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Abstract

This paper concerns the problem of obtaining subpixel estimates of the locations of straight
lines in digital images for purposes of machine vision. In particular, it presents a dithering method
for improving the estimation accuracy on a rectangular sampling lattice. By adding uniformly
distributed independent random noise it is shown that estimation bias may be removed and that
the estimation variance is inversely proportional to the length of the line segment. The sensitivity
to incorrect dither amplitude is calculated, and a novel approach is given for adding the dither by
using grey-level image sensor and utilizing the imaging model.

Introduction

Subpixel edge location measurement is extremely important for machine inspection and men-
suration applications. It permits highly accurate measurements to be made with inexpensive, low
resolution vision sensors. In many cases physical constraints do not permit the use of higher res-
olution sensors, and one must strive to achieve the best possible accuracies with limited sensor
capabilities. A large number of papers have appeared in the last decade concerning a broad range
of subpixel edge location techniques for diverse applications. Generally these have been obtained
with widely varying assumptions, and it is not always easy to understand what they are. Com-
monly shared among the various approaches is the idea that the longer the edge being measured,
the better the estimates of edge position become. Central limit theorem-like arguments suggest
that as n independent edge measurements are made, the variance of position estimators is reduced
by the factor 1/n, with the possible exceptions of rational slopes, most notably vertical, horizontal,
or 45° diagonal lines where the measurements are completely correlated. Indeed, this behavior is
supported by many theoretical and experimental papers.

This paper is motivated by applications in which objects are to be digitized in binary and
measured with high accuracy. Binary digitization is desirable for reducing storage requirements
and for speeding up computations in applications involving extremely large images. We first show
that by adding random position noise to the line or by introducing dither to the sensor, the 1/n
reduction in variance is preserved, regardless of line orientation. This can be implemented in various
ways by actually making ideally straight scene edges fuzzy in the images themselves or equivalently
by randomizing the sensor binarization threshold in just the right way. We calculate the worst-case
performance and investigate the sensitivity of the estimate to slight deviations from the optimal
dither noise statistics.

Review of Previous Work

Edge location algorithms appearing in the literature can be broadly classified into two cat-
egories — grey level and binary. In the case of grey level images, it is frequently the case that
edge models are assumed, often without considering the characteristics of the imaging/digitizing
equipment. In this category one finds two basic approaches -— geometric and moment-based. In
the geometric approach, the location of an edge is determined by using either an explicit or an
implicit edge model. An edge surface may be interpolated explicitly using a curve or surface such
as a cubic or integral of Gaussian and then differentiated analytically. Alternately the edge model
may be applied implicitly by using a linear or nonlinear mask-type edge operator that is not derived
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by surface approximation. Then the edge is located by thresholding the derivative surface or by
finding the zero crossings of the second derivative of the image [1-3]. In a moment-based approach,
moments of the discrete pixel intensity distribution across an edge and those of the underlying
continuous edge are assumed to be equal (moment preservation). Then by equating moments one
obtains equations whose solution is by definition the desired edge location. Two definitions of mo-
ments have been proposed [4,5]. Algorithms in this category usually utilize information from pixels
that are close to the ‘true’ edge, in addition to those pixels that are ‘on’ the edge. Most papers
ceem to fall into this category of grey level techniques.

In the second category, the underlying images are binary. Edges are determined by the bound-
ary between adjacent regions with different intensities {black or white). It is the locations (coordi-
nates) of those pixels on the boundary that are used to determine the edge, rather than the grey
values of pixels in a neighborhood around the edge. The method presented in this paper belongs
to this category.

Hyde and Davis [6] considered fitting lines to straight edges in a grey level image using infor-
mation about both the (quantized) locations and the intensities of pixels through which the edge
passes. They concluded from experiments that the incorporation of grey level information does not
improve the accuracy of the fitted line and does not warrant the higher computational cost. Other
authors did achieve higher accuracy by taking into account pixels that are adjacent to the edge in
a grey level image [7].

Dorst and Smeulders [8] were interested specifically in the geometrical properties of binarized
lines of finite length. For example, they characterized the set of continuous finite length line
segments which, after digitization, give rise to the same digital line segment with a particular chain
code. Later, Dorst and Duin [9] also pointed out that the maximum vertical distance between any
two parallel line segments in this set is dependent upon the orientation of the lines, in addition to
the number of pixels in the line segments. For certain orientations, notably 0, 45, and 90 degrees,
the distance is especially large, up to one pixel spacing for the cases of 0 and 90 degrees. Based
upon Dorst’s work, Berenstein et al [10] proposed using a special line segment in the set as the
estimator for all line segments in the set. They computed the corresponding average vertical offset
error over all possible digital line segments of a given length under the assumption that all line
segments are uniformly digtributed in space and in orientation. Their assumption is that uniformly
distributed in space implies uniform radial and angular distribution. For a specific line segment,
the error can still be as large as half the pixel spacing.

Gordon and Seering [11] studied the estimation error in locating a binarized line by using a
least squares approximation based upon the quantized coordinates of points along the line. They
made a simplifying assumption that the fractional parts 8y of the vertical coordinates of each point
on the true continuous line segment are independent. As they point out, this is not always a
valid assumption. They made different assumptions from Berenstein on the uniform randomness
of line segments in the plane; their vertical shift and orientation estimates are hased only upen
the independence of éy and an assumption of a constant variance. In their experimental work they
considered 18 equiprobable perturbations within a 2.5 degree range around particular orientations
and show the comparison with their theoretical results. Their experiments show that the approx-
imation errors are largest for the same line orientations at which Dorst found the largest errors,
namely vertical, horizontal, and diagonal lines.
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Cox, et al, approach a slightly different problem of finding the congruence or small pertur-
bation that brings an image and a line model into agreement [12]. They make uniformness and
independence assumptions similar to those of Gordon and Seering when considering the quantiza-
tion error. They also noted that models with substantial orientations of 0, 45, and 90 degrees were
especially subject to estimation error. They suggest that imaging equipment be positioned in such
a way that orientations of edges are not at those special angles.

The above approaches attempt to obtain from the digitized edges an estimate of the original
continuous edge with subpixel accuracy. Obviously, the digitization process itself destroys much of
the subpixel information due both to position and to intensity quantization. Qur approach is to
perturb an edge randomly before quantization so that better information can be obtained about
the fractional parts of the edge position measurements. This facilitates the statistical recovery of
the edge position.

Locating Edges Using Unit Dither

Consider a thick ideal straight edge whose orientation is known. We represent the edge by
y = az -+ e, where & is a known constant. The edge is digitized at horizontal coordinates z =
0,1,...,n —1. Our objective is to estimate the value of e so that the location of the boundary can
be determined. First consider the case where —45° < arctan(a) < 45°. Let #;, i =0,1,...,n—1,ben
ii.d. random variables having uniform distribution in [0,1). We add »; to the y value of the curve
at = = ¢ before digitizing it. Then we have

Y = |od + e+ ) i=0,1,...,n—-1,

The #;’s represent a small dither added to the vertical coordinate of the edge before digitization.
Note that y;’s are random variables and that the same continuous edge may give rise to different sets
of y;’s. Note that the set of pixels {(i,3)} in general no longer constitutes the noiseless digitization
of a straight line. Next we compute a least squared error estimate of the value of e . That is, we
choose an ¢ that estimates e, such that

n~1
Err(é) = Z[ai-{- é — y;]?
3.:0

is minimized. By taking the partial derivative of the above function with respect to ¢ and equating
the derivative to zero, we can solve for é (linear regression):

n—1

.1 {n—1)
=Ly Ty

We can prove that the mean and variance of é satisfy
E@=¢e and
. 1
Var{é) < I

Note that the mean and variance are taken over all possible “digitizations” of the same continuous
edge, and the result is independent of the orientation, «. It should be emphasized that this result
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provides us with an anbiased estimate of vertical shift of a straight edge for a known orientation
and a carefully controlled unit dither.

Next this result can be generalized for the case where the orientation is unknown and must also
be estimated. Specifically, let the boundary curve be y = ez + ¢ where both o and e are unknown.
We minimize the following squared error function that has two unknowns:

n—1

Brr(a,é) =y (d&i+é—y)"

i=0

Setting the two partial derivatives of the above function to 0, we can solve for & and é (again, linear
regression):

) 12 S
a:n(n—l)(n—l-l);(i_ 7

o1y (=1
e‘;—;yz_ ) o

Again, we can prove that

E{ad)=« and

E(é)y=e.

Also, we can compute the variances of @ and & in this case and find upper bounds for them:

. 3
Var{d) < _H—_H_——n(n TN

3=

Var(g) <

We see that the variance of & is fajrly small and, therefore, & is a fairly accurate estimate of a.
The upper bound we derived for the variance of é is 4 times larger than that of the case in which
o is known. This is quite understandable because it is &, the estimator of «, instead of the value
of o itself, that is used in the calculation of é.

For the case where 45° < arctan(c) < 135°, more than one pixel on the digitized line may have
the same z coordinate. However, the y coordinate of each pixel on the digitized line is unique.
1§ we add dither to the z coordinates of those points on the continuous line that have integer y
coordinates and quantize the line in @ coordinate, we can get a result symmetric to the above. A
simpler way to deal with such edges is to rotate the imaging system by 90°.

From the above results, we see that the accuracy of the estimated line, i.e., the accuracy of the
values of & and &, depends only upon the number of points that are involved in the guantization
of the original continuous line, that is, the length of the latter. The bound is independent of the
orientation of the line, and is consistent for all lines. We emphasize here again that our mean and
variance are taken over all possible digitizations of the same continuous line segment, not on all
the unique digitizations of all possible continuous line segments.
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Figure 1. e(x) vs. image plane distance (pixels).

Achieving the Dithering Effect

There are many factors that contribute to the response of a lens to an ideal edge. In the
case where a simple lens is linear and spatially invariant, the image is the convolution of its point
spread function (=, y) with the source image i,(z,y). If the lens is diffraction-limited and the light
monochromatic, then the point spread function is angularly isotropic, i.e.,

ha(r) = 4K [J1(ar)) f(ar)?,

where o depends upon the wavelength and the position of the image plane relative to the aperture
and Jy is the first order Bessel function. Using 4; one may determine that the response of such a
lens to a long thin line source oriented vertically is

hs(z} = 4K S (205.’.[7)/(0[3?)2,

where S is the Struve function of order 1 [13]. A3(z) looks much like a 1-dimensional Gaussian
with slightly oscillatory tails. Then the familiar edge response shown in Figure 1 is given by

e(x) = / " he(r) dr.

—o0

Suppose a nominal threshold is established at the midpoint of the function e(z). Then by
randomly disturbing the threshold so that e~!(z) is uniformly distributed in the interval [—.5,.5)
the desired dither is achieved without the necessity of actually dithering the image itself. Of course,
actual optical systems will differ considerably from the simple case described above, and e(z) will
have to be determined empirically.

There are situations in which high resolution, gray level images are already available. We may
want to convert such images to low resolution, binary formats to save storage and/or to speed up
processing. We could incorporate a dithering procedure in the conversion software so that we can
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still obtain relatively accurate measurement of edges from the low resolution images. Writing such
a dithering procedure in software is straightforward for edges oriented between —45° to 45°,

Practical Considerations

From a practical viewpoint, it may not be possible to have the variable threshold take on
exactly all continuous values in the unit interval shown in Figure 1. Worse yet, the actual interval
of the synthetic noise may not be exactly 1. For this reason it is useful to explore the sensitivity
of ¢ and Var(é) to a deviation from the ideal distribution width. Our sensitivity analysis reveals
the following mean and the variance of ¢ when estimating the vertical shift of a straight edge with
known orientation in which the 5;’s now assume a uniform distribution in the interval [—e,1+¢),
with || < 3:

EE)=e+7r with Ir| <

Notice that Var(é) increases lincarly with £, and that the estimate ¢ becomes biased. We would
also like to know how close to ¢ an instance of ¢ is expected to be. E[(é — e)?] is such an indicator.
We can show that

1 3l €’

El(é—e)? < et EETAER

We see that the estimator ¢ is quite stable. The sensitivity analysis for the more complex case
of estimating both o and e for a straight edge has not been done because the computation involved
is rather complicated.

The dither makes y; and y; (i # j) statistically independent, although we did not use this fact
in our derivation (see Appendix). The effect of the dither that we have made use of is that when
it has the exact unit interval distribution, it makes the y’s have the following two properties:

Bly) =aite
and
Elyy;) = {Ezzigg? ;;) :j;
where
& = [ai +e] — (ai +e)
and

o; = (i +e) — |l + e

are the subpixel fractional distances between the intersection of the line with = = i and the next
higher and lower sample points, respectively. Intuitively, the closer ai+ ¢ is to an integer (say,
lei + e]), the more likely o is to take that integer as its value. Thus, the information about the
fractional part of ai+ e is retained to some degree. For example, consider the digitization of a
continuous horizontal liney=e atz=10,1,...,n— 1, where 0 < e < 1. From the usual quantization
process, we get y; = 0 for i = 0,1,...,n — 1. The best estimate we can propose is y = 0.5 and the
vertical offset error is e — 0.5]. The error is deterministic for a particular value of e. If dither is
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added prior to quantization, the least squares estimate ¢ is non-deterministic for a fixed e. The
usual situation is that some of the y;'s will have value 1 while others will have value 0. Then é has
a value between 0 and 1 and is close to e as the mean and the variance of & indicate. An extreme
situation is when all n dither values are so small that y; = {e+ ] = 0 for all 4, in which case & will
be 0. Fortunately the probability of this occurring is {1 —¢)” which is very unlikely when n is large.

From the statistical point of view, since there are n independent data points that are used to
estimate the parameter of the edge, the variance of the result is on the order of v/n, where v is
the variance of a single sample point about its true value. Qur method provides one way to make
the samples independent while keeping the estimate unbiased and the variance small. It turns out
that as long as the dither is uniform over the interval [-7,i4 1), i > 0, the estimator é is unbiased.
For example, we could use dither with uniform distribution in say, [-1,2). This would still preserve
the independence among the y;’s and cause the mean of each y; to be ai + e, but it would make
the variance of y; unnecessarily large. Also notice that the central limit theorem tells us that the
estimator ¢ tends to have a normal distribution when « is known.

The method for estimating the vertical shift of a straight edge and the corresponding sensitivity
analysis can be extended in two ways. First, it can be seen very easily that the abscissas of the
digitized points on the edge do not have to be 0,1,...,n — 1; they can be 2g,21,...,2,_1, as long as
the z;’s are distinct. Second, the edge does not have to be straight. It can have any known shape,
in which case, the edge curve can be expressed in the form y = F(z) + ¢ where F is known. The
derivation of this extension parallels that for the straight edge.

The main mathematical method used concerns the identification and use of the fractions §;
and ;. We have used few approximations in our derivations despite the discontinuous floor and
ceiling functions, and have only enlarged the error estimates to get bounds with simple forms at
the ends of the derivations. Thus the results are good even when n, the number of pixels in the
digitized edge, is not very large, which is said to be common [10].

In the sensitivity analysis, the exact values of the mean and the variance of ¢ depend not only
on n, but also on @ and e. However, we have estimated upper bounds for the mean and the variance
that are dependent only upon », the length of the edge.
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Appendix

In this Appendix we provide proofs of the three assertions made in the paper. Assertion
1) is actually a special case of assertion 3), but we prove it first because it js simple and some
intermediate results can be used in the proof of other assertions. First we list the assertions again.
Given
¥ = lad+ e+ 7], i=0,1,...,n -1,

where o and ¢ are constants, and »;’s are i.i.d. random variables with uniform distribution over
interval 7, then

1) if & is known and 7 = [0, 1), then

R s (n—1)
€= ;; : Yi — 2 o, (1)
i=0
the estimator of e, has the following properties:
E(é) =e,

" 1
Var(é) < e

2) if both & and ¢ are unknown and 7 - [0,1), then

) 12 -, n-1
a:ml—)g(ﬁh 3 1723 (2)
and -
é:%gyg%(ngl)&, (3)
the estimators of o and e respectively, have the following properties:
E(&) = «,
) =e,
Var(éa) < 3

n(n—1j(n+1)

N
Var(é) < o

8) if o is known and I = [—¢, 1+ ¢} where || < L, then the estimator é of e in (1), satisfies

E(é):e+f’

|

I
Tises and

where |r| <

o 1 3le
Var{e) < ZIE+—§T?:
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while " \
N I
El(e - e)7] < 4An t 2n + (14 2e)2°

Notation: in the following derivations, the index of a summation runs from 0 to n — 1 if no
limits are specified.

Proof of assertion 1)

It is easy to see from (1) that

E(é) = %ZE(M) - (_”—-;ﬂa. 4

To compute E(y;), notice that ai+e+n; has equal probability of being any real number between
ai+e and ai+e+ 1. If @i+ e isnot an integer, then

e te Hait+etn < [owidte]
CT [ad €] ifai+e+m > [ait+e].

More importantly, the probability distribution Pr{y;) of y is

L [ Jaitel —(aite)  p=|aite]
Priy) = { {ai+e) — |ai+ €] yi = [ai +e]. ®)

We see that
E(y:) = |ai + ] [[ai + ¢] — (0 + )] + favi = e [(ai + ) — [ari +e]

= [[ai+e] — [t + e]](od + €)
= (ai+ e).
If wi + e is an integer, then
vi=|loitet+n] = |ait+e] =(aite).
Again, we have
E(y;) = (ci+e). (6)

Thus we have

-1
S B = Yeite) = 20 Va g ne ™
and the substitution of this formula into (4) gives E(é) = e.

To compute the variance of &, we notice that

Var(é) = E(%) — [B(8)]* = E(é%) — ¢*

and

E(éE) — E{[%Zyz _ (?1 - 1)a]2}

2
= LB w1 - O ey + ®
1 (n—1)?a?

= %EE[(Z 1)’ = = (n—Dee.
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Since

B )] = B ) (Y ) = 3 By, (9)

we need to compute E(yiy;), 4,5 =0,1,...,n—1. We notice that y; and y; are, respectively, Tunctions
of n; and »; which are independent if ¢ # ;. From probability theory we have

Eyiy) = E(w)B(y;) = (wi+e)(aj +e)  if i

For the case of i = j, first assume that oi + ¢ is not an integer. Now y? can take only one of
two values, |ai+e|? and [ai+ e, with the same probabilities that Yi takes [wi+e] or [ai-e]. Let

5i:|—ai+e}—(aé+e)

10
0; = (ai+e) - |ai +¢. (10)

We have
E(y) = [ +¢[25; + [af +e]?a;
= [ai+e) — 036 + [(ci+ €) + 60,
= (ai + 3)2 + 6;0;.
If oi + e is an integer, then E(y) = (i + €)* and the above formula still holds (with o; = 0). In

summary, we have

Now the summation in (9) can be carried out:
P = 33 ei+ o ei+)+ Y bicy
i i :
Z(m' +€) E(aj +e)+ Z bi04
J i

i

ni(n —1)2
= ___( n ) a2+n2(n—1)ae+nzeg+25i0’£-

Substituting this last formula in (8) yields

. 1
Be®y=c"+ — Zé}'fn‘,

and hence

N 1
Var(é) = = E &o; (12)
Notice that 6,0, >0 and 6 + 0, =0 or 1. We have 6;0; < 1. So

1
g) < —.
Var(é) < o
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Proof of assertion 2)
Again, the means are relatively easy to compute. From (2) one has

12 (n—l)

E(a) = n{n —1) (n—!—l)z

1B ().

Now

>l e = 35 - 0 D
=Ytai [~ B Doy o

n(n—1)(2n - 1) (n—1) n(n-1) nan-1)
6 atle- e m = - =
_nr=1@2rn-1) nn-1)
= G o+ 4 o
_ nn-1)(n+ l)a
12 |

This leads to E(&) = a. From (3) one has

R 1 n—1 .
E(é) = gZ,E(yi) S 5 )E‘(a).
Combining this with (7) gives E(¢) = .
We now compute Var(4) and Var(é) in the same way we computed Var(é) in the previous

section. I'rom (2) one has
R 1 . (n— 1)
@ = () [Z i Z vl

where ( ) H
n(n — n -+
Py = === (13)
Thus one has
B(a%) = ;,%{E[(Z )"~ (n~ DE[Y " iw)(3 )l + (Z i)} (14)

Since we have computed the last term in the braces in the previous section, we only need to
compute the first two terms. Using the same notation as in the previous section, one has

B i)Y (sz)(ZJyJ =D 2B wy)
= ZZ” ot +e){aj +e)+ Zf&im

= [Z (i + e)][z Jloj + e}l + Z 6,0,

_ [n(n—lé@n—l) n(n—l +Z 28,0,
_ (n-1)36(2n_1)2 . (_1)6(2n_1)2 2(n—l)2 e+ Y P60,
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and

U)ol = B i) ()l = ¥ 2 iB(wy)
= ZZ i{lai+e)(aj+e)+ Z b0
:[Zi(ai+e) Zafj—!— +Zlf50'z

i

_pnl) (- 1)

=[==—a+nd] G +Zzém

_n*n—1)’(2n - 1) n?(n — 1)2 (n = 1)(2n-1) 2(11 - 1)

= 12 i 6 Jae APILLE

Putting everything together in (14} and collecting terms, we obtain

E(67) = o2 =T 1) Zéo’zﬁ(n—l)Zzﬁaz%-ZléJz (15)
Now we obtain Var(a) and can estimate an upper bound for it:

Var(a) = £(&%) — o?
144 {n— 1

:n?(n_1)2(n+1 Z5N=—LHH1)Z%5Uz+Zzém
= s 11;124(n T Z[(—@;—l):i —(n = 1)i + %60,
nZ(n — 1?;{23(71 17 Z[(n*:{l)—g = (n — 1)i -+
n?(n - 1§§(n+1)2[(n;1)2”—(”— 1)(%21)" 2 1)6(2”_ Y
3

n{n—1)(n+1)

Last, we compute Var(¢). From (3) one has

P@Y )+ 02D

We have essentially computed the first term and the third term before. Let’s list them here:

A= T e e st L3

(n—1)2 _(n—1)? n — 1) 21
O i 2 St |

E(&%).

)26 0.
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The summation in the second term is
1 n—1
E(a i) = E|l—— j — ; i
(32 w) = Bl JZ(J s ZZy}
1 .o on—1
= ITT&) JZzZ(J - T)E(yjyi)

1 .o on—1 . . Con—1
:;(n—)[%:;(jn 5 )(az+e)(a3+e)+ZZ(z-T)émi}

: ; _r-1 . n—1
:M[Si_:(aa+6)j2(]— 7 )(ag-{-e)—kZZ(z_ 5 V6i )

= sy e g ngrlo= ot ) 0=

p(n) 2
_n(n-1) 1 .on—1 .
= —?QZ + noe + p(—njzzj(z - —5—)(510'3.

Thus the second term is

n

{n

-1
5 )5;‘0'3'.

n

— n—1)2
1)E(@Zyz) = (__2_1052_;_(71— l)ae—f— ﬁ;(z.ﬁ

Combining the three terms, we obtain

X 1 12 . -1 9n —1)2
N2y o Siop — — " — Vs N ) -
BE) ="+ =3 b0 T ¢ 5 )6$J;+n2(n+1)2 ! -

2{
~1 )2(5502'.

Now we obtain Var(¢) and can estimate an upper bound for jt:

Var(é) = E(&%) — ¢?

1 12 . n-1  9(n-1)? 2i
= [1- (Z“%)+W(l—m

2
n? | 2 ) 100

4 2
= m2(2n— 1‘33) (510-3

1 Y

- m 2120 = 1) = 8(2n - 1)i 4. 92)
2n—1
2n(n+1)

<L——vl < =
(n+1) " n

Proof of assertion 3)

When the distribution interval of the dither is [~¢,1 + ¢), instead of exactly [0,1), the y’s
may take one of three values, rather than taking at most one of two values ag in the previous two
sections. The number of values ¥ takes depends on how close a; + e, from which y; is obtained, is
to an integer. There are eight cases:

— 14 —



(I) >0, @i+ eis not an integer
Case (a): ¢ < § and € < o;

This seems to be one of the most common cases. The probability distribution of y; is:

e45; - :
Priy) =4 F e Laz. el
EE yi = [ai + €],

Case (b): i <e< o,

Now wi+e-+n; may be greater than [aite] +1, and we have the following probability distribution
of y:

53 vi = |oi+ e
Pr(yi) = 1_:25 Yi = [az + 61
&= ¥ = [ai+e] + 1,

Case (¢): 0; < e < §

Now i+ e+ may be less than lei + €], and we have the following probability distribution of y:

T %= |laite] -1
— 1 — 1
Priy;) = T+2e % = [oi+ e
%i—‘z’% y = [ai+e].
(IT) ¢ > 0, ai+eis an integer
Case (d): 0=é6=0;<c¢
e yi=(aite)-1
Po(y) = { iy i = (it e)
To5e Yi = (ai+e)+ 1,

(II) € < 0, oi+eisnot an integer
Case (e): [¢] < & and |e| < o;

This seems to be the other most common case. The probability distribution of ¥; is the same as in

Case (a).

c+35; . — .
Pr(yi) - gi_gg ¥ = LGZ + EJ
s vi = [ai+e€].

Case (f): §; < |¢| < o;
' i = [ei +¢] = (ai+e) + 6;.

Case (g): o; < le] < &
¥ = loite] = (ai + e} — o;.

— 15 —



(IV) € <0, ai+eis an integer
Case (h): 0 =6 =g, < |¢|
Yi = [ai+e] = [oi +e] ={ai+te).

Note: (1) Cases (a)~(h) occur depending upon the position where the lige ¥ = az + ¢ intercepts
=i, which is determined by the values of & and e. Thus, whether cases (a)-(h) occur is original-
line-dependent. (2) We need le] < 3 so that cases (b) and {c) or cases (f) and (g} do not occur
simultaneously.

Now we compute E(w) as they are needed in the calculation of E(é).

Cases (a) and (e):

ai+el(e+8)+ [ai+ e €+ o;
st = A8 i e
_ L%t eld; + [ai +elo; + (lodi + ] + [ai + €])e
(1+ 2¢)
_{oite)+ [(wi+e) —0i + {ai+e)+ §e
{14 2¢)
(65 - 0',;')6
(1+2¢) "
The magnitude of the numerator of the second term above satisfies

= (af+e) +

(& = s)el < [e].

Case (b):

_ [ai+ej(e+é;-)+[ai+e] +([ei + el + 1)(e - 6,)
o) = (17 2¢)

_loitefet [aitels + [+ e]os + [ad +e]é; + [+ e]e — [ai + e]é; + (e — 8;)
- (T + 2¢)
_ (ai+e) -+ [(ai+e) —oyle + [(a + ¢} + &:e + (e — ;)

a (14 2¢)

(5‘5 - 0’;,;)6 + (6 — 62)

(1+ 2¢)

We can estimate the magnitude of the numerator of the second term:

= (ai+¢e) +

I((Sz' —_ 0’5)64— (6 - 6z)| = ,(252 — 1)6+ (6— 5{)| = ,(26— 1)53'! <6 < e,

Case (c):
sy ot te] —1)(e—o) + [t + €] + [ai + e](c +03)
E(yz)"* (1+2€)
_ levi + e — i+ eo; — (e —a:) + [ + e6; + lovi +efo; + [oi + ele + [ad + e]é;
(14 2¢)
_ (ai+e) + [(ai+e) - oile + [(ad + e) -+ &;je (e —a;)
(1 2¢)
o (8 —oi)e—{e — oy)
= (ai+e) + (112



Again, the magnitude of the numerator of the second term can be estimated as

|(8 — o) — (e - o) =1 - 20;)e — (e—oi)] = (1~ 26y < oy < e

Case (d)
E(y;) = [(2i +€) — e + Ei"f;; tilaite)+1Je _ (ai e).
Case (f}
E(y,): i—ai—}-fﬂ:(aiﬂ—e)—!—éi, & < |el.
Case (g)
E{y:) = [ai+e] = (ai+e) ~ oy, &; < el
Case (h)

Ely:) = {ai + e).

In summary for cases (a)}(h), we have

Ey) = (o + ) + ¢,

where
( @%E cases(a), (¢)
%@_} case(b)
cases(d), (h)
5 case( f)
—o; case(g),
and
¢l < i

14 2¢°

Now it is easy to compute E(¢). We first have

EQ ) =D (oite)+Y ¢ = ”(”2_ I)a+n€+z¢i.

Therefore

E(é):%E(Zyi)“(n;—l)Gf:B'l‘%ZGbi:e‘l—f‘, (17)

where r satisfies

! .1 lel el
iTI—InZ¢a|<nzl+2€—1+2€-
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Now we will derive Var(é) and then calculate E[(¢—e)?]. As in the first two sections, we start
with the same formula:
Var(e) = B(e?) — [E(e)]?

=Bl Yw - O Ve < 4 Ly gy
IO R N S PELES SIS Ly
n— n(n — n—1)2 e
:H_ZE{(Z%P]_( . 1)a[ ( . 1)a+ne+Z¢z‘]+( 41) ag‘QQ*%Z@—n_lz(Z?ﬁi)?

(n—1)?

— %E[(Zyi):z] _ _4_'_&2 — (n — 1)ae —e? — %i(—n—;ﬁaf“F e]ng’& - ;11_3(2 qb’-)z'

(18)

E[(Zyi)g] = ZZE(%%‘)- (19)

Cases (a)~(h) lead to sixty-four possible combinations for y,y; including square terms and cross
terms. Fortunately, we don’t need to enumerate all of them, thanks to the notation we introduced
before. However, we still need to distinguish eight situations, among which seven are the square
terms.

Once again, we need to compute

(1) Square terms, y?

Cases (a), (e):
E(p) = Lol 4 8) + [ai + (e + o)

(152
_ Lo+ e)?8 + [ + €20, + (it e—0;)° 4 (it e+ 5:3%]e
B (1 + 2¢)
_(eite)® + 80i 4 [(oi -+ e)? — 2ai + e)o; ol +(wi+e)? + 2o + e)6; + 6%e
B (14 2¢)
L 2, i + 2(0i 4 e)(8; — o)e + (67 + 0F)e
= (ai-e) + 1+ 329 .
Case (b):
_loite]P(e+8)+ [ord +e]?(8i + o) + (i + el + 1)%(e — &)
By} = (1+2¢)
_ (oite)® + 8ioi + (Jai+e]? + [ai + el?)e + 2ai + €] (c — &) + (e — 8;)
- (14 2¢)
. 9 biop + 2(az+ 6)((51 - Cl"i)(:’ -+ (622 + 0'3?)6 + 2((1’% -+ 8)(6 - 5,) + (2(5.‘.; + 1)(6 — 53')
:(az—]—e) 4 (1+2£) )
Case (c):
2y _ (it e] = 1)%(e = 03) 4 Lo+ ef(6s +03) + (Jai + e])7(c 1 03
E(yi ) - (1 + 26)
_ (i e)? + S04 + (| + e]? + [ai+e]?)e — 2laitel(e— o) + (e - o)
{1+ 2¢}
L 6:0s + 2(@i + e)(8; — oy)e + (67 + o2)e = Aai+e)(e — &) + (2o; + D)(e — 0y)
w(az+e)2+ (I—!—Qe) .



Cases {d):

[(oi+e) = 1% + (ai + ) + [(ai + )+ 1)2%

2e¢

B(y}) =

(1+2¢)

= (Q'i+€)2+ (T—;Z_E)

Cases (f):

E(y?) = [ai + e]® = [(ai+e) + &1 = (ai+e)? + 2(ai + €}6; + 67,
Cases (g):

E(y?) = |oi + el = [(ai+ e) — i) = (i + €)® — 2(evi + e)o; + af.
Cases (h):

B(y?) = (ai +e)?,

In summary of cases (a)~(h), we have

E(y!) = (ai+e)* + Aovi + e); + 0;,

where
( 0
1o, 4524 0?)e (28 4+1)(e-8:)
T2 (142¢)
J (20;4+1)(e~0a;
142¢
6._,: = 2e ( )
(142e}
2
6;
ot
0

(2) Cross terms, yy;

cases(a), (e)
case{b)
case(c)

case(d)
case( f)

case(g)
case(h).

Since y; and y; are, respectively, functions of n; and 7; that are independent, we are able to

write the cross terms in one form.

Eyiys) = [(ai + ) + ¢l (v + ) + ;]

= (ai+e)(aj+e) + (ai + e)6; + (aj + €)p + ¢:4;.

Now we can calculate the summation in (19):

222 Eluy;) = ZZ(az+e)(w+e)+2ZZ(m+e RIS 36

_—~(RT_}£Q + n*(n — Dae + n2e? +2[ (

— 19 —
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Now substituting this last formula into (18) and collecting terms, we have

Var(é) = %[ZZ@'%’ + Zgi - ZZ@%‘]

i i i

itete 148 146

1+2  a(l+29 < 1

If e < 0, then the largest magnitude of §; occurs in case (e). We have

9, = §i0'2'+((53-2+0';§2)6< 4l+%€_ﬁ1
P 14 2 T 14% 4

In the above two estimates, we used the following three inequalities:

%Séf—l—crfgl
(26, +1)(€—5Z') <€ for <8 <e
(20i+1)(5‘0'z‘)S€ for <o <e
Thus we have .
s in ¢ < {
Va'r(e)g{é_l_g_; N
<i+3fe|
Y 2n

Now we compute E[(é - e)?]. First, we give a useful formula. Let X be a r.v. with mean E(X)
and variance Var(X). Let ¢ be an arbitrary constant, Then

E(X —¢)’] = E[X - E(X) + B(X) — o)’ = E[X — E(X)] + 2AB(X) - E[X — B(X)) + [B(X) — ¢
= Var(X) + [B(X) — >
Using this formula in conjunction with (17) and (20), we obtain

El(¢ - )] = Var(é) + [E(é) - o)

= Var(é) + (% Zqﬁi)z
3lel €2
<-4 2y

dn - 2n 0 (14 26)%

We can easily extend assertions 1) and 3) to arbitrary shaped edges. That is, given
Y = [F(i) +e+n), i=0,1,...,n -1
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where F satisfies —1 < i‘}gl < 1, e is an unknown constant, and 7;’s are i.i.d. random variables
with uniform distribution in the interval I, then

New assertion 1) if /= [0,1), then

n-1 n—1
e= 13 w3 FG), (21)

i=0 i=0
the estimator of e, has the following properties:

E(é)=e,

. I
Var(é) < i

New assertion 3) if J = [—€, 1+ ¢€) where |¢| < 7> then é in (21) satisfies

Eé)=e+r,
where |r| < TL%, and
. 1 3le
Var(e) < 4—5; + 5;—,
while

BlE—e)l < Zlﬁ’J“%,}?* (1:26)2'

These two extended assertions can be proven by replacing terms of o, @y ¢, etc. with F(1),
2 F(4), etc., in the proof of assertions 1) and 3).

We can also show that % and y; are independent when ; #J. Thus we could first calculate the
variance of g (which is 60, in the case of assertion 1, for example). Then we could calculate the
variance of é which is just one n-th of that of yi in assertions 1) and 3), because & is the mean of the
v:’s plus a constant. This does not work for assertion 2) because there ¢ and 4 are not simple means
of y;’s. Our derivations are similar for all three assertions. The above approach does not lead to
much simplification because most of the work in our approach involves calculating quantities that
are also needed in calculating the variance of y;. However, realizing that v and y; are independent,
does facilitate our understanding and interpretation of the results,
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