An Empirical Study of Maintenance Activities
in Two Object Oriented Systems

Wei Li and Sallie Henry

TR 93-14

Department of Computer Science
Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061

April 30, 1993



An Empirical Study of Maintenance Activities in two Object

Oriented Systems

Wei Li Sallie Henry

Kollmorgen Industrial Drives Computer Science Department

201 Rock Road1 Virginia Tech

Radford, VA 2414 Blacksburg, VA 24060

(703) 639 - 2495 (703) 231-7584

li@vtopus.cs.vt.edu heary @vtopus.cs.vi.edu
Abstract

Decades of research on maintenance activities in the procedural paradigm has produced
several conclusions. Among these conclusions are recommehdations that a reduction in
maintenance cost could be achieved by a more controlled design process, by more rigorous
testing of potential problem areas earlier in the life cycle. With the increased emphasis on
the object oriented paradigm, the authors performed an empirical study of the maintenance
patterns in two commercial object oriented systems. Although this is a preliminary study,

intuition is presented ag insight into the object oriented maintenance activitics.
L Introduction

Software maintenance has been recognized as the most costly and difficult phase in the
software life cycle [MUNJ8 1J [SCHN87]. Some of the causes of software maintenance
problems are 1) software maintainability is not a major consideration at the software design
and implementation phases [BENS§7] [MUNJ81] [SCHN87), 2) maintenance has been
largely ignored in software life cycle models [BENS87] [MUNIJS81], and 3) poor

1



understanding of maintenance activities.

Various studies have attributed to the understanding of maintenance activities in the
procedural paradigm [MUNJ81] [SCHN87] [BENSS87] [KAFD85]. There have been very
few studies addressing the maintenance activities in the object oriented paradigm. This
paper addresses one aspect of the maintenance activites in the object oriented paradigm -
the maintenance activities at different inheritance levels. In particular, different types of

maintenance are studied at each inheritance level,

Differentevents can trigger a maintenance request for software. Swanson classifies software
maintenance activitics into three categories : corrective, perfective, and adaptive.
"Corrective maintenance is an activity which would not be performed at all, were it not for
the occurrence of failures... Maintenance performed in response to changes in data and
processing environments may be termed adaptive maintenance...Maintenance performed to
eliminate processing inefficiencies, enhance performance, or improve maintainability may

be termed perfective maintenance” [SWAB76].

This research uses Swanson’s classification of maintenance activities and make observations

of the maintenance activities in two commercial software systems.

IL. Basic Concepts in Object Oriented Programming

Terminologies vary among object oricnted programming languages. However, all object
oriented languages share some common concepts. Different classifications of the object
oriented paradigm exist [COXB86] [WEGPS7] [KORT90]. However, the characteristics
of the object oriented paradigm considered in this research include the concepts of object,

class, attributes, inheritance, method, and message passing.



Objects are the basic program components in the object oriented paradigm. An object is
an instance of a class. An object consists of some data attributes and operation attributes
which are defined in the class. When an object is created from a class, the memory space
allocated for all the data attributes can be uscd and the methods defined in the class can
then be invoked. The atiributes are encapsulated within the object and should be accessed
through the operations (methods). Objects sharing the same definitions of attributes and

operations (methods) are grouped into classes.

A class encapsulates data structures and operations defined for the manipulations of the data
structures. The data structures are the data attributes of a class. The operations are the
operation attributes of a class. A class defines the template for objects which are the hasic

System components in the object oriented paradigm.

Attributes represent the properties that a class owns. There are normally two types of
attributes in a class: data attributes and method attributes. Data attributes are the data
structures a class encapsulates. Method attributes are the operations (methods) defined in

a class. There is only one data attribute defined in the object at line 5: an integer variable.

Inheritance allows the definition of a class to use that of an existing class. Classes are
connected through an inheritance hierarchy. The inheritance leve] (inheritance depth)
indicates where the class is in the hierarchy. A class may be a sub-class of another class,
A sub-class may inherit some data atiributes as well as operation attributes from all its

superclasses.

Methods are also known as operations in a class. Methods are defined to provide a means
for other classes to access the attributes defined in a class. The set of methods forms the

interface (services) that a class provides to other classes,



Message passing is a common communication mechanism among objects. Whenever an

object requests a service that another object provides, it sends a message to the other object.

L Classic-Ada'Design/Programming Language

This research analyzed two object oriented systems, UIMS and QUES, designed and
developed using Classic-Ada. Classic-Ada is an object oriented design/programming
language. It brings the capability of object oriented programming to Ada by providing

object oriented constructs in addition to the Ada constructs.

Classic-Ada supports all the standard constructs defined in ANSI/MIL-STD-1815A. In
addition to the standard Ada constructs, Classic-Ada supports the object oriented features
with nine new constructs. The nine new constructs are class, method, instance, superclass,

send, self, super, instantiate, and destroy. Classic-Ada supports the following principles:

Information Hiding: Hides the state of 2 software component (class object) in variables

visible only within the scope of that component,

Data Abstraction: Supports abstract data types that define an internal representation plus
a set of operations used to access and manipulate the internal representation. Data abstraction

encapsulates the abstract data type with its operations within an object.

Dynamic Binding: Determines which operation is invoked for a specific object dynamically,

at run-time, depending on the object being manipulated.

Inheritance: Enables the extension or combination of less complex objects into more

complex ones.



IV. Statistical Analyses

Some empirical observations of the maintenance activities in the UIMS and QUES systems
are presented. UIMS™ (User Interface System) and QUES™ (QUality Evaluation System),
used in this research were designed and developed with Classic-Ada t. UIMS is a system
providing basic user interface classes. UIMS was developed in 1988 and released in 1989,
UIMS has since had two additional releases. The three releases of UIMS are referred to as
v1.0, v1.1, and v1.2. QUES is a quality evaluation system for Ada program. QUES was
developed in 1989 and released in 1990. QUES has had one new release since the original
release. The two releases of QUES are referred to as v1.0 and v1.1. QUES shares some
high level classes with UIMS, meaning that some QUES classes inherit from some UIMS

classes. Most QUES classes are leaf classes (classes without any sub-classes).

The motivation of this empirical study is to remedy the lack of knowledge of maintenance
activities in object oriented systems. The inheritance hierarchy of classes is a unique feature
of the object oriented paradigm. In general, there is very little knowledge of maintenance
activities at each inheritance level. The distribution of the three types of maintenance
activities in object oriented systems is not well known. This paper attempts to address those

concerns.

The observations made in this research of the maintenance activities in the two object
oriented systems may help researchers and practitioners better understand how and what
maintenance activities are performed in object oriented systems -- for example, what types

of maintenance activities are likely to happen at what release, and if a particular type of

" SPS, Classic-Ada, UIMS, and QUES are trademarks of Software Productivity
Solutions, Inc. '




maintenance occurs, where it is likely to be in the inheritance hierarchy.

Some interesting questions concerning the maintenance in object oriented systems include
1) which groups of classes are likely to be affected by maintenance? 2) which inheritance
Ievels have the most maintenance activities? and 3) what are the differences of maintenance

patterns in various releases?

The observations in this section address the following concerns: 1) what proportion of
classes are affected by the perfective maintenance at each inheritance level, 2) what
proportion of classes are affected by the corrective maintenance at each inheritance level,
3) what proportion of classes are affected by the adaptive maintenance at each inheritance
level, 4) what extend do maintenance activities differ in various releases, and 5) what is the
distribution of the three types of maintenance over inheritance level in the object oriented

systems.

The Perfective, Corrective, and Adaptive Maintenance at Each Inheritance Level

Figures 1, 2, and 3 display the proportion of the classes affected by perfective maintenance
at each inheritance level in the UIMS v1.0, v1.1, and the QUES v1.0 respectively. The
horizontal axis in the figures represents the inheritance level. The vertical axis represents
the proportion of classes affected by the perfective maintenance. The figures reveal the
relation between the inheritance level and the perfective maintenance. The inheritance level

starts from zero. The vertical axis value is calculated as follows:

proportion at each level = (number of classes affected by perfective maintenance at

that level) / (number of classes at that level)

Figure 1 shows a roughly even proportion at each level. This relative evenness indicates

6



that classes at all inheritance levels are effected approximately evenly by perfective
maintenance. This trend may reflect the immaturity of the classes at all levels in the original

release.

Figure 2 indicates that a higher proportion of classes are affected by perfective maintenance
at higher inheritance levels. This observation leads to the speculation that as time
progresses, more and more perfective maintenance is performed in the classes at higher
inheritance levels. The hypothesized reason for this to happen is that a perfective
maintenance may affect several lower level classes or one or two higher level classes.

Maintaining fewer higher level classes may take less effort.

Figure 3 reveals a higher concentration of perfective maintenance in the classes at higher
levels of inheritance hierarchy. A point of consideration is that QUES shares several high
level classes with UIMS and perfective maintenance is more likely to be pushéd to higher
inheritance level classes than to the lower ones. The hypothesized reason for this
observation is once again that the perfective maintenance is performed in either one or two
higher level classes or several lower level classes. The tradeoff is that it takes less effort to
maintain higher level classes. It is noticed that level two stands out with a high proportion
of classes being maintained. This high proportion is due to the large population of classes

at that inheritance level.

Figures 1, 2, and 3 show that a higher proportion of classes are affected by perfective
maintenance at higher inheritance levels. The trend may cause potential problems as the life
of software progresses such that the higher level classes may become more and more

complex due to overloaded maintenance after each subsequent release.

Figures 4, 5, and 6 show the proportion of the classes affected by corrective maintenance

at each inheritance level in the UIMS v1.0, v1.1, and the QUES v1.0 respectively. The

7




horizontal axis in the figures represents inheritance level, The vertical axis represents the
proportion of classes affected by the corrective maintenance. The figures indicate the
relation between the inheritance level and the corrective maintenance in UIMS and QUES.

Each vertical axis value is calculated as follows:

proportion at each level = (number of classes at that level affected by corrective

maintenance) / (number of classes at that level)

Figure 4 suggests a tendency for the maintenance to be distributed over all inheritance levels
among the classes in the UIMS original release. This may indicate once again the

immaturity of classes at all inheritance levels in the early software release.

Figure 5 shows that as time progresses, corrective maintenance concentrates on the classes
at higher inheritance levels in UIMS. This may refiect the fact that bugs were introduced
due to earlier perfective and corrective maintenance among classes at the higher inheritance
level, since a higher proportion of classes at these levels were affected by corrective

maintenance in the first release.

Figure 6 shows a high concentration of corrective maintenance among classes at higher
inheritance levels. This high concentration may lead to the speculation that as more classes
are created and old classes are inherited, and more bugs are found in higher inheritance level

classes.

Figures 4, 5, and 6 demonstrate that a higher proportion of classes are affected by corrective
maintenance at higher inheritance levels. There is an exception in Figure 6 at the second
inheritance level. This high proportion may be caused by the overwhelming concentration

of the classes at the second inheritance level in QUES.




Figures 7, 8, and 9 exhibit the proportion of the classes affected by adaptive maintenance
at each inheritance level in the UIMS v1.0, v1.1, and the QUES v1.0 respectively. The
horizontal axis in the figures represents the inheritance level. The vertical axis represents
the proportion of classes affected by the adaptive maintenance. The figures display the
relation between the inheritance level and the adaptive maintenance in UIMS and QUES.

Each vertical axis value is calculaied as follows:

proportion at each level = (number of classes at that level affected by adaptive

maintenance) / (number of classes at that level)

The overall trends shown in Figures 7, 8, and 9 indicate that adaptive maintenance
concentrates on the classes at higher inheritance levels in both UIMS and QUES. These
trends lead to the speculation that adaptive maintenance is pushed to the classes at higher
inheritance levels inteniionally. The hypothesized reason for this occurrence is that higher
level classes are more environment-sensitive than lower level classes, The figures also show

that adaptive maintenance is less frequently performed than both the perfective and the

corrective maintenance.

Figures 7, 8, and 9 demonstrate that a higher proportion of classes are affected by adaptive

maintenance at higher inheritance levels.




level-0

level-1

level-2

level-3

level-4

Figure 1 : Proportion of Classes Affected by Perfective Maintenance in UIMS v1.0

level-0

level-1

level-2

level-3

level-4

o -

level-0

level-1

level-2

level-3

level-4

Figure 3 : Proportion of Classes Affected by Perfective Maintenance in QUES v1.0

10




level-0

level-1

level-2

level-3

level-4

level-0

level-1

level-2

level-3

level-4

o -l
level-0

level-1

leval-2

level-3

level-4

Figure 6 : Proportion of Classes Affected by Corrective Maintenance in QUES v1.0

11



level-0

level-1

level-2

level-3

level-4

level-0

level-1

level-2

level-3

lavel-4

level-0

level-1

level-2

level-3

level-4

Figure 9 : Proportion of Classes Affected by Adaptive Maintenance in QUES v1.0

12




The Distribution of Perfective, Corrective, and Adaptive Maintenance

Figures 10, 11, and 12 show the proportion of classes affected by the three types of
maintenance in the UIMS v1.0, v1.1, and the QUES v1.0 respectively. The horizontal axis
represents the types of maintenance. The vertical axis represents the proportion of each type

of maintenance in the system, Each vertical axis value is calculated as follows:

proportion of classes affected by a particular type of maintenance = (number of
classes affected by that type of maintenance in a system) / (number of classes

affected by maintenance in the system)

Figure 10 reveals the distribution of the three types of maintenance among the population
of the maintained classes in the UIMS original release v1.0. The perfective maintenance
dominates the maintenance activities in the first release. This distribution may reflect the

immaturity of most classes in the first release.

Figure 11 demonstrates the distribution of the three types of maintenance activities among
the population of the maintained classes in the UIMS second release. The cortective
maintenance dominates the maintenance activities in the second release. This distribution

may indicate the ripple effects of the previous maintenance activities.

Figure 12 shows the distribution of the three types of maintenance activities among the
population of the maintained classes in the QUES original release v1.0. The perfective
maintenance dominates the maintenance activities in the original release. This observation
agrees with that for the UIMS.

13



Perfective Corrective Adaptive

Figure 10 : Proportion of Different Types of Maintenance in UIMS v1.0

Perfective Corrective Adaptvie

Figure 11: Proportion of Different Types of Maintenance in UIMS v1.1

Perfective Corrective

Adaptive

Figure 12 : Proportion of Different Types of Maintenance in QUES v1.0

14



Summary

Several empirical observations were presented. The observations show that 1) a higher
proportion of classes in higher inheritance levels were affected by perfective, corrective, and
adaptive maintenance activities; 2) there isa significant difference in terms of maintenance
patierns in the original release and the second release in UIMS; 3) the perfective and
corrective maintenance are more active than the adaptive maintenance; and 4) perfective
maintenance tends to dominate the maintenance activities in the original release, while the
corrective maintenance tends to dominate the maintenance activities in the subsequent

releases.

The maintenance patterns presented in this section shows that there are observable patterns

of maintenance activities in the object oriented systems.

15




Bibliography

[BENS87] Bendifallah, Salah and Walt Scacchi, "Understanding Software Maintenance
Work," IEEE Transaction on Software Engineering, Vol. SE-13, No. 3, March 1987,
pp.311-323,

[COXB86] Cox, Brad J. "Object Oriented Programming," Addison-Wesley, Massachusetts,
1986,

[KAFDS§5] Kafura, Dennis and James Canning, "A Validation of Software Metrics Using
Many Metrics and Two Resources," Proceedings: 8ih International Conference on Software
Engineering, August 1985, pp. 378-38s5.

[KORT901 Korson, Tim and John D, McGregor, "Understanding Object-Oriented: A
unifying Paradigm,” Communication the ACM, September 1990, Vol.33, No.9, pp.41-60.

[MUNI81]1M unson, John B. "Software Maintainabﬂity: APractical Concern for Life-Cycle
Costs," JEEE Computer, November 1981, pp.103-109,

[SCHN87] Schneidewind, Norman F., "The State of Software Maintenance," JEEE
Transactions on Software Engineering, Vol. SE-13, No.3, March 1987, pp.303-310.

[SWAB76] Swanson, E. Burton, "The Dimensions of Maintenance," Proceedings of the

Second International Conference on Software Engineering, May, 1976, pp.492-497.

[WEGP87] Wegner, Peter, "Dimensions of Object-Based Language Design," Proceedings:
OOPLSA’87, October, 1987, pp.168-182.

16





