~CELRC ChpRCnm

_BVBT BVBL ) ()

“\B.VBT B.VBL
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The full order system (1) and the reduced order system (2) can be written as a single augmented

system
&) = A&(t) + Du(t),
j(t) = C (). (7
Using this notation the cost J(Ayn, Bm,Cm) can be written as
J(Ams By Cri) = Jim € [(4 = 9m)T B (= Ym)]

N . = 8
= tEI‘[)log(ﬂT Ry = tli]]élo EET RE) = tr (QR), ®)

where § satisfies
AJ+ QAT +V =0. (9)

Lemma t [8). Let (Am, Bm,Cm) be given and assume there exists Q € RPX% gatisfying

Q is symmetric and nonnegative definite (10)
and
AQ+ QAT +77%QRQ+V =0. (11)
Then
(A, D) is stabilizable (12)
if and only if

A is asymptotically stable.
Furthermore, if (12) holds, then
|15 (8) = Hm(8)lloo < 7 (13)
0<Q (Q-Q is nonnegative definite), and
tr OR = J(Am, BmyCr) < T(Amy By C) = tx QR.
Hence the Ho, constraint is automatically enforced when a nonuegati{re definite solution to (11}

is known to exist. Furthermore, the solution @ provides an upper bound for the actual state

covariance () along with a bound on the H? model reduction.

The satisfaction of (10)-(12) leads to (i) A, stable; (ii) a bound on the Ho, distance be-
tween the full order and reduced order systems; and (iii) an upper bound for the # 2 model-
reduction criterion. The auxiliary minimization problem is to determine (A, By, Crn) that min-
imizes J(Am,Bm,Cm) and thus provides a bound for the actual H? criterion J{Am,Bm,Cm).
(Am, Bm, Cr) is restricted to the set

S = {(Ams Bm,Cm) A +v72QR is asymptotically stable,
Q is symmetric positive definite,
and (Am, Bm,C) is controllable and observable 1.
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3. A homotopy approach based on the input normal form.

Theorem 1 [10]. Suppose A, is asymptotically stable. Then for every minimal
(Am, B, Cr), iee., (Am,Bn) is controllable and (Am,Cy) is observable, there exist a similarity
transformation /' and a positive definite matrix @ = diag(wy, ..., w,,, ) such that 4, = U-14,,U,
Bm = U8By, and Cy, = Cp U satisty

0=An+ AL + B,,VBL,

14
0=4%70+04,, + CIRC,. )
In addition,
_ 1 T _ (CRRCn),
n)ii= =5 BV Bn)i i = (BaVEE),’ (15)
(CgRCm)ij —wj (‘BmV‘B‘g;)éj .
(Am)gj = wr — g » if w; # (.u’j.

Definition 1. The triple (Am, Bm,C’m) satislying (14) or (15) is said to be in input normal
Jorm.

To optimize J (A, By, Crn) over the open set & under the constraints that symmetric positive
definite Q satisfies (11), and (Am;s By Cp) is in input normal form, the following Lagrangian is
formed: _

L(Am; B, Crny R, Q,P, M., M,) =
tr [QR+ (AQ+ QAT +472QRQ + VP
+ (An + A7 + BuVBL) M. + (ALQ + QA4n + CLRC,) M,],
where the symmetric matrices M,, M,, and P € B3*® gpe Lagrange multipliers. Q = diag (wy,.. .,
W, ) is related to the input normal form constraint. Setting L/3Q = 0 yields

0=(d+772QR) P+ P(A++72QR) + R. (16)
Partition Q, P € R**% into
Q1 Qi Py Pry
(&%) (3 :
of, @ PL P (7
where Q1, Py € R™™™ and Qy, P; € R™X"m_ Define
Zy  Zyy
PO=7= ( ) 18
Loy 2y (18)

where

Zy = Pi1Q; + PpQL, Z12 = P1©Q12 + P12Qs,
7y = PLO, + P 0%, 7y = PHL Qi + P2 0,.
OLfOQ =0 and BE/3A,, = 0 yield 0 = (AmMo)“, and

0= 2M, +20M, +2(P012 + P2 Q;), 1<i< np.
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A straightforward calculation shows

3%% = 2(PLBV + 7B, V) + 2M,B,.V,
or _ 2(RCm Qs — RCQ12) + 2RCm M,
'{.ﬁ; = m=3 — 12} 4 mio (19)
+v77 [—-RC(ZiTQm + Z3 Qs + Q1713 + Q12 7)
+ RCw(Q3 Z12 + Z5 Q15 + @22, + Z7 Q).
Theorem 2 [4]. The matrices M, and M, in (19) satisfy
M, = —(%S + QM,),
1 &
(MO)ii == (Am)ﬁ ;(Am)ij (Mo)ji’ (20)
i
Gl ) S
(M) ,; = Sy i # Wi
where
S =2(Ph Qs + P2 Q). (21)

A homotopy approach based on the input normal form is now described. Let Ag, By, Cy
Bg, Vi, and v; denote A, B, C, R, V, and v in the above and define

AQ) = Ao+ M4y - A),  B(N) = Ro+ A(Ry - Ro),
B(A)=Bo+ABs—By), VQX)=Vo+ AV — Vo), (22)
CA)=Co+ MCs=Co), 1A=+ (17 = 0).
For brevity, A(A), B(A), C(A), R(}), V(}), and 4(}) will be denoted by 4, B, C, R, V, and v
respectively in the following. Let

Hp,.(6,)) = % = 2(PLB + PoBn)V + 2M,B,,V,
oL
He, (0,)) = 3o = 2R(CmQs ~ CQu3) + 2RC M,

+ 77 [~RC(ZT Q2 + ZL Qs + Q1 712 + Q127)
+ RCu(Qh 212 + Z5Q12 + @225 + 2§ Q)]

where 6 = (Vec (B,) Vec (C)) denotes the independent variables B,, and C,,, M, and M,
satisfy (20), and Q and P satisfy respectively (11) and (16) with partitioned forms (17). Vec(P)
for a matrix P € R?*? is the concatenation of its columns:

Vec(P)=(Py Py ... Py)T e R,
The homotopy map is defined as
p(0,7) = (Vec [Hp, (0,))] Vec [Hc, (6,2)])7, (23)
and its Jacobian matrix is
Dp(8,) = (Dop(8,2), Drp(8, 1)) (24)
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Define _
Hp,, (PO, M) = 2(PLPB + P B,V 4 24 B,V
Ho, (@Y, 29, MD) = 2R(C 0 - € OY) + 2RC,, M)
—1RC(2 Q1 + 2590, + 270 + 75 0
+ Q721 + 079 + &9 7 + 01,20
1RO (2359 01 + 25,0 + 0f 0 21, + 0, 2D
+97 %+ 2,90 + 02 1 27 o),
where the superscript (§) means d/86;: YU) = Y /98;. Using the above definitions, we have for

8; = (Bm)kv

OBy _ 5 (o) 170) (k)
m—ﬂBm(P s M )-I-?('Pz-l-Mc)E v,

0He, 4 B ) (i)
a(Bm)m“Hc"‘(Q 20, M57),

(25)

and for 8; = (C’m)H,

O0Hp - : :
wa— = Hp (PO, M),
a(cm)kl By ( ¢ )

JHc,,
3(0:71,)]:1 .
+ 1 REE(25,00 + 0 700 + Q7 2, + 27 Qy),

where B is a matrix of the appfopriate dimension whose only nonzero element is em = 1. P
and Q) can be obtained by solving the Lyapunov equations

0= (A+177QR)OD + QW (4 + 4y~20R)T 4 V)
+ AD Q4 QATGY 4 7 2QRWQ,
0= (A+772QR)"PW L PO (A +y~2QR) 4 (27)
+ (AD 4 429D f 4 420 BT
+ ;D(j{(ﬂ +y42QW R 4 7—2Q}§(J’))_
The computation of Dxp(8, A) is similar to that of Dyp(8, A).

= fo, (01, 20, M) + 28 E(k,l)(gz + M) (26)

4. Numerical algorithm for input normal form homotopy.

The initial point (8, A) = (6,,0) = ((Bu)o, (Cm)o, 0) is ideally chosen so that the triple ((Am o,
(Bm)o, (Cm)o) is in input normal form and satisfies £(0,0) = 0.

Theorem 3 [12]. Suppose 4 is asymptotically stable. Then for every minimal (4,B,0),
ie., (4,B) is controllable and (A4,C) is observable, there exist a similarity transformation T
and a positive definite matrix A = diag (dl,dg,"',dn) with d; > d;11 such that 4 = T-1AT,
B=T"1B,and C = CT satisfy

0=AA+AAT + BV BT,

0=ATA + A4 + CTRC.



Definition 2. The triple (4, B,C) in the above theorem is balanced.

According to Moore [12], under certain conditions, the leading principal n,,; X 1., block of A,
the leading principal n,, x m block of B, and the leading principal I X n,, block of ¢ in balanced
form are good approximations to the reduced order model. This suggests that the initial point
(85,0) be chosen as follows:

1) Transform the given triple (4;, B #» C) to balanced form (4;, By,Cy).

-
2) Partition (A, By, Cy) as Ay = nm { ( An Alg),
Ayt An
Nem
o
=i B
Bb:ﬂ {(B:), Cb"'_.- (Cl 02)

3) (Ao, Bo, (o) is chosen as Ay = (AOH Agg)’ By = (131), Co=(Cy 0).

4) The initial point for the reduced order model is chosen as

7= (Vec (Em)o) _ (Vec B1)
0=\ Vec (Cmlo)  \VecCy )’

and (4,,)0 = A1y by construction.

5) Transform the initial point {(4m)o, (Bm)o, (Cm)o) to input normal form so that the initial
reduced order model is ((Ay)o, (Bm)o, (Crdo) = (T (Ao, T, T (Bmo » (Cr)o T).
The initial point for the homotopy map is then (60,0), where 6y = (Vec (Bp)o Vec (Cm)o)¥.

{In general, the truncation to obtajn the approximate reduced order model should be based on the
component costs instead of on the sizes of the balanced gains d; as done above [14]. This explains
why in some cases the above algorithm for choosing the initial points did not lead to a reduced
order model with a minimal cost.) '

The above method for choosing the initial point will not give a zero value for the homotopy
at A = 0 unless the initial y is chosen so that the term Y2QR is negligible. The initial 4 can be
chosen as a sufficiently large positive number (7(0) = oo corresponds to p(d5,0) = 0 exactly).

Once the initial point is chosen, the rest of the computation is as follows:

1) Set A:=0, 8 := 4.

2) Calculate A, from B,, and C,,, R, V, and compute Q and P according to (11) and (16).

3) Evaluate § from (21) and M, and M, according to (20).

4) Evaluate the homotopy map p(6,2) in (23) and Dp(6, \) in (24).

5) Predict the next point Z(®) = (4(0), A®) on the homotopy zero curve using, e.g., a Hermite
cubic interpolant.

6) For k:=0,1,2, .- until convergence do

254 = [Dp(z )] p(2),
where [Dp(Z )]Jr is the Moore-Penrose inverse of Dp(Z). Let (6, M) = Jim Z#),
—c0

7) K Xy < 1, then set 0 := b1, A 1= Ay, and go to step 2).
8) If Ay > 1, compute the solution g at X = 1. Ap, is then obtained from B,, and Cin.

An alternative strategy for choosing an initial point is as follows:
1) Modify A; to Al = e1T + ey Ay, where ¢; < 0 and es > (0.
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1) Transform (A%, By, Cy) to balanced form and choose (Ap, B§, C§) as before.

3) Compute the initial reduced order model ((Am)o, (Bm)o, (Cm)o) from the triple (A}, BY, )
as before.

When ¢; = 0, ¢; = 1, this strategy reduces to the previous one. For some problems, our
numerical experiments show that HOMPACK reaches A > 1 in fewer steps with ¢, # 0 than with
¢1 = 0. A modification to the homotopy map p(8, A)in (23) is p1(0,A) = Ap(8,X) + (1 - AY(0-8,),
where fp denotes the initial value of § at A = 0. For some problems this homotopy map can be
more efficient than the one in (23), while in other cases it can be less efficient.

5. Homotopy algorithm based on Ly’s formulation.

Ly et al. [11] introduced another canonical form also with M + Ny, { parameters as in the
input normal form formulation. The reduced order model is represented with respect to a basis such
that 4, is 2 2x2 block-diagonal matrix (2% 2 blocks with an additional 1x 1 block if T is 0dd) with

2 % 2 blocks in the form (g i) » B is a full matrix, and C,, = ((Cah (Cn)z -+~ (Cn )

where
1 % oo £\7
(Cm)% = (0 * e *) .

It is assumed that (4,,, Br,Crm) is in Ly’s form. Let Z be the set of indices of those elements
of A, which are parameters, ie., T = {(2,1),(2, 2)s -+« (Pmynm) }. To optimize T (Apm, By Ca)
over the open set S under the constraint that symmetric positive definite Q satisfies (11), and
(Am; By Cn) 18 in Ly’s form, the following Lagrangian is formed:

L(Ams By Con, P, Q) = tr [QR 4 (AQ + QAT + v~20F0 + VP,
- where P € R™*% j5 3 Lagrange multiplier. Setting 8L/0Q = 0 yields (16). Partition Q, P € RAx#
as in (17) and define PQ = Z as in (18). The partial derivatives of £ can be computed as
oL

m = Q(Plr‘rg' Qs + Py Qz,)ij, (i,5) ez
oL
2B = 2(PLBV + PB,V),

ar
B(Cy; ~ 2Om Qs — BOGu)
+ 77 [~RC(Z{ Qua + 25 Qs + 1 Zus + Q12 23)
+ RCm(Q,iran + Zﬂ ng -} Qng + Z}’Qz)]”

Let Ay, By, Oy , Ry, Vy, and 77 denote A, B, C, R, V, and 7 in the above and define A(N),
B(A), C(A), R(A), V(}), and y(X) as in (22) and denote them by 4, B, C, R, V, and 7 respectively
in the following, Let

oL
Hy, (0,\) = Y 2(PL Q1 + P20s),

aL
Hp, (6,)) = B = 2(PLB + P2Bn)V,

ar
He,(0,2) = Yo 2R(Cn Qs ~ C Qo)

+ 77 [~RO(Z{ Q0 + Z5,Q2 + @1 213 + Q122y)
+ BCn(Qhy 712 + 255010 + @27 + 27 Qy)],
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where in H4_ only those elements corresponding to the parameter elements of A are of interest
and

= ((Am)r Vec(Bn) Vec (Cu)r.)T (28)
denotes the independent variables, Q and P satisty respectively (11) and (16), (A )z is a vector
consisting of those elements in A, with indices in the set 7 , 1.e.,

(An)z = ((Am)a1, (Am)s2, (A )
and (Cm)r. is the matrix obtained from rows 7 = {2,...,8} of Cpp.
The homotopy map is defined as
P8, A) = ([Ha,(8,M)]; Vec [Hp,(8,))] Vec [He, (6, MO,
and its Jacobian matrix is Dp(, Ay = (Dgp(8, A), Dap(6,2)).

The computation of Dp(, A) above is similar to that described for the input normal form in
(23)-(27).

Choose the initial v so that 752 is approximately zero. The initial point (8,) = (6,0) is.
chosen so that the triple ((4,,)o, (Bm)o,(Cm)o) is in Ly’s form and satisfies p(66,0) = 0. This can
be done as follows:

1) Obtain the initial reduced order model ((Am)o, (Bm)o, (Cm)o), in balanced form in the same
way as for the input normal form approach.
2) Transform the balanced ((Am)o,(Bm)g,(Cm)o) » ¥0 Ly’s form, and build 6, as described in

{28).

The homotopy curve tracking computation is the same as described in Section 4.

8. Numerical Results.

The results given here are all from the input normal form homotopy algorithm of Section 4.
The homotopy curve tracking was done with HOMPACK [16].
EXAMPLE 1 [15]. The system is given by

-6 -11 -6
A model of order n,, = 2 when ¥ = 10, with cost 7 = 0.678376, is

4 = —0.117649 —0.493522 B = —0.485076
™ 1.10166  —0.785869 / * ™7\ 1.25369

A model of order n,, = 2 when 7 = 1.0, with cost J = 0.723313, is

A = [ —0.112928 —0.507912 _ [ —0.475243
"o 1.10526  —0.789927 /> ™= | 1.95602

0 1 o
A:(o 0 1), B=(11 1), C=(1 0 1).

), Cm = (—0.751632 —0.870253).

) » O = (—0.737429 —0.896272).
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